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Abstract: In this paper, we propose a distributed economic MPC algorithm for cooperative
control of several self-interested interacting dynamical systems. Each system considers its own,
local, performance criterion, and coordination between the systems is enforced via coupling
constraints. The proposed control strategy consists of a distributed optimization algorithm,
used to determine an overall optimal steady-state, whose current iterates at each time are then
used by each system to compute a control input in an economic MPC framework. We analyze
the properties of the proposed algorithm and prove convergence results for the resulting overall
closed-loop system. Furthermore, we apply our results to the problem of synchonizing several
agents with conflicting objective.
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1. INTRODUCTION

In recent years, the control of networks of interacting
dynamical systems has received significant attention and
has gained importance in many application areas, such as
the coordination of multiple robots or distributed power
generation. For such networks of systems, model predic-
tive control (MPC) is an appealing control technique due
to its ability to explicitly handle state and input con-
straints and to incorporate some performance criterion.
However, a centralized implementation of MPC is often
not possible due to the large-scale nature of the problem
and the limited amount of available information from
other systems. To overcome these issues, many distributed
MPC algorithms have been developed in the literature,
an overview of which can, e.g., be found in Scattolini
[2009] and Christofides et al. [2013]. For the above men-
tioned applications, a setting of particular interest is that
where the system dynamics of the systems in the net-
work are decoupled, but couplings between the systems
are given via constraints and a common objective. For
such a setting, stabilizing distributed MPC schemes have,
e.g., been obtained by Dunbar and Murray [2006] with
additional consistency constraints, by Richards and How
[2007] and Grüne and Worthmann [2012] through the
use of a certain sequential optimization algorithm, and
by Spudić and Baotić [2013] via explicit MPC techniques;
furthermore, distributed MPC algorithms for more general
cooperative control problems than setpoint stabilization,
such as consensus and synchronization, have, e.g., been
treated by Keviczky and Johansson [2008] and Müller et al.
[2012].

⋆ This work was supported by the German Research Foundation
(DFG) within the Priority Programme 1305 “Control Theory of
Digitally Networked Dynamical Systems” and within the Cluster of
Excellence in Simulation Technology (EXC 310/1) at the University
of Stuttgart.

All of the distributed MPC algorithms mentioned above
have been formulated in the context of tracking MPC,
meaning that the cost function used within the repeatedly
solved optimization problem is assumed to be positive
definite with respect to the specific setpoint or set to
be stabilized. On the other hand, a more general MPC
framework termed economic MPC [Angeli et al., 2012] was
recently proposed, where this assumption is not needed,
but an arbitrary cost function can be used, possibly re-
sembling the economics related to the considered system.
For such a framework, different properties such as average
performance of the closed-loop system, (sub-)optimality
of steady-state operation, convergence of the closed-loop
system and fulfillment of average constraints are of in-
terest and have recently been studied (see, e.g. [Angeli
et al., 2012, Amrit et al., 2011, Grüne, 2013, Müller et al.,
2014b]). Furthermore, a first result for distributed eco-
nomic MPC was obtained by [Driessen et al., 2012, Lee and
Angeli, 2011], where the overall optimal steady-state was
assumed to be known and used as a terminal constraint.

In this paper, we propose a distributed economic MPC
framework, which we believe to be well suited for cooper-
ative control of several self-interested interacting systems.
Namely, each system uses its own, local, objective function,
which models its self-interest and need not be related
to any specific setpoint as discussed above; coordination
between the systems is then enforced by means of coupling
constraints. In contrast to [Lee and Angeli, 2011, Driessen
et al., 2012], our basic assumption is that the overall opti-
mal steady-state (including the coupling constraints) is not
known a priori, but has to be negotiated between the sys-
tems online by implementing some distributed optimiza-
tion algorithm. We assume that communication between
the systems requires time, i.e., the systems already have to
perform control actions while still negotiating with their
neighboring systems. This premise was also adopted in a
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similar context by Zelazo et al. [2013], where a shrinking-
horizon preference agreement algorithm was developed for
scalar single integrator systems with quadratic objectives.
The remainder of this paper is structured as follows. In
Section 2, we state the detalied problem setup and present
the proposed distributed economic MPC algorithm. As
indicated above, the proposed control structure will be
hierarchical in the sense that it consists of a distributed
optimization algorithm to determine the overall optimal
steady-state, whose current iterates at each time step are
then used to determine a suitable terminal constraint for
the economic MPC problem solved by each system. In
Section 3, we analyze the proposed algorithm and show
that it has the desired properties. Section 4 illustrates the
obtained results by considering the problem of synchoniz-
ing several agents with conflicting objective, before we give
some concluding remarks in Section 5.

