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Abstract: This paper presents a first principle model based methodology for simultaneous optimal tuning 
of a fault detection algorithm and a feedback controller.  The key idea is to calculate the effect of 
stochastic input disturbances on the variability of the output variables by using a generalized polynomial 
chaos (gPC) expansion and a mechanic model of the process. A two-level optimization is proposed for 
simultaneously tuning the fault detection and controller algorithms. The goal of the outer level 
optimization is to find a trade-off between the efficiency for detecting faults and the closed loop 
performance, while the inner optimization is designed to optimally calibrate the fault detection algorithm. 
The proposed method is illustrated for a continuous stirred tank reactor (CSTR). The results show that the 
computational cost of the gPC-based method is significantly lower than a Monte Carlo (MC) simulation-
based approach, thus demonstrating the potential of the gPC method for dealing with large problems. 
Keywords: Fault detection and control, polynomial chaos, economic impact 

 

1. INTRODUCTION 

Most fault detection and diagnosis (FDD) systems are 
implemented at the supervisory level on top of the control 
system. Thus, naturally fault detection approaches are based 
on variables, which are also used for feedback control. While 
there is a large body of literature on FDD (Zufiria, 2012, 
Dong, et al., 2012), the issue of integration of control and 
diagnostic algorithms has not been addressed as much. A key 
challenge for integrating FDD and process control is that they 
often have competing objectives. For instance, when process 
control is very accurate, the corresponding controlled 
variable deviates little from the setpoint while FDD requires 
sufficiently large deviations for effective detection (Davoodi, 
et al., 2013, Meng & Yang, 2012). Methods have been 
proposed for optimal simultaneous tuning of FDD and 
control based on robust norms (Jacobson & Nett, 1991, Scott, 
et al., 2013), but these are often conservative since they are 
based on worst-case scenarios or deterministic linear model. 
To avoid linearization and reduce conservatism, standard 
statistical monitoring charts have been used, but these studies 
were limited to simple deterministic faults (Bin Shams, et al., 
2011). Compared with Monte Carlo (MC) simulations based 
uncertainties analysis, a power series and polynomial chaos 
expansions were used to propagate uncertainties onto states 
and outputs, which in general saves computational time 
(Nagy & Braatz, 2007).  

The current work addresses the problem of optimal 
simultaneous tuning of a FDD and controller in the presence 
of stochastic disturbances by using gPC expansions of inputs 
and outputs. A significant reduction in computational effort is 
observed by using the gPC method as compared with MC 
based-approach. The topics addressed in this work are as 
follow: 

(1) The tuning parameters of the closed loop controller and/or 
control setpoint are optimized to achieve an optimal trade-off 
between FDD efficacy and closed-loop performance. 

(2) The generalized polynomial chaos (gPC) expansion and 
Galerkin projections are used to quantify the variability in 
controlled and manipulated variables resulting from 
stochastic faults entering the system in the form of input 
disturbances. A non-isothermal continuous stirred tank 
reactor (CSTR) system is used as case study.  

(3) Numerical tests are conducted to verify the ability of the 
proposed method to design a fault detection/controller 
combination that is both efficient for detecting faults and for 
maintaining good closed loop performance.  

This paper is organized as follows. In section 2, the 
theoretical background on gPC is presented. The optimization 
problems formulated for simultaneously tuning the fault 
detection algorithm and the controller are given in section 3. 
An endothermic continuous stirred tank reactor (CSTR) is 
introduced as a case study in section 4. Analysis and 
discussion of the results are presented in section 5 followed 
by conclusions in section 6. 

