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Abstract: In heating ventilating and air conditioning (HVAC) systems, typically two variables
(air temperature and air humidity) have to be controlled via several (at least two) actuators.
Some of the components show nonlinear behaviour. Therefore, HVAC systems belong to the
class of nonlinear multi-input-multi-output systems. A well suited approach to control this class
of systems is model predictive control, since the time constants of HVAC systems are high
(typically in the range of tens or hundreds of seconds) offering enough time to perform the
required online optimization. In order to apply linear predictive control methods, while taking
into account the nonlinearities of the plant, a modeling concept based on a physical plant model
and a neuro-fuzzy model is proposed. The neuro-fuzzy model is obtained via the so called local
linear model tree (LoLiMoT) algorithm. The generation of a linear state space representation
from the neuro-fuzzy model is demonstrated. This linear state space model can then be used in
a predicitive control scheme, where the linear model is updated each sampling instant from the
neuro-fuzzy model. This technique allows the application of standard linear predictive control
while taking into account the nonlinearities of the plant. Simulation and measurement results
obtained from an industrial test plant are presented.

1. INTRODUCTION

The operation of heating, ventilating and air conditioning
(HVAC) systems requires the compliance with demanding
specifications concerning control accuracy of air temper-
ature and air humidity. The applied control technique is
a crucial factor influencing the performance of the overall
system. Therefore, appropriate control techniques have to
be developed. Typical system properties as well as state-of-
the-art approaches to control HVAC systems are presented
in the following.

A common problem setup is the simultaneous control of
air temperature and humidity via the following actuators:
Heating and cooling coils are used to control the air tem-
perature. These components are realized as finned tube
crossflow heat exchangers. For humidity control, steam
humidifiers and cooling coils are used. All these actuators
influence both humidity and temperature, i.e. the given
setup describes a multi-input-multi-output (MIMO) con-
trol problem. Furthermore, the relative humidity is a non-
linear function of the temperature and some components
within HVAC systems show nonlinear behaviour. E.g., the
mixing ratio of hot water and return water of the heating
coil is a nonlinear function of the valve position.

In the field of HVAC control systems, there exist ap-
proaches that take into account the MIMO property of
the plant. In Anderson et al. [2008, 2007], an experimental
small scale HVAC system is presented. The authors design
an H∞ controller for the simultaneous control of discharge
air temperature and air flow rate. A linearized plant model
including dead times is proposed, nonlinearities are re-

garded as model uncertainties. Humidity is not considered
at all. In Semsar-Kazerooni et al. [2008] nonlinear meth-
ods are applied to control thermal space and supply air
temperatures. The system model is a bilinear system. The
proposed concept demonstrates the potential of nonlinear
control techniques for HVAC systems in simulation stud-
ies. Again, humidity is neglected. Many recent works pro-
pose model predictive control (MPC) strategies to control
HVAC systems, see Aswani et al. [2012b], Kelman and
Borrelli [2011], Aswani et al. [2012a], Naidu and Rieger
[2011], Huang and Wang [2008]. In Rehrl and Horn [2011],
MPC in combination with exact linearization is applied
to the outlet air temperature control of a cooling coil.
Actuator saturation cannot be taken into account directly
due to the application of the exact linearization method,
see e.g. Isidori [1995].

Due to the following reasons, MPC is well suited for the
application in HVAC systems:

• The method is directly applicable to MIMO systems.
• Dead times can be handled easily.
• The sampling time of the considered class of systems

is in the range of 10 seconds. Therefore, it is possible
to solve the online optimization problem in time with
standard computer hardware 1 .

The use of a nonlinear plant model within the MPC
increases the complexity to solve the online optimization
problem considerably (e.g. local minima). The non-convex

1 The presented test plant is equipped with a X20-System with
a 650 MHz Celeron PLC from B&R automation (http://www.br-
automation.com).
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optimization problem is solved via evolutionary program-
ming (EP) in Jalili-Kharaajoo [2005]. However, in EP it is
not guaranteed that the found minimum is a global one.
In Kelman and Borrelli [2011], Ma et al. [2012] MPC is
suggested in order to minimize the energy consumption
of HVAC systems. Sequential quadratic programming is
applied to solve the optimization problem. It is stated
that the computational complexity to solve the low-level,
non-convex, MPC problem causes problems with standard
HVAC controller hardware.