1.1 Notation

For a set A ⊆ R
n and a point x ∈ R

n, the distance of x
from the set A is defined as |x|A := infz∈A |x − z|. Let
I≥0 denote the set of nonnegative integers, and I[a,b] the
set of all integers in the interval [a, b] ⊆ R. The unit ball
in R

n is denoted by B1, i.e., B1 := {x ∈ R
n : |x| ≤ 1}. We

say that a bounded sequence v : I≥0 → R
nv is essentially

converging to v̄ ∈ R
nv if the following is true:

∀ ε > 0 : lim sup
T→+∞

card({0 ≤ t ≤ T : |v(t)− v̄| ≥ ε})
T + 1

= 0.

Furthermore, as in [Angeli et al., 2012], the set of asymp-
totic averages of v is defined as

Av[v] := {v̄ ∈ R
nv : ∃tn → +∞ : lim

n→∞

∑tn
k=0 v(k)

tn + 1
= v̄}.

Note that Av[v] is nonempty (as bounded sequences in R
nv

have limit points), but it need not be a singleton in general.

2. DISTRIBUTED ECONOMIC MPC FOR
SELF-INTERESTED AGENTS

We consider the problem of a network of n self-interested
dynamical systems which have to fulfill some cooperative
requirement imposed through coupling constraints. Each
agent is modeled as a discrete-time linear system of the
form

xi(t+ 1) = Aixi(t) +Biui(t), xi(0) = xi0, (1)

with xi(t) ∈ Xi ⊆ R
ni and ui(t) ∈ Ui ⊆ R

mi for all
t ∈ I≥0, and the pair (Ai, Bi) is assumed to be stabilizable.
Each of the systems is subject to local state and input
constraints given by (xi(t), ui(t)) ∈ Zi ⊆ Xi ×Ui for some
convex and compact set Zi. The set of all steady-states
for system i is defined as Si := {(xi, ui) ∈ Xi × Ui : xi =
Aixi + Biui}. The overall state and control vector for all
n agents is given by x(t) = [x1(t)

T , . . . , xn(t)
T ]T ∈ R

p

(with p =
∑n
i=1 ni) and u(t) = [u1(t)

T , . . . , un(t)
T ]T ∈

R
q (with q =

∑n
i=1mi), respectively, and the overall

system dynamic is given by x(t + 1) = Ax(t) + Bu(t),
where A := diag(A1, . . . , An) and B := diag(B1, . . . , Bn).
Furthermore, let Z := Z1 × · · · × Zn and S := S1 ×
· · · × Sn. Each system is equipped with a strictly convex
and continuous objective function ℓi : Zi → R, which
models the self-interest of each agent. The cooperative

requirement which the systems have to fulfill is given by
coupling constraints of the form

x ∈ C (2)

for some convex set C ⊆ R
p. In this paper, we consider the

case where these coupling constraints only have to be sat-
isfied asymptotically, i.e., we require that limt→∞ |x(t)|C =
0. Note that as discussed in the Introduction, various
application-related contexts fit into this framework, such
as the synchonization of several agents with conflicting
objective (see also Section 4).

Remark 1. For clarity of presentation, in this paper we
consider coupling constraints (2) involving only the system
states xi; nevertheless, in a similar way, also coupling
constraints involving both the system states xi and the
system inputs ui can be treated. �

Each system computes its control input in an economic
MPC fashion, i.e., at each time instant t, the following
optimization problem is solved by each system i, where N
denotes the prediction horizon:

min
ui

N−1
∑

k=0

ℓi(xi(k|t), ui(k|t)) + V fi (xi(N |t), xsi (t)) (3)

subject to

xi(0|t) = xi(t) (4a)

xi(k + 1|t) = Aixi(k|t) +Biui(k|t) k ∈ I[0,N−1]

(4b)

(xi(k|t), ui(k|t)) ∈ Zi, k ∈ I[0,N−1] (4c)

xi(N |t) ∈ X
f
i (x

s
i (t), t) (4d)

N−1
∑

k=0

hi(xi(k|t), ui(k|t), t) ∈ Yi(t) (4e)

Denote the optimal solution to problem (3)–(4) by u0
i (t) :=

[u0i (0|t)T , . . . , u0i (N − 1|t)T ]T and the corresponding state
sequence by x0

i (t) := [x0i (0|t)T , . . . , x0i (N |t)T ]T . A special
feature of problem (3)–(4) is the terminal constraint (4d).

