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Abstract: Control loop performance assessment techniques are crucial for optimizing any plant
or machine. They can bring huge energy and material savings and increase product quality.
Usually, the performance is compared to minimum variance controller. It is known that when
optimizing process controllers having fixed structure (e.g. PIDs) different concepts must be
applied. In this paper, the systematic approach for a class of fractional-order processes is
presented. Inspired by the model free design techniques, only a minimum a priori information
about the process is assumed. A novel performance index based on ’ideal’ shape of sensitivity
function is proposed. Two fundamental limits are considered: available loop bandwidth and
robustness MS-index. The best possible performance is computed for all processes belonging to
the fractional-order model set controlled by PID-type controllers. The authors believe that the
presented ideas may be utilized by both academic and industrial sphere.
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1. INTRODUCTION

Control loop performance assessment (CLPA) is often
sketched as a key asset-management technology 1 . Since
1970, it became an integral part of large distributed
control systems – especially in refineries, oil and chemical
sectors. It was observed that correct CLPA application
leads into huge energy and material savings and increases
overall product quality (Desborough and Miller (2002)).
Therefore, CLPA faces growing interest in both research
and engineering community. Several surveys of existing
CLPA approaches has been done e.g. in Harris et al.
(1999); Åström and Hägglund (2006); Shardt et al. (2012);
Jelali (2013).

Despite the positive CLPA impact, the utilization of CLPA
is still undervalued. The majority of controllers are tuned
only once, they often work in manual mode or with default
parameters. Even when the controllers are initially well
tuned they must be continuously monitored because of
process dynamics variations and the sensors and actuators
time-degradation. The renowned studies estimate that
about 70% of control loops are not properly tuned also due
to the lack of tools based on exact problem formulation.

? This work was supported by the Technology Agency of the
Czech Republic – project No. TA02010152 and by the European
Regional Development Fund (ERDF), project NTIS – New Tech-
nologies for Information Society, European Centre of Excellence,
CZ.1.05/1.1.00/02.0090.. The support is gratefully acknowledged.
1 Sometimes the synonyms loop auditing or loop management are
used

The automation complexity is growing also in other in-
dustrial sectors (food and paper industry, etc.) and in
energetics. Thus, it is supposed that CLPA techniques
will penetrate into smaller plants, machines or home de-
vices (Jämsä-Jounela et al. (2003); Jelali (2007)). They
will become an integral part of control systems and even
compact controllers. Several global automation leaders (e.g
ABB, Honeywell) has already implemented loop diagnostic
methods directly into their compact controllers.

The CLPA importance rises as the overall world produc-
tion tends to be demand-driven. Consequently, the process
working points often change and the production lines must
be quickly reconfigured.

Recap that in large-scale process industries, often the
independent monitoring system is used which analysis off-
line data mined from a signal database. Those traditional
concepts must be now revised. Especially, the tighter
interaction with process controllers needs to be formed to
reach the maximum performance and reliability of CLPA
methods.

Usually, the actual control quality is compared to the best
linear controller (minimum variance – see e.g. Lynch and
Dumont (1996); Harris et al. (1999)). Unfortunately, such
approach gives no insight what is the best performance
achievable by the controller currently integrated in the
loop which has typically with fixed structure – PI or PID.
This challenge was addressed earlier e.g. in Qin (1998);
Ko and Edgar (1998); Goradia et al. (2005); Grimble
(2003). However, only the low order plant models are
used there and the maximum achievable performance
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is computed numerically. In Thyagarajan et al. (2003),
the relay is added to the control loop to asses the PI
controller performance. Such an experiment can be quite
time consuming and the process must be disturbed from
the normal operation. The more pragmatic approach can
be examined in Huang (2003) where a trade-off curve
between input and output variance is taken into account.
Unfortunately, the authors also restrict themselves to only
second order plant model.

In this paper, the novel concise approach is presented
that eliminates those drawbacks. It is based on exactly
defined class of fractional-order systems covering majority
of process control plants and fundamental feedback loop
limits (Bode theorem) and design objectives. Based on
the a priori information about the process and a fixed
controller structure an ideal shape of sensitivity func-
tion is defined by two fundamental limits: available loop
bandwidth Ωa and robustness Ms-index. Afterwards, the
performance index is formulated as a ratio of the ideal to
actual sensitivity function. As a main paper result, the
best achievable performance is evaluated for all processes
belonging to the fractional-order model set controlled by
PID-type controllers. Up to the authors’ knowledge, such
systematic performance evaluation for a class of fractional-
order processes has not been done before.

