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Abstract: Virtual trials have proved useful in developing safe and efficacious glycaemic control
protocols. However, these trials rely on lumping all changes in patient condition into the insulin
sensitivity parameter. As electronic data collection provides higher temporal resolution than
paper-based charts, irregular timings of both therapies and measurements clash with a regular,
hourly insulin sensitivity profile. Additionally, unobservable endogenous changes are a factor
for hour-to-hour variability. This research extends the virtual trial protocol to natively handle
irregular data by regularising the insulin sensitivity profile, and utilising a simple stochastic
differential equation. The insulin sensitivity profile was re-interpreted as a b-spline basis,
allowing a higher order description with greater local support. The fitting error resulting
from this regularisation was absorbed by a stochastic element in the glucose compartment,
representing the hour-to-hour changes that cannot be attributed to changes in insulin sensitivity.
The resulting virtual patients were demonstrated to be equivalent to the originals when a 0"
order basis was used. Inclusion of the stochastic element in this case simply ensured the model
still fitted during periods of unmodelled high endogenous glucose production, while a 2°¢ order
basis uses this element to natively control the balance between changes in patient state and
hour-to-hour unmodelled changes due to noise and endogenous processes. The resulting virtual
trials are thus better able to preserve information in irregular data sets, and regulate the balance
between controllable and uncontrollable glycaemic changes.

Keywords: Identification and validation; chronic care and/or diabetes; decision support and

control.

1. INTRODUCTION

Virtual trials [Chase et al., 2010] are a valuable tool
for in-silico development of control algorithms. However,
validity of this methodology relies heavily on how model
parameters are identified. Chase et al. describe a rigid
parameter identification procedure that is not readily gen-
eralisable to more irregular data. This research describes a
robust parameter identification and simulation procedure
that features continuous parameter variation and native
inclusion of internal noise.

Virtual trials were a key technique used to develop
the STAR (Stochastic Targeted [Fisk et al., 2012]) and
SPRINT (Specialised Relative Insulin and Nutrition Ta-
bles [Chase et al., 2008]) protocols in-silico. Avoiding phys-
ical trials during initial development enabled pre-informed
protocols to be implemented in pilot studies, with the vir-
tual trial results giving a high degree of confidence in safety
and efficacy. Virtual trials also provide context analysing
clinical trial results, as shown in [Chase et al., 2010]. An
indicative measure of compliance and performance can be
provided by the comparison between virtual trial results
and true observations. Virtual trials are thus an valuable
tool for model-based control design.

Copyright © 2014 IFAC

The key steps in a virtual trial are: A) fitting the underly-
ing “true” parameter profile, B) using a protocol to choose
the new treatment, and C) using the “true” parameter
profile to solve for the resulting virtual blood glucose (BG)
measurement. Correctly fitting the data is the critical step
for a representative virtual trial, as failure to fit translates
directly to loss of information and lesser virtual trial con-
fidence. Due to low data density in a real-world glycaemic
control setting only one parameter, insulin sensitivity, can
be reliably identified.

Prior research developed the virtual trial methodology
using the ICING (Intensive Control Insulin-Nutrition-
Glucose [Lin et al., 2011]) model and integral-based fit-
ting [Hann et al., 2005]. The available data was from
SPRINT [Chase et al., 2008] in a summary spreadsheet
with hourly slots for measurements leading to hourly-
binned data. Consequently, fitting was carried out with
an hourly piecewise-constant insulin sensitivity (S7) pro-
file, and linear interpolation to create intermediate BG
estimates for 2-hourly intervals.

Implementation of the STAR protocol on a computerised
tablet led to more precise timestamps recorded for mea-
surements and therapy. With BG measurement times often
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offset from the hour, and nutrition changes happening
between measurements, the use of piecewise-constant Sy
and interpolated measurements introduced new difficulties
in creating virtual trials. A more physiological description
of St was deemed possible and desirable.

It is possible to address the concerns created by the nature
of the irregularly dataset by modifying the virtual trial
approach. In this work, the S; profile was made into a
continuous function, and the error introduced regularising
S was captured in an additional term appended to the
ICING model. The glucose model was thus converted to
a novel, simplistic stochastic differential equation (SDE
[Van Kampen, 1976]).