Namely, both the terminal region X
f
i (x

s
i (t), t) as well as

the steady-state xsi (t) around which it is built are time-
varying, which will be further specified in the following.
Finally, constraint (4e) and its meaning will be described
in more detail later; it will be used to ensure satisfaction
of a certain average constraint, which in turn guarantees
asymptotic fulfillment of the coupling constraints (2).

Now let (x∗, u∗) denote the overall optimal steady-state
(including coupling constraints), defined as

(x∗, u∗) = arg min
(x,u)∈Z∩S,x∈C

n
∑

i=1

ℓi(xi, ui). (5)

Note that due to strict convexity of the functions ℓi and
convexity of the constraints, (x∗, u∗) is unique. Our basic
prerequisite is that (x∗, u∗) is not known a priori, but
has to be calculated online via a distributed optimization
algorithm, which requires communication between the sys-
tems. We assume that this communication requires time,
i.e., an update step in the distributed optimization algo-
rithm is not instantaneous; in particular, we assume that
each iteration of the distributed optimization algorithm
solving (5) corresponds to one actual time step t in the
evolution of the systems (1). This means that the systems
“negotiate” about the overall optimal steady-state while
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already taking control actions (calculated via (3)–(4)). Let
ζ(t) := (ξ(t), η(t)) denote the iterate at time t of the dis-
tributed optimization algorithm solving (5), where ξ(t) :=
[ξ1(t)

T , . . . , ξn(t)
T ]T and η(t) := [η1(t)

T , . . . , ηn(t)
T ]T are

the state and input components of ζ(t), respectively. We
then impose the following assumption.

Assumption 1. The distributed optimization algorithm
solving (5) is such that limt→∞ ζ(t) = (x∗, u∗). �

Remark 2. Thanks to convexity of problem (5), many
distributed optimization algorithms exist satisfying As-
sumption 1. In settings where the coupling constraint
set C consists of several coupling constraints each of which
involves only a limited number of systems, dual subgradi-
ent methods [Ruszczyński, 2006] are, e.g., well suited; for
problems where coupling constraints involve all systems,
one can, for example, use the recently proposed cutting-
plane consensus algorithm [Bürger et al., 2014]. �

Remark 3. When defining the overall optimal steady-
state (x∗, u∗) in (5), one could also use different weighting
factors ai > 0 for each cost function ℓi, which would
correspond to a certain priorization of the systems. �

Given the above, a first idea would be that each system
uses its current iterate ξi(t) of the distributed optimization
algorithm as the steady-state xsi (t) around which the
terminal region in (4d) is built (or a projection of ξi(t)
on the feasible steady-state set in case that the current
iterate ξi(t) does not satisfy the local input and state
constraints). However, this choice might not be feasible
due to the following reasons. Namely, if |ξi(t) − ξi(t − 1)|
is large (which can happen initially), recursive feasibility
of problem (3)–(4) might be lost. Furthermore, xsi (t) has
to be chosen such that all states in the terminal region
around xsi (t) satisfy local input and state constraints (4c),
which means that (for a given size of the terminal region)
steady-states close to the boundary of Zi cannot be used.
Instead of using xsi (t) := ξi(t) in (4d), in the following
we propose a way to gradually change xsi (t) such that
recursive feasibility of problem (3)–(4) can be maintained
and we have limt→∞ xsi (t) = limt→∞ ξi(t) = x∗i . To this
end, for each system i ∈ I[1,n], let Pi, Qi > 0, and define
terminal regions of the form

X
f
i (x

s
i , t) := {xi ∈ R

ni : Ei(xi, x
s
i ) ≤ αi(t)} (6)

with Ei(xi, x
s
i ) := (xi − xsi )

TPi(xi − xsi ) and αi(t) > 0

for all t ∈ I≥0. Let Zi(t) := Zi ⊖ (Xfi (0, t) × KiX
f
i (0, t)).

We then impose the following assumption on the terminal

regions Xfi and the terminal cost V fi .

Assumption 2. The terminal regions X
f
i , an auxiliary

terminal control gain Ki and the terminal cost function

V fi (xi, x
s
i ) are computed such that the following is satisfied

for each steady-state (xsi , u
s
i ) ∈ Si ∩ Zi(t) and all xi ∈

X
f
i (x

s
i , t):

(i) (xi,Ki(xi − xsi ) + usi ) ∈ Zi,
(ii) Ei(Aixi +Bi(Ki(xi − xsi ) + usi ), x

s
i )− Ei(x, x

s
i )

≤ −(xi − xsi )
TQi(xi − xsi ),

(iii) V fi (Aixi +Bi(Ki(xi − xsi ) + usi ), x
s
i )− V fi (xi, x

s
i )

≤ −ℓi(xi,Ki(xi − xsi ) + usi ) + ℓ(xsi , u
s
i ).

