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Abstract: Near-controllability is defined for those systems that are uncontrollable but have a
large controllable region. It is a property of nonlinear control systems introduced recently, and
it has been well demonstrated on discrete-time bilinear systems. The purpose of this paper is
to propose a useful algorithm to compute the control inputs, which achieve the transition of
a given pair of states, for a class of discrete-time bilinear systems that are nearly controllable.
Accordingly, for such class of bilinear systems, not only near-controllability is proved, but also
the computability of control inputs for near-controllability is shown. An example is provided to
demonstrate the effectiveness of the proposed algorithm.

1. INTRODUCTION

Bilinear systems comprise an important class as well as a
special class of nonlinear systems, which have received con-
siderable attention over decades (Elliott [2009]). Many real
world processes, ranging from engineering to sciences, can
be modeled or approximated by bilinear systems (Bruni,
Pillo, and Koch [1974], Mohler and Kolodziej [1980], Fliess
[1981], and Mohler [1991]). Furthermore, such systems are
thought to be simpler and better understood than most
other nonlinear systems. Indeed, bilinear systems have
been a hot research topic in the literature of nonlinear
systems.

Controllability is clearly one of the most important is-
sues in control theory. The concept of controllability was
identified in the early 1960s (Kalman, Ho, and Narendra
[1963]) and the theory for controllability of linear sys-
tems and nonlinear systems was well established (Won-
ham [1985], Sussmann and Jurdjevic [1972], Hermann
and Krener [1977], Isidori [1995], Jurdjevic [1997], Fliess
and Normand-Cyrot [1981], Jakubczyk and Sontag [1990],
Albertini and Sontag [1994], and Wirth [1998]). Today,
controllability has become one of the fundamental con-
cepts in mathematical control theory (Klamka [1991] and
Sontag [1998]). There are many different kinds of defini-
tions of controllability, such as local controllability, global
controllability, null controllability, approximate controlla-
bility, and positive controllability. Roughly speaking, con-
trollability is defined as the ability of a system that the
system can be steered from an arbitrary initial state to
an arbitrary terminal state under the action of admissible
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control inputs. For linear systems, controllability can be
proved by directly deriving the control inputs to achieve
the state transition. For nonlinear systems, however, such
control inputs are, in general, difficult to obtain even if
controllability has been proved.

For bilinear systems, controllability in continuous-time
case has been extensively investigated profiting from the
Lie algebra methods. Various Lie-algebraic criteria on
controllability of continuous-time bilinear systems were
provided in the literature, which have been summarized
and updated in the recent monograph Elliott [2009] on
bilinear systems. The controllability results for discrete-
time bilinear systems, however, are sparse compared with
their continuous-time counterparts. Most of the work on
controllability of discrete-time bilinear systems was done
in the 1970s (Tarn, Elliott, and Goka [1973], Goka, Tarn,
and Zaborszky [1973], and Evans and Murthy [1977]),
which considered bilinear systems of the form

x (k + 1) = (A + u (k) B) x (k) (1)

where x(k) ∈ Rn, A,B ∈ Rn×n, and u(k) ∈ R. For
controllability of system (1), Tarn et al. [1973] gave a
sufficient condition, which requires A to be similar to an
orthogonal matrix. Goka et al. [1973] studied controlla-
bility of system (1) under the assumption of rankB = 1
and presented necessary as well as sufficient conditions;
based on the work in Goka et al. [1973], Evans and Murthy
[1977] improved these conditions by raising necessary and
sufficient ones. Since then, few work on controllability of
discrete-time bilinear systems has been reported until the
2000s (Tie and Cai [2012], Tie and Lin [2013b], and Tie
[2013b]), where controllability criteria were obtained for
system (1) (mainly in dimension two). In summary, for
controllability of system (1), only specific subclasses are
considered, while most cases remain unsolved. The reasons
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are basically due to the nonlinearity and poor algebraic
structure of the systems.