Consequently, in this paper, a modeling approach for
nonlinear MIMO systems is presented and demonstrated
in HVAC systems. The proposed model can easily be
applied in linear MPC, while still taking into account
the nonlinear plant characteristics. The suggested strategy
relies on a linear plant model which is generated from a
nonlinear system representation at each sampling instant,
see Section 4. This linear model is used for the online
MPC problem to compute the predicted trajectory of
the system state. At the next time step, a new linear
model is generated (from the actual system state) which
is then again used for prediction. Of course, the linear
system is an approximation, however, the accuracy of the
approximation is increased by updating the model each
time step. A detailed explanation of the two models is
given in Section 3.

This paper focuses on the modeling of the plant and the
generation of the linear plant model. It is structured as
follows: Section 2 gives a description of the test plant which
is used to verify the proposed modeling approach. Section 3
deals with the modeling of the plant and the motivation
for the application of the proposed approach can be
found there. A mathematical model of the considered
HVAC system based on physical relations is presented.
Furthermore, a neuro-fuzzy model is given to represent
the plant dynamics. In Section 4 the computation of a
state space model from the neuro-fuzzy model is presented.
Section 5 shows the application of the method for modeling
a system with two inputs (heating coil power and steam
humidifier power) and two outputs (air temperature and
air humidity). Section 6 concludes the paper and outlines
future work.

2. PLANT

The considered plant is an industrial HVAC system shown
in Fig. 1. The white arrows indicate possible air paths:
outer air enters the plant from the right, room air enters
from the top right hand corner. The conditioned air
can be transported into the room or via an air duct to
the neighboring factory building. In the problem setup
described in the present paper, one heating coil will be
used to increase the air temperature, whereas the steam
humidifier is used to increase the air humidity.

3. MODELING

In the following, two types of plant models will be pre-
sented: a detailed physically motivated model that forms
the basis for simulation studies as well as a local linear
neuro-fuzzy model created via the so-called local linear
model tree (LoLiMoT) algorithm, see e.g. Nelles [2010,

1997]. These models will be referred to as “physical model”
and “LoLiMoT model” respectively in the following. The
use of these two types of models is motivated by the
following reasons:

• The LoLiMoT model offers the opportunity to extract
a linear time invariant (LTI) system model in a
straightforward way (see Section 4). For the given
physical model, the direct computation of linearized
models is difficult for the following reason: Due to
the segmentation of the heating and cooling coils
(see Section 3.1.1), there are numerous state variables
that are not measurable. The design of an observer
for the nonlinear physical plant model with typically
(depending on the number of segments) hundreds
of state variables would be a non-trivial task. In
order to use the linearized model in a control scheme,
the system order should not be that high, i.e. order
reduction techniques would be required, whereas the
LoLiMoT approach can yield sufficiently good results
with local model orders of one, see Schwingshackl
et al. [2013]. These arguments justify the use of the
LoLiMoT model. The LTI model extracted from the
LoLiMoT model will serve as basis for the application
in a linear MPC control strategy.

• To identify the LoLiMoT model parameters, all in-
puts (actuating signals and measurable disturbances)
have to be excited properly. Some of the disturbances
cannot be excited as they are prescribed by, e.g., out-
door air conditions in the real world system. There-
fore, the mentioned physical model is used to generate
the identification signals for the LoLiMoT model.

• The parameters of the physical model are known
from geometry data of the components as well as
from material properties. Only few parameters (e.g.
heat transfer coefficient, time constants of tempera-
ture sensors) are identified from measured data. To
identify them, the excitation of the real world system
via the actuators is sufficient.

