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Abstract: The H∞ based decoupling tracking control is studied in this paper. A virtual system
constituted by the controlled system and the no coupling reference model is firstly set up. The
controlled system is driven to follow the reference model to realize the decoupling. And the
tracking error can be formulated by the H∞ norm of the virtual system. Then the controller
is derived by minimizing the H∞ norm, which can be described by Linear Matrix Inequalities
(LMIs). The necessary and sufficient condition of existence of controller is derived based on
the LMIs above. A flight control example is given to illustrate the effectiveness of the proposed
method. The simulation results show that the proposed method is of better control performance
than Linear Quadratic (LQ) tracking controller.
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1. INTRODUCTION

Hypersonic vehicle is a offensive weapon, which is dif-
ficult to intercept. The harsh environment it faces and
its highly integrated design make the hypersonic vehicle
become a typical complex multiple-input multiple-output
(MIMO) system with strong coupling and uncertainties.
As the hypersonic vehicle influences the focus of future
missile defense system (Dai et al. (2010)), it is urgent
to overcome the bad effects of coupling of the vehicle.
Currently, there are several ways of decoupling design:
Firstly, design the controller individually for each chan-
nel by using classical control theory, and then introduce
a cross-linking gain matrix to compensate the coupling
effect. Secondly, use a variety of modern control theories
to design the decoupling controller, including LQR/LTR,
GSLQ, H∞, variable structure adaptive control and so
on. Thirdly, transform the coupled MIMO systems into a
series of single-input single-output (SISO) systems by the
multivariable frequency domain theory, and then design
the controller using the classical frequency domain method
respectively.

Historically, the flight controllers were always designed
according to the characteristics of each single-channel
without considering decoupling effect because of low flight
speed and little coupling impact (Chiu et al. (1991),
Canale et al. (2008), and Das et al. (2007)). However,
with the large increase of the flight speed, the traditional
methods were unable to be further used to achieve higher
and multiple performance requirements. It is difficult to
apply the single-channel design procedures directly to

achieve the satisfactory performance in hypersonic vehicle
manipulations.

It is commonly agreed that we should reduce the coupling
effect first, and then design the advanced robust control
strategies by the modern control theories. Here a brief
survey of several typical decoupling approaches. Inverse
Nyquist Array (INA) method and diagonally dominant
ideas were presented by Rosenbrock (Rosenbrock (1969))
firstly for multi-variable coupling system. Then Hawkin-
s (Hawkins (1972b)) proposed pseudo-diagonalization to
obtain a pre-compensator to make the transfer function
matrix of the compensated system approximately be a di-
agonal matrix. To cope with the problem that this method
can only design controller for a single frequency, later
Hawkins (Hawkins (1972a)) improved this method to be
applied in several frequencies. The method based on the
specific frequency only considers the characteristics of the
selected frequency, ignoring the other frequency character-
istic, so that the control effect is not very good. Generally,
these traditional frequency-domain theories need to obtain
the transfer function of vehicle model, but it is hard to
obtain the accurate vehicle model because of aerodynamic
uncertainties. Meanwhile, it is difficult to describe the
uncertain factors in the frequency domain.

For this reason, scholars have adopted the norm of the
system to design compensator for the system. Karimi-
Ghartemani (Karimi-Ghartemani and Mobed (2008)) de-
signed a state feedback controller and a pre-filter to decou-
ple a class of multi-variable systems. On the other hand,
H∞ control theory has an advantage in solving the control
problem of uncertain systems. AndH∞ norm can be calcu-
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lated by using the LMI approach in a convex optimisation
procedure. Furthermore, in recent years, there have been
many LMI universal solvers, which make the time domain
approach greatly developed and generally welcomed. On
this basis, Chughtai (Chughtai et al. (2005)) designed a
controller for the system, using the unit matrix as a refer-
ence model. Due to the amplitude attenuation and phase
lag of system in high frequency, the actual characteristics
of the system have a large difference with the unit matrix.
Therefore, this method remains to be further improved.