Point out that all ideas presented in this paper are consis-
tent with the authors’ previous achievements in the area
of controller autotuning Schlegel and Čech (2005); Čech
and Schlegel (2011). Based on those ideas, a successful
industrial PID autotuner has been recently developed and
implemented in various commercial control systems and
compact controllers. There exists a strong demand for con-
tinuous monitoring of the loops controlled by these PIDs.
It is the main driver for the work documented bellow.

The paper is organized as follows: Section 2 clarifies the
Available bandwidth paradigm in simulation and real-time
environment. Section 3 formulates the problem of per-
formance indices definition and evaluation for fractional-
order model set. Section 4 summarizes the results of com-
puting optimal indices for all processes form fractional-
order model set. The practical method for evaluating ac-
tual performance index is demonstrated on real example in
Section 5. Conclusions and ideas for further development
are recalled in Section 6.

2. BODE THEOREM AND AVAILABLE LOOP
BANDWIDTH

Key fact about physical systems is that they do not
exhibit good frequency response fidelity beyond a certain
bandwidth Ωa. It is influenced by various factors when
working in different environments 2 (see Tab. 1). Let us
call that Ωa Available bandwidth, to distinguish it from
other bandwidths such as crossover or 3-dB magnitude
loss. In today’s popular robust control jargon, Ωa is the
frequency range over which unstructured multiplicative
perturbations are substantially less than unity; see Stein
(2003). Further remind, that the Bode Theorem is a
cornerstone of linear feedback control theory. It expresses

2 MIL – Model-in-the-Loop; SIL – Software-in-the-Loop; PIL –
Processor-in-the-Loop; HIL – Hardware-in-the-Loop

Table 1. Typical factors influencing available
bandwidth Ωa in different environments

Environment factors influencing available band-
width Ωa

1. MIL number representation precision

2. SIL computer achievable sampling time

3. PIL communication speed

4. HIL D/A A/D converter resolution, signal
noise ratio, saturations

5. real plant
/ machine

additional non-linearities, sen-
sor/actuator speed and precision,
unmodeled dynamics

the limits of feedback loop to reject disturbances and
track signals. When designing the control loop, one should
always consider the modified relation respecting available
bandwidth in the form∫ Ωa

0

ln(|S(jω)|)dω .
= 0, (1)

where S(jω) is the loop sensitivity function.

Remark 1. The Table 1 should be viewed as a cumulative
set of factors that can restrict the available bandwidth
when going through individual steps of control develop-
ment cycle. Hence, e.g. despite working on real plant, the
communication speed could be the main restrictive factor.

Assumption 1. In the following, it is assumed that the
value of Ωa is known and can be taken as a key design
parameter. In practice, it can be estimated e.g. using
discrete Fourier transform.

3. PROBLEM FORMULATION

In this Section, it is explained how the model set is
constructed and how the ’optimal’ controller is chosen for
each process belonging to the model set.

3.1 A priori admissible systems

It was shown in Charef et al. (1992) that to cover the huge
number of real processes, one has a priori to consider the
transfer function in the form

P (s) =
K

p∏
i=1

(τis+ 1)ni

, (2)

where p is arbitrary integer number and K, τi, ni i = 1,
2, . . . , p are positive real numbers. The transfer function
(2) describes very well the majority of essentially mono-
tone processes (see Åström and Hägglund (2004) for defi-
nition).

Remark 2. If p→∞ then the set of all transfer functions
(2) contains also processes with dead time and approx-
imates well several processes with transcendent transfer
functions (like heat transfer, chemical processes, etc.).

3.2 Characteristic numbers – experimental data

Three-parameter time domain process description is well
accepted in the control community. The authors’ previous
works vindicate the usage of first three moments mi of
the impulse response h(t) instead of numbers obtained
from the step response using its tangent line in the
inflexion point. The application of time moments in control
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Fig. 1. Step response shaping by parameter σ̄2

appeared firstly in Maamri and Trigeassou (1993). They
are defined as

mi =

∞∫
0

tih(t)dt, i = 0, 1, 2 (3)

and may be converted to another more suitable group of
numbers

{
κ, µ, σ2

}
(Schlegel et al. (2003)) defined as

κ =

∞∫
0

h(t)dt = m0, µ =

∞∫
0

th(t)dt

∞∫
0

h(t)dt

=
m1

m0
,

σ2 =

∞∫
0

(t− µ)2h(t)dt

∞∫
0

h(t)dt

=
m2

m0
− m2

1

m2
0

. (4)