Remark 4. For a fixed (xsi , u
s
i ), conditions (i)–(iii) of

Assumption 2 are standard conditions imposed when using
a terminal cost/region framework, both in the case of

tracking and economic MPC [Rawlings and Mayne, 2009,
Amrit et al., 2011]. In (ii), we actually require something
slightly stronger than invariance of the terminal region,
namely that it is contractive if the local controller is
applied; this is crucial for our main results later on.
Note that it is sufficient if this holds for some arbitrary
positive definite Qi. Note that condition (i) is satisfied
due to the definition of the set Zi(t) and the fact that

X
f
i (x

s
i , t) = {xsi} ⊕X

f
i (0, t). Furthermore, in [Amrit et al.,

2011, Section 4.1], a method was presented how Pi,Ki and

V fi can be computed such that conditions (ii) and (iii) are
satisfied for fixed (xsi , u

s
i ). It is straightforward to show

that this procedure can still be used in order to satisfy
conditions (ii) and (iii) for all (xsi , u

s
i ) ∈ Si ∩ Zi(t). �

Now define ci := (1 − λmin(Qi)
λmax(Pi)

)/λmin(Pi), fix 0 < θi < 1

and let for all t ∈ I≥0

εi(t) :=
(

−√
ci +

√

ci + θi
λmin(Qi)

λmax(Pi)2

)

√

αi(t). (7)

Furthermore, denote by (ξ̂i(t), η̂i(t)) the projection of
(ξi(t), ηi(t)) on the set Si ∩ Zi(t). We now propose to
use the following steady-state xsi (t) within the terminal
constraint (4d):

xsi (t) := (1− λi(t))x
s
i (t− 1) + λi(t)ξ̂i(t), (8)

λi(t) := min

{

εi(t− 1)

|ξ̂i(t)− xsi (t− 1)|
, 1

}

(9)

for all t ∈ I≥1 and xsi (0) = xsi0, where x
s
i0 is an arbitrary

steady-state satisfying (xsi0, u
s
i0) ∈ Si ∩ Zi(0). Due to

convexity of Si∩Zi(t) and the fact that Zi(t+1) ⊇ Zi(t) for
all t ∈ I≥0 (the latter will be established below), one can

show by induction that (xsi (t), u
s
i (t)) ∈ Si∩Zi(t) for all t ∈

I≥0, where u
s
i (t) is given by usi (t) := (1−λi(t))u

s
i (t− 1)+

λi(t)η̂i(t). Furthermore, note that from (8)–(9) it follows
that for all t ∈ I≥1 we have |xsi (t)− xsi (t− 1)| ≤ εi(t− 1).

It remains to specify how αi(t) in (6), i.e., the size of the
terminal region, is updated. Namely, we propose to use the
following update rule:

αi(t+ 1) =







(

1− (1− θi)
λmin(Qi)

λmax(Pi)

)

αi(t) if λi(t) = 1

αi(t) else

(10)

for all t ∈ I≥1 and αi(1) = αi(0) = αi0 > 0. Note that
from (10), it follows that αi is nonincreasing, as 0 < θi < 1
and 0 < λmin(Qi)/λmax(Pi) ≤ 1 (the latter inequality
follows from Assumption 2(ii)). This means that the size
of the terminal regions is nonincreasing, i.e., for each xsi
we have X

f
i (x

s
i , t + 1) ⊆ X

f
i (x

s
i , t) and hence also Zi(t +

1) ⊇ Zi(t) for all t ∈ I≥0.

Finally, we need to specify the function hi and the sets
Yi(t) appearing in (4e). Namely, we use

hi(xi, ui, t) := |xi − xsi (t)|, (11)

and Yi(t) is recursively defined as

Yi(0) := NYi ⊕ Yi0, (12)

Yi(t+ 1) := Yi(t)⊕ Yi ⊕ Yi(t+ 1)⊕ {−hi(xi(t), ui(t), t)},
(13)
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with Yi := R≤0, Yi0 ⊆ R being some arbitrary convex and
compact set such that (4e) is initially feasible, and

Yi(t) := yi(t)B1,

yi(t) := N |xsi (t)− xsi (t− 1)|+ |x0i (N |t− 1)− xsi (t− 1)|
(14)

for all t ∈ I≥1. Constraint (4e) ensures that the asymptotic
average constraint Av[hi] ∈ Yi is satisfied and will be
needed to ensure that the overall closed-loop system con-
verges to x∗. For more details on economic MPC with aver-
age constraints, the interested reader is referred to [Angeli
et al., 2012, Section V.B] and [Müller et al., 2014b].