In view of this, this paper proposes a new decoupling
tracking control method, for the sake of combining the
decoupling effect and the dynamic tracking performance,
to deal with a kind of strong coupled MIMO vehicle
systems. In this study, a reference model of diagonal
transfer matrix based on the demand of the frequency
domain characteristics is selected to reduce the differences
between the actual characteristic and the reference model’s
properties. We describe the controller design problem as
an H∞ synthesis problem, which can be handled in the
state space instead of obtaining the transfer function of
the vehicle model. More importantly, the necessary and
sufficient conditions for using the proposed method are
derived and described by LMI. Finally, we use a flight
control example based on the hypersonic vehicle to show
the validity of the proposed method, and the simulation
results turn out to be perfect.

The remaining parts of this paper are organized as follows:
in Section 2, we describe the control problem and elaborate
the design steps of the decoupling method. Section 3 is
devoted to present the necessary and sufficient conditions
for the existence of the H∞ based decoupling tracking
controller. On the basis of the former sections, Section 4
takes up a flight control simulation to achieve the proposed
decoupling tracking control strategy and illustrate the
effectiveness of the method by the comparison with the
LQ method. Section 5 summarizes the study and points
out the future work.

2. PROBLEM DISCRIPTION

The state-space form of control object G is (1).

{ ẋ = Ax+Bu
y = Cx

(1)

Where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n are the system
matrix, input matrix, and output matrix of the control
object G, respectively, x ∈ Rn is the state vector while
u ∈ Rp is the control input vector, and y ∈ Rp is the
output vector.

The control target is to design a controller for above linear
MIMO system and make the closed-loop system decoupled
with desired properties. A diagonal transfer matrix based
on the demand of the frequency domain characteristics
is selected as the reference model, and the controlled
system is driven to follow the reference model to realize
the decoupling by minimizing the H∞ norm of the virtual
system.

We solve this problem in the following three steps:

Step 1: Set a reference model Rref , which has the desired
properties.

Cctrl G

Rref

-

-

ur yP

Q

P

uuk

×

+

×

y

yrur

Fig. 1. Schematic diagram of Step 2

Cctrl GF

-

ur yPuukur0

×

Fig. 2. Schematic diagram of Step 3

Step 2: As shown in Fig.1, the controller Cctrl and the
object G constitute a real closed-loop system Q. Assume
that reference model Rref is parallel with the closed-loop
system Q. Then, Rref and Q constitute a virtual system
P. Our object is to design a controller Cctrl to minimize
the H∞ norm of the virtual system P as (2).

∥P∥∞
∆
= sup

ω
σmax(P (jω)) (2)

If ∥P∥∞ is small enough, ur in Fig.1 will not affect the
virtual output yp. Then the characteristics of the closed-
loop system Q will be similar with those of Rref .

Step 3: Design a prefilter F, according to the charac-
teristics of the closed-loop system in Fig.2, to make the
characteristics of the overall system satisfy the required
performance of the desired properties.

3. THE METHODOLOGY

Through the establishment of the virtual system P, we
can use H∞ norm of the virtual system to solve the
decoupling problem, which can be described by LMI. In
the following section, we will derive the necessary and
sufficient conditions for the existence of the decoupling
controller in detail.

Suppose that the state-space expression of controller Cctrl
is (3). {

ẋk = Akxk +Bkuk
yk = Ckxk

(3)

Where Ak ∈ Rnk×nk , Bk ∈ Rnk×p, Ck ∈ Rp×nk are the
system matrix, input matrix, and output matrix of the
controller Cctrl, respectively, xk ∈ Rnk is the state vector,
uk ∈ Rp is the input vector, and yk ∈ Rp is the output
vector.

The state-space form of reference model Rref is (4).{
ẋr = Arxr +Brur
yr = Crxr

(4)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

895



Where Ar ∈ Rnr×nr , Br ∈ Rnr×p, Cr ∈ Rp×nr are the
system matrix, input matrix, and output matrix of the
reference model Rref , respectively, xr ∈ Rnr is the state
vector, ur ∈ Rp is the input vector, and yr ∈ Rp is
the output vector. Moreover, the reference model Rref is
completely decoupled between the channels.

It can be obtained from Fig.1 that:{
u = yk
uk = ur − y

(5)

Therefore, the state-space form of virtual system P can be
described as (6).

[
ẋ
ẋr
ẋk

]
=

[
A 0 BCk
0 Ar 0

−BkC 0 Ak

][
x
xr
xk

]
+

[
0
Br
Bk

]
ur

= Aaxa +Baur

yp = [−C Cr 0 ]

[
x
xr
xk

]
= Caxa

(6)

Suppose that the dimension of the controlled object is n,
the dimension of the reference model is nr, the dimension
of the input is p, and the dimension of the output is q.