2. METHODS
2.1 ICING model

The ICING model defines glucose and insulin kinetics and
dynamics in critically ill patients:

r_ UJ,+(1_$L)U’H 1
I= v —nz(I—Q)—nKI—an (1)
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Pi(t) = P(t) — di Pi(t) (5)

where G(t) [mmol.L7!] is the total plasma glucose, I(t)
[mU.L71] is the plasma insulin, and interstitial insulin is
represented by Q(t) [mU.L~!]. Exogenous insulin input is
represented by U, (¢) [mU.min~!], and glucose-dependent
endogenous insulin production is estimated with U,,
[mU.min~1] [Pretty, 2012]. S7(t) [L.mU~!t.min~!] is the
identified insulin sensitivity profile, Pj(¢) [mmol] repre-
sents the glucose in the stomach and P»(t) [mmol] repre-
sents glucose in the gut. Enteral glucose input is denoted
P(t) [mmol.min~!], while parenteral glucose input is de-
noted Py (t) [mmol.min~!]. All model constants are shown
in Table 1.

2.2 Parameter Identification

A simple version of the integral-based fitting method will
be introduced via a differential equation with an unknown
linear parameter, 6:

T = fo(t, .’L‘) +6f1 (t, ,T) (6)
where x is the conserved quantity, # the unknown constant
parameter, fi(¢,z) is the function corresponding to this
parameter, and fo(t,z) contains the remaining known
parameters and functions. The model estimate of x at time

t is:
t

¢
tmoa®) =w0+ [ fodt+o [ pa (@
to to
Assuming multiple data points, a residual error (¢) will
occur. The error at the i*P measurement, €; = Z,,04(t;) —
x(t;), is:

t; t;
€ = —a(t) + 20 + h&+9/ hdt (®)
to

to

Table 1. ICING constant model parameters

Variable  Description Value
j el Non-insulin mediated uptake 0.006 min—1!
nr Insulin transport rate 0.006 min—1!
ng Renal clearance 0.0542 min—1!
ny, Hepatic clearance 0.1578 min—1
nc Interstitial clearance 0.006 min—1!
dq Stomach clearance 0.0151 min—!
dq Gut clearance 0.00301 min—1
Praz Maximal gut cl. 6.11 mmol.min—!
Pgap Endogenous glucose produc- 1.16 mmol.min—!
tion
Pcons Nervous system glucose dis- 0.3 mmol.min—!
posal
xr First-pass hepatic extraction 0.67
Vi Insulin volume of distribution 40L
Va Glucose volume of distribution  13.3 L
ag Saturation of hepatic insulin  0.0017 L.mU~!
clearance
ag Saturation of insulin-mediated  0.01538 L.mU~!

glucose uptake

which, provided the integrals can be numerically esti-
mated, can be minimised using least squares for n mea-
surements:

t1 ty
/ fldt ZC(tl) — Xy — / fodt
to to
. 0= :
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to tO

(9)
fodt

If measured data is dense enough, or appropriate assump-
tions used, these integrals can be fully formed without
further computation, and the linear system solved directly
[Hann et al., 2005]. If sparse data or noise causes these
integrals to be poorly approximated by the available data,
this approach can be applied iteratively, where new pa-
rameters produce a modified solution, which is then used
to update the integrals [Docherty et al., 2012].

As SPRINT data consisted of intermittent 1 and 2 hour
measurement intervals, a distinct parameter value was
fitted for each hour interval. Thus, § was described as m
piecewise-constant functions, where:

0t) = Z%‘gj(t) (10)

where «; is the j*® 6 value and g;(t) is a rectangle function,
non-zero on a single hour interval. This description of 6 is
equivalent to a 0" order uniform b-spline basis [De Boor,
1972] with m + 1 knots, each an hour apart. Equation (7)
thus expands to:

t t t
l‘mod(t)—ﬂfo = / Sfodt+v1 / g fidt+... +vm / gm f1dt
t t t
0 0 0 (11)
Accordingly, Equation (9) becomes:

Ay )Tty = b1,n1) (12)

where f‘(m’l) =[1,--5vm] ", and:
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If m + 1 > n, the linear system is clearly indeterminate.
Such a case almost always occurs with SPRINT data, as
2 hour BG measurements were common [Chase et al.,
2008]. To circumvent this issue, SPRINT data was re-
sampled hourly, an assumption that introduces fitting
error if measurements are offset and can force unusual
parameter spikes if additional glucose is added parenterally
close to a re-sampled measurement. A continuous profile
would therefore be beneficial, and controlling the order of
the basis and knot locations provides a natural method
for regularising the shape of the S; profile. However, using
a knot at each measurement forces the shape of the Sj
profile to reach a maxima/minima in the middle of the
measurement period, as well as forcing all changes to be
the direct result of changes in Sy.