To summarize, the proposed distributed economic MPC
algorithm is as follwos.

Algorithm 1. (Distributed economic model predictive
control for self-interested agents)
At each time t ∈ I≥0, all systems i ∈ I[1,n]

1) communicate with neighboring systems,
2) perform an iterate of the distributed optimization

algorithm solving (5), obtaining ξi(t),

3) solve problem (3)–(4), where the terminal region X
f
i

in (4d) is given by (6)–(10) and hi and Yi(t) in (4e)
are given by (11)–(14),

4) apply ui(t) := u0i (0|t). �

In Step 1, the set of neighboring systems with which
system i has to communicate depends on the structure of
the coupling constraint set C and the specific distributed
optimization algorithm which is used in Step 2. The latter
also determines what information has to be transmitted,
such as, e.g., the latest estimate ζi(t − 1) or certain dual
variables. Within Algorithm 1, two optimization problems
have to be solved by each system in each time step, one
in Step 2 (when performing an iterate of the distributed
optimization algorithm) and one in Step 3 when solving
the economic MPC problem (3)–(4); both Steps 2 and 3
can be performed by all systems in parallel. Furthermore,
note that the optimization problems solved by each system
in Step 3 are completely decoupled from each other.
Coordination between the systems is achieved via the
distributed optimization algorithm (Steps 1 and 2), and
information from other systems is injected in the local
economic MPC problem (3)–(4) via the steady-state xsi (t)
appearing in the constraints (4d) and (4e).

3. ANALYSIS OF ALGORITHM 1

In the following, we analyze Algorithm 1 and show that
its properties are as desired.

Theorem 1. Suppose that Assumptions 1 and 2 are sat-
isfied, and the optimization problem (3)–(4) is initially
feasible for all systems i ∈ I[1,n]. Then the following is
satisfied when applying Algorithm 1.

(i) The optimization problem (3)–(4) is recursively fea-
sible for all systems i ∈ I[1,n].

(ii) limt→∞ xsi (t) = limt→∞ ξi(t) = x∗i for all i ∈ I[1,n].
(iii) The overall closed-loop system essentially converges

to x∗.

Due to the fact that x∗ ∈ C, we have the following corollary
of Theorem 1.

Corollary 1. Suppose the conditions of Theorem 1 are
satisfied. Then the closed-loop system essentially con-
verges to the set C.
Remark 5. In Theorem 1 and Corollary 1, only essential
convergence of the overall closed-loop system to x∗ and
C, respectively, could be established, which is a slightly
weaker notion than asymptotic convergence. Under some
additional conditions on the convergence rate of yi in (14)
and hence on the convergence rate of the specific dis-
tributed optimization algorithm used in Step 2 of Algo-
rithm 1, also asymptotic convergence of the overall closed-
loop system to x∗ and C, respectively, can be established
(see [Müller et al., 2014b] and [Angeli et al., 2011] for
more details on essential versus asymptotic convergence
in economic MPC with average constraints). �

Remark 6. While the overall closed-loop system (essen-
tially) converges to x∗ as shown in Theorem 1, the tran-
sient performance of each system can be much better than
ℓi(x

∗
i , u

∗
i ). Namely, one can typically observe (compare

Section 4) that the systems initially “spend time” in a
region where the cost ℓi is lower than ℓi(x

∗
i , u

∗
i ), before

they converge to (x∗i , u
∗
i ) in order to satisfy the coopera-

tive requirement (2). This behaviour depends on various
parameteres such as the initial condition, the prediction
horizon and the size of the setYi0 (see [Müller et al., 2014b]
for a more detailed discussion on this issue). �

In the following, we establish two auxiliary results which
are needed in order to prove Theorem 1.