2. QUANTIFICATION OF VARIABILITY IN OUTPUTS 
IN RESPONSE TO RANDOM INPUTS USING gPC 

The objective is to quantify the effect of stochastic inputs on 
different output variables (states), which are described by a 
system of ordinary differential equations (ODEs). The 
generalized polynomial chaos (gPC) method (Xiu, 2010) has 
been proposed for approximating the states of a system with 
random inputs by polynomial descriptions from the Wiener-
Askey family. A variable, x , is represented as a polynomial 
chaos expansion: 
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, where ω∈Ω is an element in the event space, Φi is a 
polynomial from an orthogonal Wiener-Askey family, ξ is a 
random vector and {ai} are estimated as explained below. 
Generally, (1) is truncated with a finite number of random 
variables and a finite expansion order. The total number of 
terms N in a complete polynomial chaos expansion of an 
arbitrary order p for a response function having n uncertain 
inputs, is given by 
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To calculate the coefficients ai, a method referred to as 
intrusive approach is used (Tagade & Choi, 2013), where the 
gPC representations of the stochastic variables are explicitly 
substituted into the model. For simplicity the following single 
variable (u) problem with operator ℓ  and input term κ is 
studied 
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,where ℓ  is a differential operator in the time variable t. The 
random influence ω is assumed to be parameterized by finite 
independent random variables ξ = {ξ1,ξ2,…,ξn}. Then, the 
solution u to a particular differential equation is expanded 
into a polynomial chaos expansion 
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,where {ui(t)} are the gPC coefficients and {Φi(ξ(ω))} are 
multi-dimensional orthogonal polynomials in terms of ξ. By 
substituting (4) into (3): 
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Then, a Galerkin projection is employed to obtain a coupled 
system of (P+1) equations by multiplying both sides of each 
polynomial basis by P
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,where j=1,…,P. Once the coefficients of the expansion are 
obtained, it is possible to compute the statistics of the 
solution with the following formulae: 
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Also, the probability density function (PDF) of the solution is 
approximated by sampling samples from the distribution of ξ 
and substituting these samples into (4). 

3. METHODOLOGY 

The simultaneous optimal tuning of a controller and a fault 
detection algorithm is formulated as a two-level optimization 
problem composed of an inner level where the fault detection 
algorithm is calibrated with simulated noisy data and an outer 
level where optimal tuning parameters of the controller and 
setpoint are calculated. The inner optimization is explained 
below followed by the two-level optimization formulation. 

3.1 Inner Optimization: Optimal calibration of fault detection 
algorithm 

The faults in the current work are unmeasured disturbances 
consisting of stochastic perturbations superimposed on a ML-
PRS (Multilevel pseudo random signal) as shown in Fig. 1. 
The objective of the fault detection algorithm is to detect the 
mean values of the input ML-PRS (e.g. 5 different levels in 
Fig. 1) from noisy measured values of manipulated and/or 
controlled variables of the control system.  

 
Fig. 1 Fault time profiles representing an intermittent 

stochastic input fault 
In the absence of noise, the PDFs of variables that can be 
measured and used for detection (u), e.g. manipulated and 
controlled variables of the closed-loop system can be 
calculated with the method described in section 2.  In reality, 
due to noise, the PDFs have to be calibrated using actual 
process data. To calibrate the PDFs using noisy data, an inner 
optimization problem is formulated about each mean value of 
the inlet disturbance shown in Fig. 1 as follows: 
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where ϑ1,i and ϑ2,i are the mean and variance of a particular 
variable of the problem, u, to be used for detection. These 
means and variances can be calculated numerically with (7) 
and (8) using the gPC method given in section 2, and are 
functions of the stochastic input shown in Fig. 1.  The terms 
υ1,i and υ2,i are the mean value and variance of the noisy 
measurements of u,  λinner is a vector consisting of the mean 
and variance of the inlet disturbance (fault), and n is the 
number of the manipulated and/or controlled variables 
utilized to calibrate the model.  Due to the presence of noise, 
the mean and variance of the input disturbance defining λinner 
and calculated from (9) will deviate from the actual values. 
From λinner, it is possible to calculate the gPC coefficients for 
the variables u. Using these coefficients, the PDFs for u’s are 
estimated by substituting random samples into the resulting 
gPC expansions. 
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For simplicity, in the current study transient data related to 
transitions between different mean values in the input as 
shown in Fig. 1 are ignored and fault detection is performed 
only when the system reached steady state around each of the 
mean values of the input. Also, depending on the size of the 
stochastic perturbations around the mean values of the input 
disturbance a particular measurement can be found within 
different PDFs corresponding to different mean values of the 
disturbance with different probabilities. The maximum 
probability is used to infer the mean value of the input.  