2.3 Sy profile

A distinction should be made in the use of this model
for control and for virtual trials. In control, the model
is refitted over a 6 hour period to ensure the initial
conditions for the past hour are insensitive to modified
data, and thus can be relied on for prediction. Previously,
all dynamic changes were lumped into the S; profile. This
raw Sy profile showed a number of clinically important
trends [Chase et al., 2011, Pretty et al., 2012, Ferenci
et al., 2013] highlighting the importance of S;. Clearly,
the model-based metric evolves over time, and sudden rises
greatly increase the risk of hypoglycaemia when patients
are undergoing insulin therapy. Sudden increases in Sy
predispose patients to hypoglycaemia, as injected insulin
has an amplified effect on BG, and insulin dose is selected
based on the prior (reduced) effect of insulin.

Variability in S; exists due to changes in patient state,
measurement noise, and mismodelled dynamics. Some
literature suggests the major effect of intensive insulin
therapy is the suppression of hepatic glucose produc-
tion [Thorell et al., 2004], though the relationship be-
tween plasma insulin and endogenous glucose production is
poorly understood. Pulsatile delivery, intraportal concen-
trations, and arteriovenous concentration gradients are all
thought to have an effect, amongst other factors. However,
quantifying the relationship between the liver and insulin
is impossible using the data available at the bedside in
critical care. It is sufficient to say that the relationship
changes, and thus not all changes in patient state can truly
be labelled “insulin-dependent”.

This research regularises the S; profile to restrict the
frequency of “insulin-dependent” state changes by utilising
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Fig. 1. Comparison of the current 0" order basis (60 minute knot
widths) with a proposed 2"d order basis (240 minute knot
widths).

the generalisable description of a b-spline [De Boor, 1972]
basis. Figure 1 compares the current 0" order basis with
60 minute knot widths with a proposed 24 order basis
with 240 minute knot widths. A knot width of 240 minutes
was chosen for the proposed description as 180 minutes
is a typical measurement interval for STAR, and timing
errors up to 60 minutes can occur. Thus, BG changes for
between 1 to 3 measurement intervals are described by a
single function. The local support provided by a 2" order
description further regularises the profile.

2.4 Noise profile

Regularising the Sy profile highlights a bias vs. variance
tradeoff, as multiple measures per function introduces
fitting error with real data. As the S; profile becomes
smoother, greater error is introduced. Thus, additional
fitting is required to prevent information being lost in the
generation of virtual patients. Such information loss would
result in virtual trials showing an artificial improvement.
Returning to Equation (6), a zero-mean internal noise
(process noise, ¢(t)) can be added:

T =¢(t) + folt,z) + 0f1(t,x) (15)
Typically, ¢(t) would take the form of a wiener process.
However, the added computational intensity associated
with the increased resolution, and non-deterministic for-
ward simulation, is not necessary in this application. In
this simple SDE, ¢(t) becomes the integral of a wiener
process between two measurements, and captures unmod-
elled dynamics and measurement noise that cannot be
incorporated by the now-regularised S; profile. Thus, ¢(t)
is a piecewise-constant function, individual values of which
can be fitted using:

. . |- .
[Al,(n,m) AQ,(n,n)] |:(i)((7:71)):| = bl,(n,l)

where ‘i’(n,1) = [¢1,..-,0n]T (¢; is the i*h value of the
piecewise constant ¢(t)), and:

(16)
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As n4+ m > n when m > 0 this system is always
rank-deficient. However, the definition of ¢(t) as zero-
mean noise can be utilised to fill the rank of the system.