For controllability of discrete-time bilinear systems, it is
of interest to notice the recent result obtained in Tie, Cai,
and Lin [2010]. If a system is uncontrollable, it is natural to
consider its controllable regions 1 . Tie et al. [2010] fulfilled
this thought by investigating system (1) with A = I:

x (k + 1) = (I + u (k) B) x (k) . (2)
System (2) is uncontrollable if the system dimension n ≥ 3
(Tie and Cai [2012] and Tie and Lin [2013b]). Nevertheless,
it was shown in Tie et al. [2010] that if B has only real
eigenvalues that are nonzero and pairwise distinct, then
the system (2) has a large controllable region nearly cover-
ing the whole space, i.e. the system is nearly controllable.
Near-controllability is thus introduced to describe those
systems that are uncontrollable but own a very large con-
trollable region. If we only use “uncontrollable” to describe
a system that is not controllable according to the general
controllability definition, we may miss some valuable prop-
erties of it. Near-controllability was first defined and was
demonstrated on system (2) in Tie et al. [2010], and it was
later investigated for another type of system (1):

x (k + 1) = (A + u (k) I) x (k) (3)
in Tie and Cai [2011], where a necessary and sufficient
condition for near-controllability of system (3) was given
provided that A has only real eigenvalues.

However, Tie et al. [2010] and Tie and Cai [2011] only
gave the criteria for determining near-controllability, while
the problem of computing control inputs to achieve state
transition has not been discussed. Recently, a root loucs
approach is proposed in Tie [2014b] to study near-
controllability of system (2), where not only an improved
result is obtained, but also the control inputs that achieve
the transition of any given pair of states are computed. The
similar idea was also used in Tie [2013a] and Tie [2014a]
to prove near-controllability and obtain the computable
control inputs. The difference of the use of the root loucs
technique between Tie [2014b] and Tie [2013b], Tie [2014a]
is that, most of the poles of the corresponding closed loop
transfer function in Tie [2014b] are double poles, while
the corresponding closed loop transfer functions in Tie
[2013a], Tie [2014a] only contain single poles or at most
one pair of double poles, so that the root loci first move
on the real axis no matter what the zeros are and the
Implicit Function Theorem is not needed in Tie [2013a],
Tie [2014a]. In addition, nearly-controllable subspaces are
derived in Tie [2014b] and Tie [2013a], respectively, for
systems (2) and (3).

In this paper, by applying the similar root locus technique,
a useful algorithm is proposed to compute the required
control inputs that achieve the transition of a given pair
of states for the nearly controllable system (3). In order to
formulate the algorithm, a new sufficiency proof of near-
controllability of the system (3) is presented. Accordingly,
for such class of bilinear systems, the problems of near-
controllability and computability of control inputs for
near-controllability are both solved. Finally, an example

1 A controllable region is a region in Rn on which the system is
controllable, namely, for any ξ, η in this region, there exist control
inputs that steer the system from ξ to η.

is provided to show the effectiveness of the proposed
algorithm.

2. NEAR-CONTROLLABILITY WITH AN
ALGORITHM

We first introduce the near-controllability definition.

Definition 1. A continuous-time system ẋ (t) = f (x (t) ,
u (t)) (discrete-time system x (k + 1) = f (x (k) , u (k)))
defined on Rn is said to be nearly controllable if, for any
ξ ∈ Rn \E and any η ∈ Rn \F , there exist piecewise
continuous control u (t) and T > 0 (a finite control
sequence u (k), k = 0, 1, . . . , l − 1, where l is a positive
integer) such that ξ can be transferred to η at some
t ∈ (0,T) (k = l), where E and F are two sets of Lebesgue
measure zero in Rn.

In this section, we give the algorithm for computing the
required control inputs to achieve the state transition of
the nearly controllable system (3). We first present a new
sufficiency proof of near-controllability by applying the
root locus theory and root locus technique. To this end,
the following lemma is needed.