Here we give the necessary and sufficient conditions for the
H∞ based decoupling tracking control method.

Theorem 1. There exists a (n+nr)-dimensional controller

such that ∥P∥∞ < γ if and only if there exist Â ∈
R(n+nr)×(n+nr), B̂ ∈ R(n+nr)×q, Ĉ ∈ Rp×(n+nr), and
symmetric matrixes X,Y ∈ S(n+nr)×(n+nr) that satisfy
(7)and (8).

Φ1 +ΦT1 ÂT + Ā

[
0
Br

]
X

[
−CT

CT
r

]
∗ Φ2 +ΦT2 Φ3

[
−CT

CT
r

]
∗ ∗ −γI 0
∗ ∗ ∗ −γI

 < 0 (7)

[
X I
I Y

]
> 0 (8)

Where

Ā =

[
A 0
0 Ar

]
, Φ1 = ĀX +

[
BĈ
0

]
,

Φ2 = Y Ā +
[
−B̂C 0

]
,Φ3 = Y

[
0
Br

]
+ B̂.

We select a non-singular matrix arbitrarilyM ∈ R(n+nr)×(n+nr),
and set N = (I − Y X)M−T . Then we can obtain the
controller by (9).

Ck = ĈM−T

Bk = N−1B̂

Ak = N−1
(
Â−Ψ

)
M−T

(9)

Where

Ψ = Y ĀX +N [−BkC 0 ]X + Y

[
BCk
0

]
MT .

Proof. According to the Bounded Real Lemma, ∥P∥∞ <
γ means there exists a symmetric matrix W that satisfies
(10) and (11).ATaW +WAa WBa CT

a

BT
aW −γI 0
Ca 0 −γI

 < 0 (10)

W > 0 (11)

Suppose

W =

[
Y N
NT Θ1

]
,W−1 =

[
X M
MT Θ2

]
,

Π1 =

[
X I
MT 0

]
,Π2 =

[
I Y
0 NT

]
.

(12)

Where X,Y ∈ S(n+nr)×(n+nr) are symmetric matrixes,
M,N ∈ R(n+nr)×(n+nr), Θ1 = −NTXM−T , Θ2 =
−N−1YM , and N = (I − Y X)M−T .

Then

Π2 = WΠ1. (13)

According to this relationship, we obtain (14), (15), and
(16).

Π1
TWAaΠ1 = ΠT2 AaΠ1

=

[
I 0
Y N

] [ A 0 BCk
0 Ar 0

−BkC 0 Ak

][
X I
MT 0

]

=

 ĀX +

[
BCk
0

]
MT Ā

Ψ +NAkM
T Y Ā +N [−BkC 0 ]


(14)

Π1
TWBa = Π2

TBa

=

[
I 0
Y N

] [ 0
Br
Bk

]

=


0
Br

Y

[
0
Br

]
+NBk


(15)

Π1
TCT

a =

(
[−C Cr 0 ]

[
X I
MT 0

])T

=

X

[
−CT

CT
r

]
−CT

CT
r

 (16)

Where

Ā =

[
A 0
0 Ar

]
,

Ψ = Y ĀX +N [−BkC 0 ]X + Y

[
BCk
0

]
MT .

Note that

Â = Ψ+NAkM
T ,

B̂ = NBk,

Ĉ = CkM
T .

(17)

Multiply (10) by diag(
[
ΠT1 I I

]
) and diag([ Π1 I I ]) on

the left and right, respectively. Then we get (18).
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ΠT1 A
T
aWΠ1 +ΠT1 WAaΠ1 ΠT1 WBa ΠT1 C

T
a

BT
aWΠ1 −γI 0
CaΠ1 0 −γI

 =
Φ1 +ΦT1 ÂT + Ā

[
0
Br

]
X

[
−CT

CT
r

]
∗ Φ2 +ΦT2 Φ3

[
−CT

CT
r

]
∗ ∗ −γI 0
∗ ∗ ∗ −γI


(18)

Where

Ā =

[
A 0
0 Ar

]
, Φ1 = ĀX +

[
BĈ
0

]
,

Φ2 = Y Ā +
[
−B̂C 0

]
,Φ3 = Y

[
0
Br

]
+ B̂.