As zero-mean noise, f;" ¢(t)dt = 0, and by the defini-
tion of the basis functions, > /", g;(t) = 1 V t. Thus,

d(t) = S ¢(t)gi(t). If zero-mean is enforced for each
component ¢(t)g;(t):

tn
/ Pp(t)gi(t)dt =0V i=1,...,m
to
As ¢(t) is constant between two measurements:

t1 tn
&1 / GO+t b / gi(H)dt =0 (19)

to tn—1

(18)

Thus, the system in Equation (16) can be made full rank,
and can be solved for all variables:

|:41,(n,m) 1{12,(n,n):| |:]?(m,1)] _ |:I;Al,(n,1):| (20)

Om,m) As,(mn)l [Pn,1) O(m,1)
where:
t1 tn
to tn—1
/ gm()dt ... / (D)t
to tn—1
The new form of the ICING model is therefore:
: G)Q()
G(t) = Go(t) = paG — Si(t) ———~ =
1 —agQ(t) (22)

+PEGP — Pens + P (t) + max (Ppaz, d2 Pa(t))
Ve

where S7(t) = 6(t) consists of b-spline basis functions,
and G5 (t) = ¢(t) is the new stochastic element. During a
virtual trial, G,(t) is treated as the observed realisation
of the stochastic process, and used in conjunction with
Si(t) to calculate deterministic outcomes to modified
therapeutic inputs.

2.5 STAR Cohort

BG, insulin, and nutrition data was collected as part of
routine use of the STAR protocol in Christchurch Hospital
medical and surgical ICU between July 2011 and February
2013. For use in this study, datasets were split when a
gap greater that 5 hours occurred between consecutive
BG measurements. Observational ethics was granted by
the National Ethics Advisory Committee (New Zealand).
Available cohort details are shown in Table 2.

2.6 Analyses

The intent of this research is to develop and implement a
new fitting method to be used for virtual trials. Accord-
ingly, two main categories of analyses were carried out. The
first analysis was intended to demonstrate the problem

Table 2. STAR cohort details, presented as
median [interquartile range] when appropriate.

Cohort details

Episodes 207
Total hours 11538
Total BG measures 6517
Age (years) 61 [48 - 71]
Sex 66.2% male, 33.8% female
Length of episode (hours) 32 [15 - 68]
BG measures 19 [10 - 39]

solved by the research, and thus justify the added com-
plexity. The second analysis was intended to give an un-
derstanding of the behaviour of the new methodology. For
the iterative fits, convergence was assumed if maximum
RMS error was within 0.1 mmol.L™! (minimum resolution
of a glucometer). To speed iterations, the G, profile was
updated between iterations by using the current S profile.

Initially, STAR data was fitted using the standard method-
ology yielding an hourly piecewise-constant S; profile
fitted non-iteratively to linearly-interpolated hourly BG
measurements. The fit was analysed with RMS error be-
tween BG measurements and modelled plasma glucose,
to quantify how well a virtual trial would reproduce the
original dataset. Fitting error in any patient indicates a
virtual trial run using this patient could not recreate the
original observed data, and thus error is an important
metric.

The closest analogue of this method was then fitted using
the basis function SDE approach. An hourly piecewise-
constant profile was not possible to fit without introducing
further constraints, and so constant Sy and G, values were
fitted for each measurement interval using the presented
methodology. RMS error in BG was presented for com-
parison with the original, and the G, distribution was
presented as a cumulative density function (CDF). Finally,
the regularised S7 profile was fitted and error in BG was
calculated.

The nature of the G, profile was then investigated graphi-
cally. The G, value for a measurement interval was plotted
against the initial BG, time between measurements, mean
exogenous glucose delivery (enteral and parenteral), and
mean exogenous insulin. The contribution of G, to glucose
disposal was also calculated.

3. RESULTS

Figure 2 shows the dramatic reduction in fitting error
when the SDE approach is used. No discernable difference
is visible between the 0" and 2°¢ order basis functions.
The difference between the two basis function shapes is
shown in Figure 3, where the 0*" order SDE forces G, — 0
except at extreme cases. The regularised basis of the 214
order SDE forces G, to absorb the remaining BG changes,
hence producing a more variable G, profile. The method
thus permits control over the contribution of noise to hour-
to-hour BG changes.