Lemma 1. Let

C1 =




λ2m
1 λ2m−1

1 · · · λ1

2mλ2m−1
1 (2m− 1) λ2m−2

1 · · · 1
...

...
...

...
λ2m

m λ2m−1
m · · · λm

2mλ2m−1
m (2m− 1) λ2m−2

m · · · 1




,

d1 =




−λ2m+1
1

− (2m + 1) λ2m
1

...
−λ2m+1

m

− (2m + 1) λ2m
m




, d2 =




1
0
...
1
0




,

where λ1, . . . , λm are nonzero real and pairwise distinct.
Then, C1 is nonsingular and

C−1
1

(
d1 − (−1)2m+1

a
m∏

i=1

λ2
i d2

)

=




(−1)

(
2

m∑

i=1

λi + a

)

...

(−1)2m




m∏

i=1

λ2
i + a

m∑

i=1

m∏
j=1

λ2
j

λi







,

(4)
where a is a nonzero real number and is distinct with λi

for i = 1, . . . , m.

Proof. Let C2 =
[
a2m a2m−1 · · · a 1

]
. Consider the

linear equation

Cz =
[

d1

−a2m+1

]
, (5)

where

C =
[

C1 d2

C2

]
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and z ∈ R2m+1. Since the transpose of C is a general
Vandermonde matrix and λ1, . . . , λm, a are nonzero and
pairwise distinct, C is nonsingular, and C1 is as well
for the similar reason. Therefore, linear equation (5) is
solvable and has a unique solution. Assume that z =
[ z1 · · · z2m+1 ]T is the solution. From (5), we have

λ2m+1
i + z1λ

2m
i + · · ·+ z2mλi + z2m+1 = 0,

(2m + 1) λ2m
i + z12mλ2m−1

i + · · ·+ z2m = 0
for i = 1, . . . , m and

a2m+1 + z1a
2m + · · ·+ z2ma + z2m+1 = 0.

Thus, λ1, . . . , λm, a are all the roots of the following
(2m + 1)th-degree equation

s2m+1 + z1s
2m + · · ·+ z2ms + z2m+1 = 0,

where λ1, . . . , λm are double roots. According to the
Viète’s formulas,

z1 = (−1)

(
2

m∑

i=1

λi + a

)
,

...

z2m = (−1)2m




m∏

i=1

λ2
i + a

m∑

i=1

m∏
j=1

λ2
j

λi


 ,

z2m+1 = (−1)2m+1
a

m∏

i=1

λ2
i .

As a result, by eq. (5) and noting z2m+1 = (−1)2m+1
a

m∏
i=1

λ2
i ,

we have
C1 [ z1 · · · z2m ]T + z2m+1d2 = d1

⇒ [ z1 · · · z2m ]T = C−1
1

(
d1 − (−1)2m+1

a

m∏

i=1

λ2
i d2

)
.

Eq. (4) is proved. ¥
Recall the necessary and sufficient condition for near-
controllability obtained in Tie and Cai [2011].

Theorem 1. The system (3), where A has only real
eigenvalues, is nearly controllable if and only if A is
cyclic 2 and the dimension of the largest Jordan block in
the Jordan canonical form of A is no greater than two.

A New Sufficiency Proof of Near-controllability of
the System (3) with Computable Control Inputs.
For the system (3), we write

A =




λ1 1
λ1

. . .
λr 1

λr

λr+1

. . .
λm




(6)

2 A matrix is said to be cyclic if its characteristic polynomial is equal
to its minimal polynomial, namely only one Jordan block exists for
each eigenvalue in the Jordan canonical form of the matrix.

as in Tie and Cai [2011] without lose of generality, where
λ1, . . . , λm are real and pairwise distinct and m + r = n.
Moreover, it is assumed that λ1, . . . , λm are nonzero since
A can be replaced by (A− bI) with b unequal to λi for
i = 1, . . . , m in view of the structure of system (3). In the
following, we continue from the second step in the proof of
Theorem 1 in Tie and Cai [2011]. It has been shown that
(quoted from Tie and Cai [2011]), for any ξ in

Rn \ {
ξ
∣∣ ∣∣ ξ Aξ · · · An−2ξ An−1ξ

∣∣ = 0
}

, (7)

there exists an attainable open neighborhood of itself, i.e.