The calibration of the fault detection algorithm can be 
summarized as follows. (a) Generate a ML-PRS as shown in 
Fig. 1 and simulate the dynamic model with noise in output 
variables (b) Compute the expectation and variance of the 
simulated output variables to be used for detection when the 
system is operated around each mean value of the input. (c) 
Around each mean value of the ML-PRS signal solve 
problem (9) by applying the gPC method outlined in section 
2 and by also using the expectation and variance calculated 
from the noisy signal in item (b) of this procedure. (d) 
Generate PDFs of manipulated or controlled variables around 
each mean value of the input shown in Fig. 1. 

3.2 Two-level Optimization: Integration of control and fault 
detection problem 

In this section, an algorithm is proposed to simultaneously 
tune a stochastic fault detection algorithm and a closed loop 
controller. Since the tuning of the controller affects the 
detectability of the fault as well as the variability in the 
manipulated and controlled variables, optimal tuning of 
control parameters and/or setpoint at which the system should 
be operated is estimated from an outer optimization problem. 
A two-level optimization problem is defined as follows: 
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, where γ1 is the cost of product quality related variables, γ2 is 
the cost associated with variability in controlled variables, i.e. 
deviations about product quality, γ3 is the operating costs of 
the process, e.g., cost of utilities, γ4 is the cost related to the 
variability in manipulated variables, i.e. deviation of control 
actions around nominal operating values and γ5 is the cost of 
unobservable faults. λouter is a vector of decision variables, 
namely, the tuning parameters of the controller and the 
setpoint and the subscript outer indicates that (10) is the cost 
of the outer level optimization whereas the inner level is 
given by (9). Inequality constraints in (10) are imposed to 
ensure linear stability. The weight coefficients, {µi}, decide 
the contribution of each term to the objective function.  

The variabilities in objective function (10) account for the 
competing objectives between costs related to the controller 
and the cost incurred due to lack of detection of potential 
faults (γ5 in (10)). An implicit simplifying assumption made 
in this work is that an unobservable fault only occurs when 
the measurements values used for detection correspond to 
measurements located in the overlap regions of adjacent 

PDFs calculated as described in section 3.1, since most 
misclassification will happen near the class boundaries. Thus, 
γ5 is numerically calculated as the total area of overlap 
between the PDFs. 

The proposed optimization problem (10) proceeds as per the 
following steps. (a) Assume initial guesses for the controller 
parameters and setpoint. (b) Determine stability constraints 
from a linearized gPC model by using the Routh stability 
criterion. (c) Calculate the area of overlap of the training sets 
(PDFs) generated by the inner optimization (9). (d) Minimize 
the objective function in (10) with respect to λouter. 

A detailed flowchart summarizing the procedure is given in 
Fig. 2. It should be noticed that if the setpoint of the 
controlled variable is used as a decision variable in the outer 
optimization and the problem is nonlinear which directly 
affects the approximation of the PDFs profile in the inner 
optimization problem (9).  