Proposition 1. Consider an economic MPC algorithm
for a (single) system i, where the repeatedly solved op-
timization problem is given by (3)–(4), where hi in (4e)
is bounded on Zi × I≥0. Suppose the terminal regions

X
f
i (x

s
i (t), t) in (4d) are defined such that for all t ∈ I≥0

and all xi ∈ X
f
i (x

s
i (t), t), Assumption 2(i) is satisfied and

Aixi + Bi(Ki(xi − xsi (t)) + usi (t)) ∈ X
f
i (x

s
i (t + 1), t +

1). Furthermore, let ρ(t) be any sequence such that hi
in (4e) satisfies h(xi, ui, t + 1) − h(xi, ui, t) ∈ ρ(t)B1 for
all t ∈ I≥0 and all (xi, ui) ∈ Zi, and suppose that the
set Yi(t) in (4e) is defined via (12)–(13) for some convex
set Yi, some compact set Yi0, and Yi(t + 1) such that
{hi(x0i (N |t),Ki(x

0
i (N |t)− xsi (t)) + usi (t), t)} ⊕Nρ(t)B1 ⊆

Yi ⊕Yi(t+ 1) for all t ∈ I≥0. We then have the following.

(i) If problem (3)–(4) is initially feasible, then it is
recursively feasible.

(ii) If there exists a sequence σ : I≥0 → R with

limt→∞ σ(t) = 0 such that Yi(t) ⊆ σ(t)B1 for
all t ∈ I≥0, then the average constraint Av[hi] ⊆ Yi

is satisfied for the resulting closed-loop system.

(iii) Suppose that hi(xi, ui, t) := ĥi(xi, ui) + ϕ(xi, ui, t)
with |ϕ(xi, ui, t)| ≤ ϕ̂(t) for all (xi, ui) ∈ Zi and
all t ∈ I≥0, and some ϕ̂ : I≥0 → R. If there exists
a sequence σ̂ : I≥0 → R with limt→∞ σ̂(t) = 0 such

that Yi(t+1)⊕ ϕ̂(t)B1 ⊆ σ̂(t)B1 for all t ∈ I≥0, then

the average constraint Av[ĥi] ⊆ Yi is satisfied for the
resulting closed-loop system.

Proposition 1 is an extension of [Müller et al., 2014b,
Theorem 1] to the case of time-varying output functions hi,
and its proof is omitted in this conference paper due to
space limitations. The next auxiliary result will be needed
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later in order to show that the terminal regions Xfi defined
via (6)–(10) change “slow enough” such that recursive
feasibility of problem (3)–(4) can be established.

Lemma 1. Consider the terminal regions X
f
i (x

s
i (t), t)

given by (6)–(10) and suppose that Assumption 2(ii) is

satisified. Then for each t ∈ I≥0 and each xi ∈ X
f
i (x

s
i (t), t),

it holds that x+i := Aixi + Bi(Ki(xi − xsi (t)) + usi (t)) ∈
X
f
i (x

s
i (t+ 1), t+ 1).

Lemma 1 is a slight extension of Lemma 1 in [Müller et al.,
2014a], and its proof is omitted in this conference paper
due to space limitations.

Proof of Theorem 1: To prove statement (i) of The-
orem 1, we show that all conditions for Proposition 1(i)
are satisfied and hence the conclusion follows. Namely, hi
defined by (11) is bounded on Zi × I≥0 as Zi is compact.
By Lemma 1, we conclude that for the terminal regions
given by (6)–(10), we have that Aixi+Bi(Ki(xi−xsi (t))+
usi (t)) ∈ X

f
i (x

s
i (t + 1), t + 1) for each t ∈ I≥0 and each

xi ∈ X
f
i (x

s
i (t), t). Furthermore, for each t ∈ I≥0 and each

(xi, ui) ∈ Zi, one obtains

hi(xi, ui, t+ 1) = |xi − xsi (t+ 1)|
= |xi − xsi (t) + xsi (t)− xsi (t+ 1)|
≤ |xi − xsi (t)|+ |xsi (t)− xsi (t+ 1)|
=: hi(xi, ui, t) + ρ(t). (15)

Note that (15) implies that hi(xi, ui, t+1)−hi(xi, ui, t) ∈
ρ(t)B1 for each t ∈ I≥0 and each (xi, ui) ∈ Zi. More-

over, from the definition of Yi(t) in (14), we obtain
{hi(x0i (N |t),Ki(x

0
i (N |t)− xsi (t)) + usi (t), t)} ⊕Nρ(t)B1 ⊆

Yi(t + 1) ⊆ Yi ⊕ Yi(t + 1) for all t ∈ I≥0. To summarize,
all of the conditions for Proposition 1(i) are satisfied for
all systems i ∈ I[1,n] and hence we conclude that the
optimization problem (3)–(4) is recursively feasible for all
systems i ∈ I[1,n].