(A + u (2m) I) · · · (A + u (n) I) (A + tn−1 (y) I) · · ·
(A + t0 (y) I) ξ = ξ + y, (8)

where y belongs to an open neighborhood of the origin in
Rn, t0 (y) , . . . , tn−1 (y) ∈ R are continuous functions with
respect to y, and u (n) , . . . , u (2m) ∈ R. Furthermore,

{
ξ
∣∣ ∣∣ ξ Aξ · · · An−2ξ An−1ξ

∣∣ = 0
}

={
ξ = [ ξ1 · · · ξn ]T | ξ2ξ4 · · · ξ2rξ2r+1 · · · ξn = 0

}

that separates Rn into 2m open orthants. 3 Therefore, ξ
can be transferred to any state that is close enough to ξ.
Next, we prove that the system (3) is controllable on each
of the 2m open orthants. For any two states ξ, η in one
orthant, establish the transition matrix

Φξ→η =




η2

ξ2
α1

η2

ξ2
. . .

η2r

ξ2r
αr

η2r

ξ2r η2r+1

ξ2r+1

. . .
ηn

ξn




(9)

where

α1 =
η1

ξ2
− ξ1η2

ξ2
2

, . . . , αr =
η2r−1

ξ2r
− ξ2r−1η2r

ξ2
2r

.

We can see that η = Φξ→ηξ and all eigenvalues of Φξ→η
are positive since ξ, η belong to the same orthant. Then,

3 The orthants are

C0
m : {ξ |ξ2 > 0, ξ4 > 0, . . . , ξ2r > 0, ξ2r+1 > 0, . . . , ξn > 0} ;

C1
m :





{ξ |ξ2 < 0, ξ4 > 0, . . . , ξ2r > 0, ξ2r+1 > 0, . . . , ξn > 0} ,
{ξ |ξ2 > 0, ξ4 < 0, . . . , ξ2r > 0, ξ2r+1 > 0, . . . , ξn > 0} ,

. . . ,
{ξ |ξ2 > 0, ξ4 > 0, . . . , ξ2r > 0, ξ2r+1 > 0, . . . , ξn < 0} ;

C2
m : {. . . ; . . . ; Cm−2

m : {. . . ;

Cm−1
m :





{ξ |ξ2 < 0, . . . , ξ2r < 0, ξ2r+1 < 0, . . . , ξn+1 < 0, ξn > 0} ,
{ξ |ξ2 < 0, . . . , ξ2r < 0, ξ2r+1 < 0, . . . , ξn+1 > 0, ξn < 0} ,

. . . ,
{ξ |ξ2 > 0, ξ4 < 0, . . . , ξ2r < 0, ξ2r+1 < 0, . . . , ξn < 0} ;

Cm
m : {ξ |ξ2 < 0, ξ4 < 0, . . . , ξ2r < 0, ξ2r+1 < 0, . . . , ξn < 0} .
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lim
q→+∞

Φ
1
q

ξ→η
=




(
η2

ξ2

) 1
q

β1

(
η2

ξ2

) 1
q

. . . (
η2r

ξ2r

) 1
q

βr

(
η2r

ξ2r

) 1
q

(
η2r+1

ξ2r+1

) 1
q

. . . (
ηn

ξn

) 1
q




= I

where

β1 =

η1
ξ2
− ξ1η2

ξ2
2

q
(

η2
ξ2

) q−1
q

, . . . , βr =

η2r−1
ξ2r

− ξ2r−1η2r

ξ2
2r

q
(

η2r
ξ2r

) q−1
q

.