In the following subsections, the physical as well as the
LoLiMoT model will be described. A notation describing
the variables can be found in the appendix.

3.1 Physical Model

The model of the complete plant is obtained by intercon-
necting single component models. The core components
are the following:

• Heating coils / cooling coils
• Hydraulic system for the heating and cooling coils
• Steam humidifier
• Temperature and humidity sensors

Fig. 2 shows a schematic representation of the relevant
plant components. Plant inputs are the actuating signals
u1 and u2 of heating coil and humidifier, as well as
the disturbances d1 (air inlet temperature) and d2 (hot
water supply temperature). Supply air temperature y1 and
supply air humidity y2 represent the controlled variables.
In the following, descriptions as well as mathematical
models of the mentioned components are presented.

Heating/Cooling Coil Both, heating and cooling coil are
realized as so-called finned tube, crossflow heat exchanger.
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Fig. 1. Picture of the used HVAC test plant.

Fig. 2. Schematic representation of the problem setup.

The model inputs are water and air inlet temperatures iϑw
and iϑa, water and air mass flows ṁw and ṁa and the inlet
air humidity ix, expressed as the ratio of watermass to the
mass of dry air. The model outputs are outlet temperature
of water oϑw and air oϑa, as well as the outlet air humidity
ox. For modeling, the tubes of the coil are separated into
segments, for each segment, the following model is used,
see Wiening [1987], Rehrl et al. [2009]:

dϑst
dt

= k1

[
1

2
(ϑsw1 + ϑsw2)− ϑst

]
+ k2(iϑsa − ϑst ) + k3(ixs − xst ) (1a)

dϑsw1

dt
= k4

[
iϑsw −

1

2
(ϑsw1 + ϑsw2)

]
+ k5(ϑst − ϑsw1) (1b)

dϑsw2

dt
= k4(ϑsw1 − ϑsw2) + k5(ϑst − ϑsw2) (1c)

oϑsw = 1.5ϑsw2 − 0.5ϑsw1 (1d)
oϑsa = eκa iϑsa + (1− eκa)ϑst (1e)
oxs = eκv ixs + (1− eκv )xst (1f)

The constants k1 to k5 and κa and κv are obtained from
material properties, see Wiening [1987]. The segments are
interconnected according to the structure of the heating /
cooling coil. A coil with 6 rows and 3 segments per row

Fig. 3. Structure of the heating/cooling coil.

is depicted in Fig. 3. The quantity xst describes the air
humidity close to the tube. In case the temperature ϑst is
below the dew point temperature ϑdew, xst is equal to the
saturation air humidity xsat(ϑ

s
t ) (in kg water per kg dry

air) at temperature ϑst . Otherwise, it is equal to ixs:

xst =

{
ixs . . . ϑst > ϑdew
xsat(ϑ

s
t ) . . . ϑ

s
t ≤ ϑdew

(2)

The water outlet temperature oϑcw equals the water outlet
temperature of the last segment. The air outlet temper-
ature oϑca and air outlet humidity oxc are the arithmetic
mean value of the outlet temperatures and humidities of
the segments of the last row respectively.

Hydraulic System The hydraulic system for the heating
coil is depicted in Fig. 2. For the simulation of the
overall systems, fluid dynamics are neglected compared to
the temperature and humidity dynamics. Therefore, the
hydraulic system is modeled via a static nonlinear curve
relating valve position to the mass flows within the circuit.

Steam Humidifier The mass flow of the steam is pro-
portional to the continuously adjustable electric heating
power of the steam humidifier 2 . Therefore, the model

oxsh = ixsh + kush (3)

2 Constant water inlet temperature is assumed and thermal losses
are neglected.
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is used, where ush is the heating power in % of the rated
power. The parameter k is identified from measured data.

Temperature and Humidity Sensors The temperature
and humidity sensors are modeled as first order elements
with gain equal to one, i.e. their transfer function is given
by P (s) = 1

1+sT . The time constants T are identified from
measured data.