5544332211min γγγγγ aaaaaJ +++++=
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Fig. 2 Flowchart to evaluate the economic significance of 

unobservable fault 

4. CASE STUDY 

The proposed methodology is applied to a non-isothermal 
CSTR system. The mathematical model of the process and a 
PI controller are described by three ODEs as follows: 
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, where kp and τi are the controller gain and integral time 
constant, respectively. The controller is used to control the 
exit reactant concentration CA by manipulating the external 
heat Q. The fault detection algorithm seeks to identify 
changes in the mean of the inlet reactant concentration CA0 
from measured values of the manipulated variable Q. It 
should be noticed that only the output heat is employed in 
this study for fault detection, since the outlet concentration 
shows smaller variability. However in principle both can be 
used for detection, but this is beyond the scope of the current 
work. The inlet concentration CA0 changes as shown in Fig. 1. 
The parameter settings used for the CSTR simulation are 
given in (Bin Shams, et al., 2011). The objective is to solve 
problem (10) to find optimal tuning parameters for the PI 
controller and the optimal setpoint for CA subject to proper 
training of the fault detection algorithm according to (9). 

5. RESULTS AND DISCUSSION 

5.1 Model formulation by gPC expansion 

The application of Galerkin projection requires integrating 
the differential equations with respect to an appropriate 
selection of a polynomial for a particular random variable. 
Using the orthogonality property of the basis functions, these 
integrations are possible when dealing with polynomial 
terms. However, the integration of non-polynomial terms, 
e.g., the Arrhenius expression in (11) is not straightforward. 
This problem is addressed in this work by approximating the 
Arrhenius term with a 2nd order Taylor series expansion. A 
normally distributed uncertainty is assumed and a Hermite 
polynomial is used to perform the proposed approximation.  

To verify the accuracy of the approximation of the Arrhenius 
term by the Taylor expansion, the solution of the problem 
with the gPC model is compared to MC simulations. The 
comparison was conducted for the same operating conditions 
as listed in (Bin Shams, et al., 2011).  The variance of the 
stochastic inlet concentration around a mean value used for 
this comparison is 0.1 gmoles/L.  

For the gPC-based solution, the PDF profiles in outlet 
concentration are calculated by sampling from the random 
event and substituting the samples into the gPC solution 
obtained as outlined in section 2. The maximum, minimum 
and mean of solutions at each time instant are recorded. For 
the MC simulations, (a) samples of inlet concentration 
following the same statistical properties are generated, (b) 
each sample is substituted into the nonlinear CSTR model, 
and (c) the resulting outlet concentration values are stored for 
comparison. As shown in Fig. 3, the black dotted line is the 
deterministic response of nonlinear CSTR (only the mean 
value on inlet concentration is considered). The green lines 
correspond to 20 randomly chosen samples in MC 
simulations. These red lines show the results of the gPC 
solution using the 2nd order Taylor expansion to approximate 
the Arrhenius term. Comparing with MC simulations, the 
gPC based solution provides as expected upper and lower 
bounds on outlet concentration changes. In addition, the key 
advantage of the gPC model is dramatic reduction in 
computational time as compared to MC simulations. For a 
prescribed inlet concentration, the computational time for 

10,000 sample of MC simulation is around 3 hours on an 
Intel@ CoreTM Duo desktop (2.40 GHz and 4.0 GB RAM). By 
contrast, the computing time for the gPC method is around 21 
seconds, where the same number of random samples is 
substituted to the gPC PDF expression to approximate the 
solution at each time instant. This clearly illustrates that the 
use of gPC model is instrumental for solving the two-level 
optimization problem in (10), since the problem has to be 
solved many times during the optimization search thus 
leading to a dramatic reduction in computational time for the 
gPC based solution as compared to MC based approach. 

 
Fig. 3 Simulation results of gPC model, Monte Carlo and 

deterministic nonlinear model 

5.2 Steady state model calibration 

As a first step, the fault detection algorithm described in 
section 3.1 was tested for detecting changes in the expected 
value of the inlet concentration (of the type shown in Fig. 1) 
from a set of external heat measurements. 5 mean values in 
inlet concentration are studied, where the mean varies from 
1.0 gmoles/L to 2.0 gmoles/L in steps of 0.25 gmoles/L. 
Stochastic perturbations are added around these mean values 
which are assumed to be normally distributed with zero mean 
and a variance of 0.1 gmoles/L (see Fig. 1). A ML-PRS 
signal is designed using these mean values and the added 
stochastic perturbations about them as shown in Fig. 1. 
Different noise levels in the controlled and manipulated 
outputs are considered to investigate the effect of the signal 
to noise ratio on the optimization and the fault detection 
efficiency. 