It can be proved (Čech (2008)) that for transfer function
(2), it holds

κ = K, µ =

p∑
i=1

τini, σ2 =

p∑
i=1

τ2
i ni. (5)

From a control point of view, κ is equal to process static
gain and µ represents the residual time constant. Without
loss of generality, the process can be normalized in gain
and time, thus κ̄ = 1 and µ̄ = 1. The remaining parameter
σ̄2 then has a meaning similar to normalized dead time.
It shapes the step response from first order to pure dead
time process as shown in Fig. 1. 3

Remark 3. The impulse response moments (3) or equiv-
alently the numbers (4) can be obtained from the pro-
cess step response or rectangular pulse response (Schlegel
et al. (2003)). They may be also estimated from process
input/ouput data.

Assumption 2. In the following let us assume that we have
measured precisely the numbers (4) and other information
about the process is not available.

3.3 Model set, extremal, vertex and ultimate processes

To make the paper more self-contained let us briefly
remind basic definitions and lemmas.

3 Optimized Charef’s method (Charef et al. (1992)) is used for time-
domain realization of (2).

Fig. 2. Comparison of integer (blue) and fractional order
(green) model set uncertainty in frequency domain
(σ2 = 0.7)

Definition 1. (Model set). The transfer function P (s) is
admissible if and only if

(i) P (s) is in the form (2), ni ≥ m,∀i,
p∑

i=1

ni ≤ n, where

n ∈ R+ is the total order of the process and m ∈ R+ is
the minimum allowed order of each fractional pole.
(ii) P (s) is consistent with experimental data, thus ful-
fills (5). The set of all admissible transfer functions will be
called model set and denoted as Sn,m(κ, µ, σ2).

The following lemma answers the question, when the
model set is not empty.

Lemma 1. Let n ≥ 2m, then the model set Sn,m(κ, µ, σ2)
is not empty if and only if

1

n
≤ σ2

µ2
≤ 1

m
. (6)

The proof is omitted for brevity. If the inequality (6) is sat-
isfied then the model set contains for given characteristic
numbers κ, µ, σ2 infinite number of processes. Fortunately,
these processes create after mapping into frequency do-
main a connected area called value set for each frequency
ω > 0.

Definition 2. (Value set). The set Vn,m
ω (κ, µ, σ2) =

=
{
P (jω) : P (s) ∈ Sn,m(κ, µ, σ2)

}
will be called the value

set of Sn,m(κ, µ, σ2) at the frequency ω > 0.

The value set boundary is generated by so called extremal
transfer functions.

Definition 3. (Extremal transfer function). The admissible
transfer function P (s) ∈ Sn,m(κ, µ, σ2) will be called
extremal, if there exists ω > 0 such, that P (jω) ∈
∂Vn,m

ω (κ, µ, σ2), where ∂Vn,m
ω (κ, µ, σ2) denotes the value

set boundary in complex plane. Let us denote the set of
all extremal transfer functions as Sn,mE (κ, µ, σ2).

Remark 4. For the a priori assumption (2) and condition
(5) the set Sn,mE (κ, µ, σ2) is independent on frequency ω.

The value set boundary is composed of finite number of
smooth curves. In authors previous works (Čech (2008);
Schlegel et al. (2003)), the analytical relations for com-
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puting value set boundaries (extremal processes) were
derived for both integer-order (IO) and fractional-order
(FO) model set. In Fig. 2, one can examine that omit-
ting fractional-order processes reduces the uncertainty
markedly 4 .

Remark 5. It is acceptable to define the minimum pole
order as m = 1. Processes of order less than one do
not have an equivalent in the real word. Besides, they
extend more and more the model set uncertainty. On
the contrary, the maximum process order need not to
be restricted because the model set uncertainty (value
sets size) converges very quickly for n → ∞ and the
generated extremal processes are quite easier to simulate
in the time domain. Therefore, the normalized model set
dependent only on σ̄2 and denoted as S∞,1(σ̄2) and the set

of processes creating its value set boundary S∞,1
E (σ̄2) will

be further considered. It is also worth to mention, that this
approach is much less conservative compared to popular
H∞ techniques where the uncertainty has a circle shape
for each frequency.