The overall plant model is constructed via interconnection
of the component models given above. This overall plant
model is used to generate the required input/output data
in order to find the coefficients of the LoLiMoT model.

3.2 LoLiMoT Model

The overall model output at time instant k is computed
via

yk =

M∑
l=1

(
wl0 +

n∑
i=1

[
wy

li
yk−i +

m∑
j=1

w
uj

li
uj,k−i

])
Φl(u

∗
k), (4)

whereM is the number of local models,m is the number of
inputs and n is the order of the local models. The constant
coefficients w describe the local models, the function Φl
weights the outputs of the local models depending on u∗k,
where

u∗k = [u∗1,k−1 u
∗
1,k−2 . . . u

∗
1,k−n u

∗
2,k−1 . . . u

∗
2,k−n

. . . u∗m,k−1 . . . u
∗
m,k−n yk−1 yk−2 . . . yk−n]T . (5)

To model temperature and humidity behaviour, two sepa-
rate LoLiMoT models of the form (4) were created. In (5),
the inputs u∗1 to u∗m are different for temperature and
humidity model. For the temperature model, the following
assignment is given (see Fig. 2): u∗1 = u1, u∗2 = d1, u∗3 = d2,
and y = y1. In case of the humidity model, the inputs are
selected as follows: u∗1 = u1, u∗2 = u2, u∗3 = d1, u∗4 = d2,
and y = y2. The coefficients w are obtained using the
LoLiMoT-algorithm. An implementation of the algorithm
can be found e.g. in Collette [2009], Novak [2012], Mölsä
[2007]. In Nelles [2010, 1997], a detailed explanation of the
LoLiMoT approach is given.

In the following section, the generation of a state space
representation from the LoLiMoT model is presented.

4. LOLIMOT TO STATE SPACE

In Kroll et al. [2000], an approach to compute a fuzzy state
space representation from an input/output representation
similar to (4) is given. The resulting state space model
is not a minimal representation. The method proposed
in the current paper yields a minimal realization given
in Equation (9). It is based on the analytic derivation
of a state space representation in observable canonical
form from the current delayed inputs and outputs and the
LoLiMoT model. This initial model is a local approxima-
tion of the LoLiMoT model. In a second step, a regional
approximation of the model is computed. Therefore, the
parameters obtained from the LoLiMoT model are used
as initial values of an optimization procedure. In order
to compute the regional approximation around the given
operating point, the LoLiMoT model is excited with an
identification signal. With the help of this data, the param-
eters of the state space model are identified. The proposed
technique is outlined in the following.

4.1 Analytic computation of the state space model

Equation (4) can be rewritten in the form

yk =

n∑
i=1

(
−an−i,kyk−i +

m∑
j=1

b
uj

n−i,k
uj,k−i

)
+ wd

kud, (6)

where the coefficients an−i,k, b
uj

n−i,k and wdk are given via

wdk =

M∑
l=1

wl0Φl(u
∗
k), (7)

b
uj

n−i,k =

M∑
l=1

w
uj

li Φl(u
∗
k), an−i,k = −

M∑
l=1

wyliΦl(u
∗
k). (8)

The difference equation (6) describes a system with one
output y, m inputs uj and an additional virtual input
ud with the constant value one, corresponding to the
coefficient wdk.

From (6), a state space representation will be created for
further use in the predictive controller shown in Rehrl
et al. [Klagenfurt, 2013]. Since there are m inputs and
one output, the observable canonical form, see e.g. Chen
[1993], will be used. It should be noted that in (6), the
coefficients depend on the time instant k. Therefore, in
order to obtain the same results as (6), the following state
space realization with time varying system paramters will
be used:

xk+1 = Akxk + Bkuk + b1kud yk = cTk xk (9)

with

Ak =



0 · · · · · · 0 −a0,k+n

1
. . .

... −a1,k+n−1

0
. . .

. . .
...

...
...