As a result, we can always choose a positive integer q such

that Φ
1
q

ξ→ηξ is sufficiently close to ξ, and hence it can be
reached from ξ according to eq. (8). That is, there exist
(2m + 1) control inputs u0, u1, . . . , u2m−1, u2m such that

(A + u2mI) (A + u2m−1I) · · · (A + u0I) ξ = Φ
1
q

ξ→ηξ. (10)

We now show that u0, u1, . . . , u2m−1, u2m are on the root
loci of the characteristic equation of a closed loop transfer
function that is related to A’s eigenvalues. Let

Π , (A + u2mI) (A + u2m−1I) · · · (A + u1I) (A + u0I) .

Φ
1
q

ξ→η and A are of the same structure, and Φ
1
q

ξ→η and Π

are as well. Denote by Φ
1
q

ξ→η (i, j) and Π (i, j) the (i, j)th

entries of Φ
1
q

ξ→η and Π, respectively. From eq. (10)

Π (2i− 1, 2i− 1) ξ2i−1 + Π(2i− 1, 2i) ξ2i =

Φ
1
q

ξ→η (2i− 1, 2i− 1) ξ2i−1 + Φ
1
q

ξ→η (2i− 1, 2i) ξ2i,

Π(2i, 2i) ξ2i = Φ
1
q

ξ→η (2i, 2i) ξ2i

for i = 1, . . . , r and

Π (i, i) ξi = Φ
1
q

ξ→η (i, i) ξi

for i = 2r + 1, . . . , n. Since ξ2, ξ4, . . . , ξ2r, ξ2r+1, . . . , ξn are
nonzero, we deduce

Π (2i− 1, 2i− 1) = Π (2i, 2i) = Φ
1
q

ξ→η (2i, 2i) =

Φ
1
q

ξ→η (2i− 1, 2i− 1) ,

Π(2i− 1, 2i) = Φ
1
q

ξ→η (2i− 1, 2i)

for i = 1, . . . , r and

Π (i, i) = Φ
1
q

ξ→η (i, i)

for i = 2r + 1, . . . , n. Therefore, we have Π = Φ
1
q

ξ→η, i.e.

(A + u2mI) (A + u2m−1I) · · · (A + u1I) (A + u0I) = Φ
1
q

ξ→η,

which is equivalent to

A2m+1 +
2m∑

k=0

ukA2m + · · ·+
∑

uk0 · · ·uk2m−1A+

2m∏

k=0

ukI = Φ
1
q

ξ→η. (11)

Writing (11) as two groups of equations yields





λ2m+1
1 +

2m∑

k=0

ukλ2m
1 + · · ·+

∑
uk0 · · ·uk2m−1λ1+

2m∏

k=0

uk = Φ
1
q

ξ→η (2, 2)

(2m + 1) λ2m
1 + 2m

2m∑

k=0

ukλ2m−1
1 + · · ·+

∑
uk0 · · ·uk2m−1 = Φ

1
q

ξ→η (1, 2)
...

λ2m+1
r +

2m∑

k=0

ukλ2m
r + · · ·+

∑
uk0 · · ·uk2m−1λr+

2m∏

k=0

uk = Φ
1
q

ξ→η (2r, 2r)

(2m + 1) λ2m
r + 2m

2m∑

k=0

ukλ2m−1
r + · · ·+

∑
uk0 · · ·uk2m−1 = Φ

1
q

ξ→η (2r − 1, 2r)




λ2m+1
r+1 +

2m∑

k=0

ukλ2m
r+1 + · · ·+

∑
uk0 · · ·uk2m−1λr+1+

2m∏

k=0

uk = Φ
1
q

ξ→η (2r + 1, 2r + 1)

...