Next, consider statement (ii) of Theorem 1. Let i ∈ I[1,n].
According to (10), the sequence αi(t) is nonincreasing
and bounded from below (by zero), hence it converges.
Denote its limit by αmin

i ≥ 0. Then from (7) it follows that
also εi(t) converges to ε

min
i , where εmin

i is given by (7) with
αi(t) replaced by αmin

i . We now show by contradiction that
αmin
i = 0. Namely, assume it was not, i.e., αmin

i > 0 and
hence also εmin

i > 0. By (10), αmin
i > 0 is only possible if

there exists a finite time t(αmin
i ) ∈ I≥0 such that λi(t) 6= 1

for all t ∈ I≥t(αmin
i

), which means that αi(t) = αmin
i

for all such t. By (9), this implies that |ξ̂i(t) − xsi (t −
1)| > εi(t − 1) = εmin

i for all t ∈ I≥t(αmin
i

)+1 and, as εi(t)

is nonincreasing, λi(t) ≥ λmin
i := εmin

i /(maxr,s∈Zi
|r − s|)

for all t ∈ I≥1. Furthermore, Zi(t) = Zi(t(α
min
i )) for all

t ∈ I≥t(αmin
i

). By Assumption 1, ξi(t) converges to x
∗
i , and

hence, thanks to convexity of Si ∩ Zi(t(α
min
i )), also ξ̂i(t)

converges to some ξ̂αi , where ξ̂
α
i is the projection of x∗i on

the set Si∩Zi(t(αmin
i )). This means that limt→∞ ψi(t) = 0,

where ψi(t) := ξ̂i(t) − ξ̂αi . Now consider the sequence

x̃i(t) := xsi (t) − ξ̂αi . By subtracting ξ̂αi on both sides of
equation (8), we obtain

x̃i(t) = (1 − λi(t))x̃i(t− 1) + λi(t)ψi(t),

for all t ∈ I≥1 and hence also

|x̃i(t)| ≤ (1 − λmin
i )|x̃i(t− 1)|+ |ψi(t)|, (16)

as λmin
i ≤ λi(t) ≤ 1 for all t ∈ I≥1 as established above.

As limt→∞ ψi(t) = 0, for each δψ > 0 there exists a
tψ ∈ I≥0 such that |ψi(t)| ≤ δψ for all t ∈ I≥tψ . Fix

δψ > 0 such that δψ + 2δψ/λ
min
i ≤ εmin

i . From (16), it
then follows that there exists a finite time tx̃ ∈ I≥tψ such

that |x̃i(t)| ≤ 2δψ/λ
min
i for all t ∈ I≥tx̃ . Namely, for all

t ∈ I≥tψ , if |x̃i(t)| > 2δψ/λ
min
i it follows from (16) that

|x̃i(t+ 1)| − |x̃i(t)| ≤ −δψ, and hence |x̃i(tx̃)| ≤ 2δψ/λ
min
i

for some finite time tx̃ ∈ I≥tψ . But then, from (16) it

follows that also |x̃i(t)| ≤ 2δψ/λ
min
i for all t ∈ I≥tx̃ .

Summarizing the above, there exists a time t′ ∈ I≥t(αmin
i

)

such that

|ξ̂i(t′)− xsi (t
′ − 1)| = |ψi(t′)− x̃i(t

′ − 1)|
≤ |ψi(t′)|+ |x̃i(t′ − 1)| ≤ δψ + 2δψ/λ

min
i ≤ εmin

i ,

which is a contradiction to the fact established above that
|ξ̂i(t) − xsi (t − 1)| > εmin

i for all t ∈ I≥t(αmin
i

). Hence we

conclude that αmin
i = 0. But then limt→∞ Si∩Zi(t) = Si∩

Zi and hence limt→∞ ξ̂i(t) = limt→∞ ξi(t) = x∗i due

to Assumption 1 and the definition of ξ̂i. Furthermore,
by (10), there exists an infinite subsequence {tr} such that

λ(tr) = 1 and hence xsi (tr) = ξ̂i(tr). As ξ̂i(t) converges to
x∗i , for each δ > 0 there exists a t(δ) ∈ I≥0 such that

|ξ̂i(t) − x∗i | ≤ δ for all t ∈ I≥t(δ). Let r(δ) := mintr≥t(δ) r;
then it follows from (8) that also |xsi (t) − x∗i | ≤ δ for all
t ∈ I≥tr(δ) . This can be shown by induction as |xsi (tr(δ))−
x∗i | ≤ δ and from (8) it follows that if both |xsi (t − 1) −
x∗i | ≤ δ and |ξ̂i(t) − x∗i | ≤ δ for some t, then also the
convex combination xsi (t) satisfies |xsi (t)− x∗i | ≤ δ. But as
δ > 0 was arbitrary, it follows that limt→∞ xsi (t) = x∗i , as
claimed.