. . .
. . . 0 −an−2,k+2

0 · · · 0 1 −an−1,k+1

 , b1k =


0
...
0

wd
k+1

 , (10a)

Bk =

 bu1
0,k+n

· · · bum
0,k+n

...
...

bu1
n−1,k+1

· · · bum
n−1,k+1

 , ck =


0
...
0
1

 . (10b)

Note that a substitution of Equation (10) into Equa-
tion (9) yields Equation (6).

In (10), parameters of future time instants k + 1, . . . , k +
n are required. Since these values are unknown at time
instant k, the following approximation is proposed: It is
assumed that the system dynamics are slow compared to
the sampling rate. Therefore, a “time-shifted” parameter
set will be used, i.e.

Ak ≈



0 · · · · · · 0 −a0,k

1
. . .

... −a1,k−1

0
. . .

. . .
...

...
...

. . .
. . . 0 −an−2,k−n+2

0 · · · 0 1 −an−1,k−n+1

 , b1k ≈


0
..
.
0

wd
k−n+1

 (11a)

Bk ≈

 bu1
0,k

· · · bum
0,k

...
...

bu1
n−1,k−n+1

· · · bum
n−1,k−n+1

 , ck =


0
...
0
1

 . (11b)
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Fig. 4. Plant outputs and actuating signals: measurement, simulation with physical model, LoLiMoT and state space.

4.2 Optimization of the state space model parameters

In the previous section, the analytic computation of the
state space parameters (11) was introduced. In contrast
to this approach, the parameters of the state space model
could be computed via parameter identification as well.
However, to find a suitable parameter set, the initial values
used for the optimization problem are crucial. Therefore,
the coefficients obtained via equation (11) are used as
initial values of the optimization problem. The structure of
the state space representation (observable canonical form)
is fixed. To generate the required data to perform the
parameter identification, the LoLiMoT model is excited
around the current operating point. Sequentially, each
input (i.e. u1, u2, d1 and d2) is excited with a so called 3-
2-1-1 signal, an input signal originally designed for system
identification in aircrafts, see e.g. de Visser [2011], Raol
et al. [2004]. All other inputs remain constant.

5. APPLICATION

The method introduced in Section 4 is demonstrated on
the HVAC system given in Sections 2 and 3.1.

5.1 Physical model

The model parameters were obtained from data sheets as
well as from material properties. Heat transfer coefficients
and sensor time constants were identified from the mea-
sured data. Fig. 4 compares the simulation model outputs
with the real world system outputs.

The temperature and humidity dynamics are captured
quite well by the physical model. Note that the air hu-
midity x in the simulation model is given in kg water
per kg dry air, whereas the relative humidity ϕ in % is
measured in the real world system. To compare the results,
the relation

ϕ =
x

0.622 + x
· p

psat(ϑ)
(12)

is used to compute the relative humidity ϕ from x, see
e.g. Baehr and Kabelac [2009], Kreith [2000]. In (12), p
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Fig. 5. Gains from input u1 to temperature and humidity.

denotes the air pressure, psat is the saturation pressure of
the water vapor at temperature ϑ. Equation (12) describes
an approximately linear relation between x and ϕ for
constant temperature ϑ. However, temperature is not
constant and due to the nonlinear dependency of the
saturation pressure psat in Pa from temperature ϑ in ◦C,

psat ≈

{
611.66 e17.28(1−

237.4429
ϑ+237.431 ) 0 ≤ ϑ ≤ 60

611.66 e22.513(1−
273.16

ϑ+273.16 ) − 50 ≤ ϑ < 0,
(13)

ϕ is as a nonlinear function of the temperature ϑ, see
e.g. Baehr and Kabelac [2009], Kreith [2000]. Conse-
quently, due to equation (2) and (13) and the nonlinear
behaviour of the hydraulics, the system to be modeled is
nonlinear. To illustrate the nonlinearity, Fig. 5 shows the
gain evaluated for positive and negative steps of heigth
10 % from input u1 to the outputs ϑsup and ϕsup. In Fig. 4,
the physical model outputs are compared against the mea-
sured outputs. A compromise between model complexity
and model quality was chosen and the depicted curves
were regarded as suitable approximation of the real world
measurements.
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5.2 LoLiMoT