Therefore, (10) is equivalent to (7).

Since W > 0, we can get (19).

0 < Π1
TWΠ1 = Π2

TΠ1

=

[
I 0
Y N

] [
X I
MT 0

]
=

[
X I
I Y

] (19)

Hence, (11) is equivalent to (8).

Thus, ∥P∥∞ < γ means that there exist symmetric matri-

ces X,Y ∈ S(n+nr)×(n+nr) and arbitrary ones Â, B̂, Ĉ ∈
R(n+nr)×(n+nr) that satisfy (7) and (8).

Then, according to (12) and (13), we can get (9).

This completes the proof of the theorem.

For a given model, we can get an optimal controller by
solving the following optimization problem.

min γ

s.t. (7), (8).

Remark 1: In order to avoid ill-conditioned matrix NMT ,
usually we add the constraint (20).[

X ε0I
ε0I Y

]
> 0 (20)

Where, ε0 is a constant, and ε0 > 1.

Remark 2: In order to avoid the extreme situations of
the numerical solution, the condition (21) is added to the
objective function, by which the elements in X and Y will
not be extremely too large.

min ε1γ + ε2 (Trace(X) + Trace(Y )) (21)

Where ε1 and ε2 are constants, satisfying ε1 > ε2.

Remark 3: The designed controller satisfying Theorem 1
can make the characteristics of the closed-loop system
closed to the one of the desired reference model. However,
it can not guarantee that the performance of the system
in the main frequency band is consistent with the desired
one fully. Therefore, a prefilter F is introduced to cover
this deficiency.

4. FLIGHT CONTROL EXAMPLE

During the flight of aircraft, it is influenced strongly by
the aerodynamic coupling, the inertial coupling and the
kinematic coupling, synchronously. In such cases, some
scholars(such as Deng et al. (2010), Zhou (1995), and Enns
et al. (1988)) have already conducted researches on the
decoupling control problems of aircraft. To investigate the
effectiveness of the proposed control method, we research
a flight control example based on the hypersonic vehicle.

4.1 Flight Model

The nominal linear model, with speed of about Mach 10,
during 350-400s is given by (22).

∆α̇
∆ω̇z1
∆β̇
∆ω̇y1
∆γ̇
∆ω̇x1

 = A


∆α
∆ωz1
∆β
∆ωy1
∆γ
∆ωx1

+B

[
∆δφ
∆δψ
∆δγ

]
(22)

Where

A =


−0.01862 1 0 0 0 0
−5.91559 0 0 0 0 0

0 0 −0.00969 0.96196 0 0.27319
0 0 −5.40318 0 0 0
0 0 0 0 0 1
0 0 −28.41634 0 0 0

,

B =


−0.00052 0 0
−2.60529 0.0011 0

0 −0.00007 −0.00016
0 −0.31205 −1.40788
0 0 0
0 −1.2735 −54.51722

.
∆α, ∆β, and ∆γ, are small deviations of angle of attack,
sideslip, and roll, respectively. ∆ωz1, ∆ωy1, and ∆ωx1 are
small deviations of pitch rate, yaw rate, and roll rate. ∆δφ,
∆δψ, and ∆δγ are small deviations of angle of pitch, yaw,
and roll. ∆α, ∆β, and ∆γ are the outputs of the system.
Then (23) is the output matrix of the system.

C =

[
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

]
(23)

Here, the {∆δφ , ∆ωz1, ∆α} constitutes the pitch channel
of the system, while {∆δψ, ∆ωy1, ∆β} and {∆δγ , ∆ωx1,
∆γ} constitute the yaw and roll channels.

To represent the coupling of the system, we use its direct
Nyquist array (DNA) within the frequency band from
0.01rad/s to 2rad/s, which is shown in Fig. 3. Obviously,
the system is seriously coupled between the yaw and roll
channels.

4.2 Control Design

Practically, according to the frequency analysis of control
instruction of the aircraft, we select 1.884 rad/s (about
0.3Hz)as the bandwidth frequency of the vehicle in pitch
channel, while 1.256 rad/s (about 0.2Hz)in yaw channel,
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and 3.768 rad/s (about 0.6Hz)in roll channel, respectively.
Therefore, the reference model is selected as (24) based on
the requirement of the bandwidth.