Finally, we prove statement (iii) of Theorem 1. To this end,
note that

h(xi, ui, t) = |xi − xsi (t)| = |xi − x∗i + x∗i − xsi (t)|
≤ |xi − x∗i |+ |x∗i − xsi (t)| =: |xi − x∗i |+ ϕ̂(t).

Defining σ̂(t) := yi(t+1)+ ϕ̂(t) with yi(t) as given in (14),
it follows that Yi(t+1)⊕ ϕ̂(t)B1 = σ̂(t)B1 for all t ∈ I≥0.
Furthermore, as limt→∞ αi(t) = limt→∞ εi(t) = 0, one
can show that limt→∞ σ̂(t) = 0. Hence we can apply

Proposition 1(iii) with ĥi(xi, ui) := |xi − x∗i | to conclude
that for the closed-loop system i resulting from application

of Algorithm 1 we have Av[ĥi] ⊆ Yi, which translates into

lim
T→∞

∑T
t=0 |xi(t)− x∗i |

T + 1
= 0.

We can now apply Lemma 1 (together with Remark 12)
from Müller et al. [2014b] (see also Lemma 2.2 in Angeli
et al. [2011]) to conclude that the closed-loop system i
essentially converges to x∗i . As this holds for all systems i ∈
I[1,n], it follows that the overall closed-loop system result-
ing from application of Algorithm 1 essentially converges
to x∗ as claimed. �

4. EXAMPLE: CONSENSUS UNDER CONFLICTING
OBJECTIVE

We consider five discrete-time double integrator systems

of the form (1) with Ai =

[

1 1
0 1

]

and Bi = [0 1]T ,
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Fig. 1. Closed-loop sequences resulting from Algorithm 1
for five double integrators connected over a line graph.

and Zi := Xi × Ui = [−5 5]3. The cost function for
each system is given by ℓi(xi, ui) = (x1i − ai)

2 + (x2i −
bi)

2 + (ui − di)
2, where xi = [x1i x2i]

T and ai, bi, di are
randomly chosen within the interval [−3 3]. The coupling
constraints (2) are given as (E(G)T ⊗ I2)x = 0, where
E(G) is the incidence matrix of the graph G describing
the interconnection topology of the systems, which we
chose to be a line graph. This means that the systems
asysmptotically have to reach consensus, i.e., x1 = · · · =
x5 asymptotically. Without the coupling constraints (2),
the optimal steady-state for each system is given by
xopt1i = ai and xopt2i = uopti = 0. In case that the values
ai are not the same for all five systems, the individual
objectives of the systems (given by ℓi) are conflicting
with the requirement of reaching consensus, as xopt =
[(xopt1 )T . . . (xopt5 )T ]T /∈ C. Figure 1 shows simulation
results obtained by applying Algorithm 1, where in Step 2
a distributed dual subgradient algorithm is used. The
prediction horizon used in problem (3)–(4) is N = 15,
and a1 = −0.89, a2 = 1.99, a3 = 0.51, a5 = 0.30, and
a5 = 2.50. The overall optimal steady-state (5) is such that
x∗1i = 0.88, x∗2i = 0 and u∗i = 0 for all i ∈ I[1,5]. Both ξi and

xsi are initialized with ξi(0) = xsi (0) = xopti . As guaranteed
by Theorem 1, one obtains that ξi, x

s
i and xi converge to

x∗i . Furthermore, as discussed in Remark 6, during the
transient phase each system “spends time” in a region
where its cost ℓi is lower than ℓ(x

∗
i , u

∗
i ), and in particular

approaches xopti = [ai 0]T (see Figure 1(b)), before it is
forced to converge to x∗i in order to asymptotically reach
consensus.

5. CONCLUSIONS

In this paper, we presented a distributed economic MPC
algorithm for cooperative control problems involving self-
interested agents, where coordination between the systems
is enforced via coupling constraints. The proposed algo-
rithm is such that these coupling constraints are satisfied
asymptotically, while each system acts according to its
own objective during the transient phase. The results were
illustrated with the problem of reaching consensus among
double integrator systems with conflicting objective.
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