λ2m+1
m +

2m∑

k=0

ukλ2m
m + · · ·+

∑
uk0 · · ·uk2m−1λm+

2m∏

k=0

uk = Φ
1
q

ξ→η (n, n)

,

(12)
in which the first group contains 2r equations and the sec-
ond one contains (m− r) equations. Adding the following
(m− r) constraints

(2m + 1) λ2m
r+1 + 2m

2m∑

k=0

ukλ2m−1
r+1 + · · ·+

∑
uk0 · · ·uk2m−1 = 0,

...

(2m + 1) λ2m
m + 2m

2m∑

k=0

ukλ2m−1
m + · · ·+

∑
uk0 · · ·uk2m−1 = 0
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to the second group of equations in (12) and putting the
above 2r + (m− r) + (m− r) = 2m equations into matrix
form yields




λ2m
1 · · · λ1

2mλ2m−1
1 · · · 1
.
..

.

..
.
..

λ2m
m · · · λm

2mλ2m−1
m · · · 1







2m∑
k=0

uk

..

.∑
uk0 · · ·uk2m−1




+

(
2m∏
k=0

uk − 1

)



1
0
.
..
1
0




=




−λ2m+1
1

− (2m + 1) λ2m
1

...

−λ2m+1
m

− (2m + 1) λ2m
m


 +




Φ
1
q

ξ→η
(2, 2)− 1

Φ
1
q

ξ→η
(1, 2)

...

Φ
1
q

ξ→η
(2r, 2r)− 1

Φ
1
q

ξ→η
(2r − 1, 2r)

Φ
1
q

ξ→η
(2r + 1, 2r + 1)− 1

0
...

Φ
1
q

ξ→η
(n, n)− 1

0




.

Let
2m∏

k=0

uk = (−1)2m+1
a

m∏

i=1

λ2
i + 1 (13)

where a is a positive number greater than λi for i =
1, . . . , m. It follows




2m∑
k=0

uk

...∑
uk0 · · ·uk2m−1




=




(−1)

(
2

m∑
i=1

λi + a

)

...

(−1)2m




m∏
i=1

λ2
i + a

m∑
i=1

m∏
j=1

λ2
j

λi







+




µ1

...
µ2m




(14)
by using Lemma 1, where




µ1

...
µ2m


 =




λ2m
1 · · · λ1

2mλ2m−1
1 · · · 1
...

...
...

λ2m
m · · · λm

2mλ2m−1
m · · · 1




−1




Φ
1
q

ξ→η
(2, 2)− 1

Φ
1
q

ξ→η
(1, 2)

...

Φ
1
q

ξ→η
(2r, 2r)− 1

Φ
1
q

ξ→η
(2r − 1, 2r)

Φ
1
q

ξ→η
(2r + 1, 2r + 1)− 1

0
..
.

Φ
1
q

ξ→η
(n, n)− 1

0




.

(15)
Then, by noting (13) and (14) and using the Viète’s
formulas, it can be seen that u0, u1, . . . , u2m−1, u2m are
the roots of the following (2m + 1)th-degree equation

s2m+1 +

(
2

m∑

i=1

λi + a− µ1

)
s2m + · · ·+




m∏

i=1

λ2
i + a

m∑

i=1

m∏
j=1

λ2
j

λi
+ µ2m


 s + a

m∏

i=1

λ2
i − 1 = 0,

which can be rewritten as

s2m+1 +

(
2

m∑

i=1

λi − µ1

)
s2m + · · ·+

(
m∏

i=1

λ2
i + µ2m

)
s−

1 + a (s + λ1)
2 · · · (s + λm)2 = 0.

Thus, u0, u1, . . . , u2m−1, u2m are on the root loci of the
characteristic equation of the closed loop transfer function

1 + KG (s) , 1+

K (s + λ1)
2 · · · (s + λm)2

s2m+1 +
(

2
m∑

i=1

λi − µ1

)
s2m + · · ·+

(
m∏

i=1

λ2
i + µ2m

)
s− 1

.