Rref =


1

0.5308s+ 1
0 0

0
1

0.7962s+ 1
0

0 0
1

0.2654s+ 1

 (24)

Firstly, some necessary constrains in Remark 1 and Re-
mark 2 are given: ε0 = 3, ε1 = 10, ε2 = 10−4. Secondly,
we use the free toolbox ”YALMIP” (Lofberg (2004)) for
matlab and its most commonly used solver ”SeDuMi”
(Sturm (1999)) to design the controller by Theorem 1,
which is a typical LMI problem. Then, the curve of DNA
of the new closed-loop system is shown in Fig. 4.

Compared with the original system, obviously, the interact
intensity of the new one among the channels is greatly
reduced.

Additionally, to guarantee the tracking performance, the
preposition controller F is designed as (25).
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Fig. 5. The step response of the closed-loop system

F =

[
1.0823 0 0

0 1.0497 0
0 0 1

]
(25)

The simulation results are shown in the following subsec-
tion.

4.3 Simulation and Comparison with Linear Quadratic
(LQ) Controller

In order to illustrate the effectiveness of the proposed
control method, we design an LQ tracking controller for
comparison as below.

Firstly, a state feedback matrix K is designed using the
linear quadratic regulator (LQR) algorithm based on the
performance indexes Q and R.

K =

[−2.3057 −0.1331 0.0002
−0.0025 −0.0013 −0.4278
0.0001 −0.0001 −0.2069

0.0005 −0.0001 0
−1.3702 0.1210 0.0288
1.0230 −6.3234 −0.5306

] (26)

Q = diag(40, 0.01, 15, 0.02, 40, 0.02)
R = diag(2.5, 1, 1)

(27)

Then, we can obtain transfer function GLQR(s) of the sys-
tem with the state feedback matrix K. Further, based on
the amplitude matrix of the system on zero frequency, the
pre-compensation matrix is designed as (28) by GLQR(j0)
and the controller is achieved.

L = G−1
LQR(j0) =

[−4.5995 0.0072 −0.0001
−0.0025 −17.1662 0.1210
0.0001 −0.3284 −6.3234

]
(28)

After that, we test both systems by adding a unit step sig-
nal to each channel respectively. Responses of the systems
by the proposed control method and LQ control method
are shown in Fig 5.

In the unit step response of the pitch channel, compared
with the LQ control method, the performance of ∆α by
the proposed control method has the similar setting time
and no overshoot. Then, studying the performance of ∆β
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and ∆γ in this channel, the static error is existed by the
proposed control method, of which the order of magnitude
is as small as 10−4, and can be ignored.

In the yaw channel, by the proposed control method, ∆α
has static error as well, and it also can be ignored since the
magnitude is 10−5. However, the LQ control method has
greater overshoot in this channel, and it produces some
shakes on ∆γ with the amplitude of about 0.25 degrees.

Moreover, in the roll channel, ∆α appears a negligible
overshoot with the magnitude of 10−5 by using both
methods. But the LQ method produces some shakes on ∆β
as it does on ∆γ in the yaw channel, while the proposed
control method has little effect on ∆β and the regulation
is much smoother than LQ method on ∆γ .

Altogether, the proposed control method has much better
performance on dynamic properties of controller. On the
other hand, it has small static errors in certain channels
which are negligible. So, the proposed method is better
performed on the system with strong coupling than the
LQ method.

5. CONCLUSIONS AND FUTURE WORK

In this article, we conduct a series of studies about
the reference model based decoupling control issues with
the dynamic compensator. The coupling characteristics
of the hypersonic vehicle are analysed by the DNA. Our
contribution is to propose a necessary and sufficient theory
of decoupling controller design by solving a LMI problem.
To solve it conveniently, the free toolbox ”YALMIP”
for matlab with the solver ”SeDuMi” is utilized. Lastly,
a comparison between the proposed method and LQ
method is obtained by simulation, which illustrates that
the proposed control method has better effects on the
system with strong coupling.

However, some further researches are necessary to improve
this method. The high order of the controller by the
proposed decoupling method will make it difficult to
realize in practical systems. To address this problem, in
the future work, we will try to reduce the order of the
resulting controller consciously, or to design the lower
order controller directly to make it of great significance
in application.
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