Starting from the physical model, a test sequence for
the actuating signals (heating coil u1, steam humidifier
u2) and for the disturbances (water supply temperature
ϑw and air inlet temperature ϑin) is generated. A step
sequence with randomized step length (20 s to 1000 s) and
randomized amplitudes within the operating range was
chosen, see Fig. 6. A comparison of the measured real
world outputs, the physical model outputs, the LoLiMoT
model outputs and the state space model outputs is given
in Fig. 4. The upper left plot in Fig. 4 shows the supply
air temperature ϑsup. The transients are captured quite
well by the LoLiMoT model. Please note that the data in
Fig. 4 is a different data set than the one used to identify
the LoLiMoT parameters (see Fig. 6). The order was set to
n = 2, the number of local models was selected as M = 10,
a sampling time of 10 seconds was chosen. Model order and
the number of partitions were selected empirically. With
n = 2 and M = 10 the LoLiMoT model captures the
behaviour of the physical plant model quite well. The state
space model approximates the transients in a satisfactory
manner, too. The output of the state space model was
computed for 50 steps before its state was reset to match
the LoLiMoT output again. For the time between 3000 s
and 5000 s where the temperature is almost constant, the
LoLiMoT model shows a steady state deviation from the
measurements. This steady state error of the model is
of minor severity, because the proposed combination of
LoLiMoT and state space model will be part of a model
predictive control scheme that can typically cope with
constant disturbances. In the upper right plot of Fig. 4
it can be seen that the state space model approximates
the LoLiMoT model for the humidity even better than for
the temperature.

6. SUMMARY & CONCLUSION

In the paper, a modeling approach for HVAC systems is
presented. In order to apply linear standard methods, in
our case linear MPC with a state space representation of
the plant, a state space model has to be developed. Since
HVAC systems are nonlinear, linearization around one
operating point is not appropriate for the whole operating
range. Consequently, a strategy that computes a linear
state space model at each time instant that can be used for
the application of linear MPC is presented in this paper.
Two types of models are involved: a physical model with
few parameters to be identified from measurements and a
LoLiMoT model that can be identified using the physical
plant model. This approach dramatically reduces the time
required for measurements compared to directly identi-
fying the LoLiMoT model on the real world system. A
method to compute a state space model from the LoLiMoT
representation is given. Each time the optimization of the
MPC scheme is performed, a new linear state space model
is extracted from the LoLiMoT model. With this concept,
linear standard techniques can be applied to nonlinear
systems. Future investigations will be dedicated to the ap-
plication of nonlinear optimization techniques to compare
the results with the concept proposed in the present paper.
Therefore, a MPC using the LoLiMoT model leading to a
non-convex optimization problem will be compared to an
MPC based on the state space model.

Appendix A. NOTATION

Variables
m . . . number of system inputs
ṁ . . . mass flow
M . . . number of local models
n . . . system order
u∗k . . . vector of LoLiMoT inputs
x . . . humidity in kg water per kg dry air
x . . . state vector
ϑ . . . temperature in ◦C
ϕ . . . relative humidity in %

Indices
a . . . air s . . . segment
c . . . coil sh . . . steam humidifier
i . . . inlet t . . . tube
o . . . outlet w . . . water

ACKNOWLEDGEMENTS

The authors thank the company Fischer&Co. in Graz,
Austria for their support and for providing the test plant.

REFERENCES

M. Anderson, M. Buehner, P. Young, D. Hittle, C. Ander-
son, J. Tu, and D. Hodgson. An experimental system
for advanced heating, ventilating and air conditioning
(HVAC) control. Energy and Buildings, 39:136–147,
2007. doi: 10.1016/j.enbuild.2006.05.003.

M. Anderson, M. Buehner, P. Young, D. Hittle, C. Ander-
son, J. Tu, and D. Hodgson. MIMO Robust Control for
HVAC Systems. IEEE Transactions on Control Systems
Technology, 16(3):475–483, May 2008. doi: 10.1109/
TCST.2007.903392.