(16)
If K is chosen sufficiently large, then the characteristic
equation 1 + KG (s) = 0 has all roots real. 4 Therefore,
u0, u1, . . . , u2m−1, u2m can be computed by choosing a
large enough K. Applying q groups of u0, u1, . . . , u2m−1, u2m

yields

[(A + u2mI) (A + u2m−1I) · · · (A + u1I) (A + u0I)]q ξ

= [(A + u2mI) · · · (A + u1I) (A + u0I)]q−1 Φ
1
q

ξ→ηξ

= Φ
1
q

ξ→η [(A + u2mI) · · · (A + u1I) (A + u0I)]q−1
ξ

= · · · =
(

Φ
1
q

ξ→η

)q

ξ = Φξ→ηξ = η.

That is, controllability on each of the 2m open orthants
has been proved. The rest proof is the same as that given
in Tie and Cai [2011]. ¥
By using the new sufficiency proof of near-controllability,
an algorithm is given to compute the required control
inputs that steer the nearly controllable system (3) from
one state to another, which both belong to (7).

Algorithm 1. Steps on computing the required control
inputs for initial state ξ and terminal state η:

• Transform A into the Jordan canonical form as that
given in (6) by a nonsingular matrix P and choose
a real number b distinct with every eigenvalue of A.
ξ, η are thus transformed into Pξ, Pη, respectively;

4 Note that

∥∥∥Φ
1
q

ξ→η
− I

∥∥∥ is sufficiently small if q is sufficiently large.

If ξ = η, then Φ
1
q

ξ→η
= I and µ1 = 0, . . . , µm = 0. We have

1 + KG (s) = 1 +
K (s + λ1)2 · · · (s + λm)2

s (s + λ1)2 · · · (s + λm)2 − 1
= 0,

which has been shown in Tie and Cai [2011] to have all the root loci
finally lie on the real axis approaching the 2m zeros and −∞.
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• Find the control inputs that transfer Pξ to a state
ζ that belongs to the same orthant as Pη belongs to
(Lemma 2 in Appendix A is useful in this step);

• Get the transition matrix Φζ→Pη for ζ, Pη from (9);

• Choose a positive integer q and compute Φ
1
q

ζ→Pη;
• Obtain the root loci of 1 + KG (s) = 0 given in (16),

where λ1, . . . , λm are the eigenvalues of (A− bI) and
K increases from 0 to +∞. If when K approaches
+∞, any of the root loci does not end at a zero of
1 + KG (s) = 0 through the real axis, then return to
the former step and choose another integer q greater
than the previous one. Otherwise, choose a K large
enough such that the roots of 1 + KG (s) = 0 are all
real. Then, the real roots are the control inputs that

transfer ζ to Φ
1
q

ζ→Pηζ. q groups of such control inputs,
together with the ones that transfer Pξ to ζ, are the
required control inputs steering the nearly controllable
system (3) from ξ to η.

An example will be provided in Section 3 to demonstrate
the effectiveness of Algorithm 1.

3. EXAMPLE

Example 1. Consider the system

x (k + 1) = (A + u (k) I) x (k)

=







−2 0 0 0 0
0 −2 −3 0 −1
1 0 1 0 1
−1 0 −2 −1 −1
3 0 0 0 1


 + u (k) I


 x (k) ,(17)

where x (k) ∈ R5 and u (k) ∈ R. Given ξ = [ 1 0 0 1 0 ]T ,

η = [−120 −50 20 −120 150 ]T . Find the control inputs
such that ξ is transferred to η.

We apply Algorithm 1 to compute the required control
inputs. Step 1: let x̄ (k) = Px (k), where

P =




0 0 1 0 0
1 0 0 0 1
0 1 1 0 0
1 0 0 0 0
0 0 1 1 0


 .