Table 1 lists the results of the fault detection algorithm 
calibrated as per the optimization in (9) for a 1% 
measurement noise level, where the Hermite polynomial is 
used and the highest order of the polynomial is 2. For the 
ML-PRS, the L is the maximum length of the sequence and m 
is the number of measurements in each sequence.  

In Table 1, Simu
AC 0 is the known value used in simulations,  

Opt
AC 0  and ζOpt are the values calculated from the solution of 

problem (9). The optimization problem was solved with 500 
and 2000 samples, respectively. As seen, the number of 
measurements in each sequence shows a great influence on 
the optimal results. For example, for 500 measurements, 
some cases failed to converge to the right values. This is 
because when fewer measurements are used, the transients 
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during changes between mean values become dominant 
whereas the gPC solution of the model is obtained for 
simplicity by assuming steady state. Also, as explained 
before, the expectation and mean of the input resulting from 
(9) are not identical to the actual values because of noise.   

Table 1.  Comparison of two inner optimization strategies 

Simu
AC 0  

L=124, m=2000 L=124, m=500 

Opt
AC 0  ζOpt Opt

AC 0  ζOpt 

1.0 1.0534 0.1410 1.2713 0.1170 
1.25 1.2757 0.1207 1.3720 0.1086 
1.50 1.5039 0.1057 1.5111 0.1023 
1.75 1.7357 0.0955 1.6867 0.0983 
2.0 1.9695 0.0891 1.8667 0.0953 

 
Once the gPC model is constructed, the PDFs of the external 
heat duty, obtained at different expected values of the inlet 
concentration, can be obtained. The PDFs are shown in Fig. 
4, where the horizontal axis is the external heat duty, and the 
vertical axis is the normalized probability. A fault class to be 
identified by the fault detection algorithm is referred to by the 
expected value of inlet concentration. For instance, “class: 
1.0” means the mean of inlet concentration is 1.0 gmoles/L. 

  
Fig. 4 PDFs of 5 classes on inlet concentration 

5.3 Optimal tuning of controller 

A first case study consisted in solving (10) described in 
section 3.2 for optimizing only the tuning parameters of the 
controller namely, kp and τi. The objective was to test whether 
the optimally tuned controller can reduce the combined cost 
associated with loss due to variability in concentration, heat 
and unobservable faults.  

Table 2 shows results of the optimum controller parameter 
and the cost of the objective function defined in (10), where 
the set point of outlet concentration is fixed at 0.25 gmoles/L. 
The resulting controller parameters were found to be similar 
to the ones reported by (Bin Shams, et al., 2011), where only 
a deterministic square wave fault was studied. However in 
contrast to the previous work of Bin Shams et al. it was found 
that, due to the stochastic perturbations around the means 
considered in the current work, the costs for the largest or 
smallest values of inlet concentrations have higher cost. An 
explanation is that the tuning parameters of the controller try 
to minimize the overlaps between the PDFs corresponding to 
different inlet concentrations shown in Figure 4.  This is 
achieved at the cost of introducing greater variabilities in 

product quality and operating costs in objective function (10), 
since the controller tries to shift the corresponding PDFs far 
apart from each other. The resulting overlap, as measured by 
the total area of overlapping of PDFs, is given in Table 2. As 
seen, the total overlap is smaller with the optimized tuning 
parameters of the controller as compared to the non-
optimized ones used by Bin-Shams et al, 2011 (kp=75508 and 
τi =0.507).  