Corollary 1. It flows out from Lemma 1 that S∞,1(σ̄2) is
nonempty if and only if σ2 ∈ 〈0, 1〉.

3.4 Control loop design specifications

Respecting majority of robust design methods, the upper
limit of sensitivity function S(jω) amplitude is specified as

sup
ω
|S(jω)| ≤MS . (7)

In addition, we want to find the fastest loop minimizing
the criterion of control error e(t)

J =

∞∫
0

e(t)dt (8)

when the step in reference signal is applied to the loop.

3.5 Controller form

Lets consider PI/PID controller in the form

CPI(s) =K

(
1 +

1

Tis

)
, Ki = K/Ti,

CPID(s) =K

(
1 +

1

Tis
+

Tds

(Td/N)s+ 1

)
, (9)

where K, Ti, Td, N are static gain, integral time constant,
derivative time constant and derivative filter, respectively.

Remark 6. The controllers (9) are the most employed
controllers in industrial practice, hence the systematic
evaluation of their maximum achievable performance can
bring a new insight into numerous control loops.

3.6 Controller design procedure

Firstly, let us describe the two-step design procedure for
PI controller for particular value of σ̄2:

(1) Using robustness regions method described earlier
in Čech and Schlegel (2013), the set of all pairs of
controller parameters K, Ti ensuring condition (7)

4 The dynamics of real distributed parameter processes is closed to
fractional. Hence considering only IO processes in robust design may
lead to non-satisfactory closed loop behavior.

for any P (s) ∈ S∞,1
E (σ̄2) was determined. The set can

be drawn as a compact region R in K −Ki plane.
(2) The fastest controller C ∈ R is selected as a point

with maximum Ki coordinate. It can be proven that
such controller minimizes the criterion (8).

The procedure remains the same even for PID controller.
However, one has to choose a priori the derivative filter
constant N and the ratio f = Ti/Td, usually close to 1/4.
In such a way one can obtain an optimal controller for each
σ̄2. In the following the control loop performance will be
evaluated for both PI and PID controllers for each σ̄2.

4. OPTIMAL PERFORMANCE INDICES

4.1 Ideal shape of sensitivity function and performance
index

Claim 1. The reference sensitivity function should respect
the Bode theorem (1) and should be specified by minimum
set of parameters.

Therefore, only the robustness index (7) and the loop
bandwidth Ωa are used for reference sensitivity function
parametrization. When adding the assumption that the
controller C(s) contains an integrator and that the process
is – in concordance with (2) – essentially monotone, the
reference sensitivity function shape arises as shown in
Fig. 3 (simplified shape proposed by the authors).

Applying Bode’s theorem to the reference shape leads to∫ Ωa

0

ln (|S(jω)|) dω =

=

∫ Ω1

0

ln

(
Msω

Ω1

)
dω +

∫ Ωa

Ω1

ln

(
Ms −

(Ms − 1)(ω − Ω1)

Ωa − Ω1

)
dω

= Ω1 (ln(Ms)− 1) +
(Ωa − Ω1) (ln(Ms)Ms −Ms + 1)

Ms − 1

.
= 0

(10)

Consequently Ω1
.
= Ωa(ln(MS)MS−MS+1)

ln(MS) and Ω0 =

Ω1/MS . Then the performance index enumerates the ratio
of the ideal to actual sensitivity function at some frequency
from interval ωd ∈ (0,Ω0) (see Fig. 3. It can be defined as

Ip =
Msωd

Ω1|S(jωd)|
.
=

Msωd ln(Ms)

Ωa(ln(Ms)Ms −Ms + 1)
· 1

|S(jωd)|
.

(11)

Remark 7. The substantial advantage of index (11) is
that it provides information whether the controller is too
sluggish (Ip � 1) or too aggressive (Ip � 1), i.e. can
handle to robustness/performance trade-off.