Dependence of the G, profile was investigated in Figure
4. Graphically, the only factor that affects the variance of
G is measurement interval, which is congruent with the
constraints on G,. Due to the choice of constraint, longer
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Fig. 2. Fitting error comparison between the methods. No dis-
cernible differences is visible between the two SDE approaches.
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Fig. 3. Noise signal comparison. The 0" order SDE was fitted with
a constant S; between BG measures, while the 2" order SDE
was fitted with a 2"d order b-spline basis with knot widths of
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4. Scatter diagram of all fitted G, vales with a ond order
basis, plotted against measurement interval, exogenous insulin,
exogenous glucose, and initial BG. Hourly insulin is only
indicative, as timing errors will affect the value when insulin
is delivered in a bolus.

Fig.

term changes in BG are mediated by S, while short term
changes predominantly affect the G, profile.

Finally, Figures 5 and 6 show the new methods imple-
mented on the same patient and compared to the original.
This patient was chosen as the episode includes an initial
period of high BG that cannot be fitted by the original
method, and has some minor interpolation artefacts near
the end of the episode. Figure 5 shows the O order
basis has almost equivalent Sy, barring some minor timing
differences, and G, is zero everywhere except for the initial
high BG period that is impossible to fit using the non-
stochastic model. In comparison, the regularised basis used
in Figure 6 has a much smoother S; profile, and where
there are disparities between the original and new Sj
profiles G is forced to be non-zero.
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. 5. 0 order basis functions compared to the original methods.
St is similar, and G is only non-zero when Sy is constrained
to the lower limit.
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6. 274 order basis functions compared to the original method.
St is much smoother, and G is non-zero both when Sy is
constrained and when differences exist between the new and
old profiles.

Fig.

4. DISCUSSION

An updated fitting methodology is needed when using
higher resolution data. An hourly S; value is useful for
control, but timing errors cause information to be lost
when creating virtual patients. During a virtual trial, this
discrepancy means the original data cannot be created
when the original inputs are used. Generalising S; to a
series of b-spline basis functions permits timing errors to
be natively captured, but introduces fitting error if the
basis function local support extends beyond an individual
measurement interval. To permit greater local support,
and thus regularise the Sy profile, a new time-varying
parameter, G, was introduced to eliminate fitting error.
The methodology presented here is a robust way identify
both of these parameters, where forcing G, to be zero-
mean allows the system to be fully defined, and the
iterative integral method allows rapid solution.

Figure 2 demonstrates this approach solves the original
problem. Fitting error can be forced to zero if enough
iterations are carried out, and both the S; and G, profiles
can be used in a virtual trial that fully recreates the data
if the original intervals are used. As Sy is regularised with
a higher order basis, and wider knot widths, shorter-term
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changes cannot be captured by Sy, instead being forced
into the G, profile. This effect is seen in both Figure 3
and the example patient in Figures 5 and 6. In this way,
direct control can be exerted over the balance between
changes in S; and observed noise.

This balance between noise and changes in S; may also
be useful in control. Figure 4 shows a lack of depen-
dence of noise on both exogenous inputs and current BG,
showing only the expected dependence on measurement
interval. This knowledge may be leveraged to improve
model prediction. In particular, a continuous Sy profile and
a cohort G, profile could be used in a non-parametric pre-
diction algorithm, replacing the computationally intensive
stochastic model of STAR [Fisk et al., 2012]. Such a non-
parametric approach could feasibly be updated in real-
time, improving the quality of glycaemic control for longer-
stay ICU patients. Safety would be improved for more
variable (higher noise) patients, and performance would
be improved for more stable patients, neither of whom
benefit from a whole-cohort approach. The novel simplicity
of this SDE permits stable parameter identification with a
relatively computationally light algorithm, which permits
use in real-time glycaemic control.

One final possibility created by using this SDE approach
is analysis of noise around changes in exogenous inputs.
Patterns in the noise profile may possibly be used to
identify areas where the model could be improved. For
example, changes in nutrition rate may affect BG faster
than the glucose absorption submodel permits, which will
appear as positive G, values immediately after nutrition
changes. Consistent patterns could be used to update
parameter values either for an individual or for the whole-
cohort ICING model.

5. CONCLUSIONS

A robust parameter identification method was introduced,
permitting identification of a smooth S; profile, and cap-
turing remaining variation in a simple stochastic element,
G;. This method suits the high resolution data available to
STAR. Thus, future work will centre around implementa-
tion of a non-parametric prediction algorithm using these
two parameters, allowing for direct inclusion into STAR.
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