A. Aswani, N. Master, J. Taneja, D. Culler, and C. Tom-
lin. Reducing transient and steady state electricity con-
sumption in hvac using learning-based model-predictive
control. Proceedings of the IEEE, 100(1):240 –253, Jan.
2012a. ISSN 0018-9219. doi: 10.1109/JPROC.2011.
2161242.

A. Aswani, N. Master, J. Taneja, A. Krioukov, D. Culler,
and C. Tomlin. Energy-efficient building hvac control
using hybrid system lbmpc. In 4th IFAC Nonlinear
Model Predictive Control Conference, pages 496–501,
2012b.

H. D. Baehr and St. Kabelac. Thermodynamik. Springer-
Verlag, Berlin Heidelberg, 14th edition, 2009.

C.-T. Chen. Analog and Digital Control System Design:
Transfer-Function, State-Space, and Algebraic Methods.
Saunders College Publishing, 1993.

Y. Collette, 2009. URL http://scilab-mip.
googlecode.com/files/lolimot-matlab-1.0.zip.
(29.10.2012).

C. C. de Visser. Global Nonlinear Model Identification
with Multivariate Splines. PhD thesis, Technische Uni-
versiteit Delft, 2011.

G. Huang and S. Wang. Two-loop robust model predictive
control for the temperature control of air-handling units.
HVAC&R Research, 14:565–580, 2008.

A. Isidori. Nonlinear Control Systems. Springer, 3rd
edition, 1995.

M. Jalili-Kharaajoo. Intelligent Predictive Control with
Locally Linear Based Model Identification and Evolu-

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10867



0 1 2 3 4 5

x 10
5

5

10

15

20

25

30

35

40
temperature

time in s

ϑ
su

p
in

◦ C

0 1 2 3 4 5

x 10
5

5

10

15

20

25

30

35

40
humidity

time in s

ϕ
su

p
in

%

0 1 2 3 4 5

x 10
5

0

20

40

60

80

100
heating coil

time in s

u
1
in

%

0 1 2 3 4 5

x 10
5

0

20

40

60

80

100
steam humidifier

time in s

u
2
in

%

0 1 2 3 4 5

x 10
5

−2

0

2

4

6

8
air inlet temperature

time in s

d 1
in

◦ C

0 1 2 3 4 5

x 10
5

55

60

65

70
water inlet temperature

time in s

d 2
in

◦ C

Fig. 6. Identification sequence for generating the LoLiMoT model.

tionary Programming Optimization with Application
to Fossil Power Plants. In O. Gervasi, M. Gavrilova,
V. Kumar, A. Lagan, H. Lee, Y. Mun, D. Taniar, and
C. Tan, editors, Computational Science and Its Ap-
plications ICCSA 2005, volume 3480 of Lecture Notes
in Computer Science, pages 81–91. Springer Berlin /
Heidelberg, 2005. ISBN 978-3-540-25860-5. doi: 10.
1007/11424758 107.

A. Kelman and F. Borrelli. Bilinear Model Predictive
Control of a HVAC System Using Sequential Quadratic
Programming. In 18th IFAC World Congress, pages
9869–9874, 2011.

F. Kreith, editor. The CRC handbook of thermal engineer-
ing. CRC Press LLC, 2000.

A. Kroll, Th. Bernd, and S. Trott. Fuzzy network model-
based fuzzy state controller design. IEEE Transactions
on Fuzzy Systems, 8(5):632–644, Oct. 2000. ISSN 1063-
6706. doi: 10.1109/91.873586.

Y. Ma, A. Kelman, A. Daly, and F. Borrelli. Predictive
Control for Energy Efficient Buildings with Thermal
Storage: Modeling, Simulation, and Experiments. Con-
trol Systems, IEEE, 32(1):44 –64, Feb. 2012. ISSN 1066-
033X. doi: 10.1109/MCS.2011.2172532.
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