It follows

x̄ (k + 1) =
(
PAP−1 + u (k) I

)
x̄ (k)

=







1 1 0 0 0
0 1 0 0 0
0 0 −2 1 0
0 0 0 −2 0
0 0 0 0 −1


 + u (k) I


 x̄ (k) (18)

and Pξ = [ 0 1 0 1 1 ]T , Pη = [ 20 30 −30 −120 −100 ]T .
Since PAP−1 is cyclic and the dimension of its largest
Jordan block is no greater than two, system (18) is nearly
controllable according to Theorem 1, and system (17) is
as well. Furthermore, A is nonsingular, so that it can be
let b = 0. Step 2: Pξ, Pη do not belong to the same
orthants (the signs of Pξ’s latter two entries are respec-
tively distinct with the signs of Pη’s latter two entries).
Let u (0) = 0, then

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Root Locus

Real Axis (seconds−1)

Im
ag
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y 
A
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s 

(s
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on
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−1
)

Fig. 1. Root loci of 1 + KG (s) = 0.
(
PAP−1 + u (0) I

)
Pξ = [ 1 1 1 −2 −1 ]T , ζ

that belongs to the same orthant as Pη belongs to. Step
3: obtain from (9) the transition matrix

Φζ→Pη =




30 −10 0 0 0
0 30 0 0 0
0 0 60 45 0
0 0 0 60 0
0 0 0 0 100


 .

Step 4: choose q = 10.

Φ
1
10
ζ→Pη =




30
1
10

−10
10× 30

9
10

0 0 0

0 30
1
10 0 0 0

0 0 60
1
10

45
10× 60

9
10

0

0 0 0 60
1
10 0

0 0 0 0 100
1
10




.

Step 5: from (15),

µ1 ≈−0.126597, µ2 ≈ −0.510202, µ3 ≈ −0.253520,

µ4 ≈ 1.053639, µ5 ≈ 0.875121, µ6 ≈ −0.633326.

Consider
1 + KG(s) = 1+

K (s + 1)2 (s− 2)2 (s− 1)2

s2m+1 + (−4− µ1) s2m + · · ·+ (4 + µ2m) s− 1
.

By Matlab, the root loci of 1 + KG (s) = 0 are shown in
Fig. 1, in which “×” and “◦” respectively denote the poles
and zeros of G (s) and the colored curves are the root loci
of 1 + KG (s) = 0 starting at the poles and ending at the
zeros. From Fig. 1, the root loci of 1+KG (s) = 0 finally lie
on the real axis approaching the zeros. Choosing K = 500
yields the roots of 1 + KG (s) = 0:

u0 ≈ −500.126605, u1 ≈ −1.008777,

u2 ≈ −0.991090, u3 ≈ 0.972255, u4 ≈ 1.028536,

u5 ≈ 1.981266, u6 ≈ 2.017817.

One can now verify that, by using 10 groups of the above
control inputs with u (0) = 0, system (17) is steered from
ξ to η.

4. CONCLUSIONS

In this paper, a useful algorithm is proposed to compute
the control inputs to achieve the state transition for a
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class of nearly controllable discrete-time bilinear systems.
Accordingly, for such systems, near-controllability and the
computability of control inputs for near-controllability are
both shown. An example is also provided to demonstrate
the effectiveness of the proposed algorithm. Future work
should consider the near-controllability and controllability
problems of more general discrete-time bilinear systems.
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Appendix A

Lemma 2 (Tie et al. [2010]). Let the set of m-
dimensional sign vectors be denoted by SV (m) (which con-
tains 2m elements). Then, all of the elements of SV (m)
can be produced from the following m sign pattern vectors



−
+
...
+
+







+
−
...
+
+


 · · ·




+
+
...
−
+







+
+
...
+
−




via the Hadamard product “ ◦”, where + ◦ + = +, + ◦
− = − ◦+ = −, and − ◦ − = +.
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