4.2 Index estimation method – sketch

Any plant disturbance can be equivalently considered as
plant output disturbance do. Assume, that one has some
knowledge about its spectral density. Consequently, one
can select a frequency ωd with sufficiently high energy
in the interval (0, Ω0). The spectrum amplitude of this
frequency is determined for both closed (Ay) and open
(Ad) loop. It can be done f.e. using running discrete Fourier
transform. From equation

yd(t) = |S(jωd)|d(t) = |S(jωd)|Ad sin(ωd + ϕ) =

= Ay sin(ωd + ϕ)
(12)
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Fig. 3. Ideal (reference) and real shapes of sensitivity
functions
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Fig. 4. Maximum achievable PI controller performance
for normalized model set, Ms = 2 and different
bandwidth Ωa.

it is evident that the ratio of those amplitudes defines the
actual value of sensitivity function |S(jωd)| as follows

|S(jωd)| = Ay

Ad
. (13)

When the energy of disturbances is not sufficient, the
testing harmonic signal may be injected into the loop. The
details are omitted for brevity.

4.3 Control loop performance evaluation

When the process model is known, the index (11) can be
directly evaluated. The evaluation was done for the whole
normalized model set respecting Corollary 1, thus σ̄2 ∈
〈0, 1〉 5 . For each σ̄2, the set of representative extremal

processes S∞,1
E (σ̄2) was generated. Then the controller was

computed according to steps provided in subsection 3.6.
Note, that the evaluation is done at frequency ωd < Ω0,
where the frequency domain uncertainty (value sets area)
is very small. Consequently, one gets almost the same value
of Ip for all extremal processes and taking an average value
seems to be correct. The values of performance index were
computed for various Ωa and are depicted in Figures 4
and 5.

5 Hence the performance index is computed based on the knowledge
of process normalized dead-time which is consistent with minimum
variance control where the process dead-time must be known.
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Fig. 5. Maximum achievable PID controller performance
for normalized model set, Ms = 2 and different
bandwidth Ωa.

Remark 8. The results confirmed the well-known fact that
control performance is markedly lower when the process
has large normalized dead-time (σ̄2 close to zero). For
those processes, also the employment of derivative term
does not bring much improvement.

Remark 9. In addition, it can be observed that increasing
the bandwidth Ωa decreases the performance index due to
the own process dynamics. The potential controller which
covers the full bandwidth is simply too aggressive and does
not match the robustness requirement (7).

There are two potential scenarios how to utilize the results
obtained for known Ωa and Ms

(1) The model (i.e. σ̄2) is not known – still the interval
of acceptable index value can be computed.

(2) The value of σ̄2 is known from the initial proper
controller tuning. Let us denote the corresponding
nominal performance index value as Ip. Then the
actual loop performance IA can be computed and
compared to the reference one. The relative error
ER may be evaluated as ER = |IA/Ip − 1|. The
big value (e.g. ER > 50%) warns the loop manager
away from some changes in the process dynamics or
malfunctioning equipment.

5. EXAMPLE

Consider the real plant described by fractional-order trans-
fer function

P (s) =
1

(0.4109s+ 1)(0.2194s+ 1)3.7423
(14)

having characteristic numbers κ = 1, µ = 1.29, σ = 0.4.
The controller is initially properly tuned for the maximum
performance. After normalization σ̄ = σ/µ = 0.31 one gets
the maximum performance evaluated for Ωa = 4 [rad ·
s−1] and Ms = 2 as Ip = 0.76. The value of performance
index is stored in the controller. Firstly assume that after
some time the process dynamics has changed and can be
described by

P1(s) =
0.5

(0.5141s+ 1)(0.244s+ 1)2.2778
. (15)
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Fig. 6. Original well tuned controller and loop performance
degradation caused by the changes in the process
dynamics

The new evaluation gives the performance index as IA =
0.41 meaning too sluggish controller. Secondly assume that
the process dynamics has changed to the transfer function

P2(s) =
2

(0.4781s+ 1)(0.1629s+ 1)6.4563
. (16)

The new evaluation gives the performance index as IA =
1.51 signifying too aggressive controller. Both values are
outside the acceptable band. Consequently, the controller
informs the plant management that it should be re-tuned.

6. CONCLUSION

In this paper, novel approach to control loop performance
assessment was proposed. The performance index is based
on fundamental limits resulting into available bandwidth
and robustness Ms-index. Those limits define an ideal
shape of sensitivity function. The best possible perfor-
mance is computed for processes belonging to the exactly
defined fractional-order model set controlled by PID-type
controllers. Finally, a procedure for realtime estimation
of performance indices was demonstrated on practical ex-
amples. In the future, the authors plan to make similar
evaluation for astatic processes and to integrate presented
ideas with previously achieved world wide known results
in PID controller tuning. Moreover, the effort will be put
to transfer the technology into industrial practice.
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