As expected, the cost defined in Problem (10) with the non-
optimized tuning of controller parameters is higher than the 
optimum obtained from the solution of (10). For example, the 
value of cost function with the optimized tuning parameters 
has decreased by around 17%, from 16.427 to 13.612, when 
the mean value of inlet concentration is 1.0 gmoles/L.  

Table 2.  Summary of the results for outer optimization 

Simu
AC 0  

nonJ  
opt
pk  opt

iτ  optJ  
Overlaps 

[cal/s/gmol] [s] Before After 
1.00 16.427 81521.50 0.566 13.612 1.259 1.125 
1.25 14.943 20175.84 0.082 12.233 1.361 1.084 
1.50 13.657 19034.54 0.172 11.523 1.360 1.086 
1.75 14.904 99773.78 0.340 12.136 1.318 1.171 
2.00 15.831 14709.06 0.547 12.830 1.218 0.938 

5.4 Optimal tuning of controller and set point 

A second study was conducted where the setpoint of outlet 
concentration was chosen as an additional decision variable 
along with the tuning parameters of the controller to 
minimize the cost function in (10). Table 3 shows the 
optimum results of decision variables, the related cost and the 
normalized overlaps area between the PDFs of the heat input. 

Table 3.  Summary of the results for outer optimization 

Simu
AC 0  

opt
pk  opt

iτ  Set 
point 

optJ  
Overlaps 

[cal/s/gmol] [s] Before After 
1.00 41375.12 1.304 0.498 8.978 1.263 0.552 
1.25 83835.62 1.595 0.365 8.790 1.365 0.950 
1.50 82061.19 1.697 0.348 8.501 1.322 0.904 
1.75 69635.40 1.075 0.378 8.804 1.329 0.809 
2.00 130554.09 1.242 0.362 9.912 1.245 0.786 

 
Compared with Table 2, the value of the objective function is 
smaller. For instance, the cost in (10) at an inlet concentration 
of 1.0 gmoles/L has been decreased by 34%, from 13.612 to 
8.978, when the set point is also used as a decision variable. 
In addition, the overlap in each optimization was monitored. 
As expected, the overlap areas are smaller as compared to the 
result without the optimization of the setpoint. 

5.5 Fault identification results and comparison with MC 

The efficiency of the fault detection algorithm embedded in 
the two-level optimization problem solved in section 5.4 was 
also tested for efficacy. Table 4 shows fault identification rate 
for different noise levels in external heat measurements using 
the gPC-based solution. 
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Table 4. Summary of the results for fault identification 

Simu
AC 0  

noise level [%] 
1 3 10 

No. Rate No. Rate No. Rate 
1.00 76 0.924 173 0.827 232 0.768 
1.25 93 0.907 146 0.854 189 0.811 
1.50 87 0.913 88 0.912 209 0.791 
1.75 84 0.916 118 0.882 211 0.789 
2.00 72 0.928 213 0.787 223 0.777 

Average / 0.918 / 0.852 / 0.787 
 
In Table 4, there are 1000 test measurements for each inlet 
concentration level, and No. means the number of samples 
that were wrongly detected in each level. It is worth 
mentioning that only one steady state heat measurement was 
used for each test. The average misdetection rate increases as 
expected when the noise level increases. Finally, the MC 
simulations of the nonlinear CSTR model were used with 
non-optimal tuning controller parameters (kp=75508 and τi 
=0.507) to test the detection efficiency as compared to the 
optimized case. The MC simulations were used in this case to 
rule out any possible inaccuracy related to the use of a gPC-
based solution. Table 5 shows the fault identification results. 

Table 5. Summary of the results for fault identification 

Simu
AC 0  

noise level [%] 
1 1 10 

No. Rate No. Rate No. Rate 
1.00 231 0.769 246 0.754 256 0.744 
1.25 239 0.761 253 0.747 261 0.739 
1.50 221 0.779 235 0.765 292 0.708 
1.75 150 0.850 163 0.837 235 0.765 
2.00 93 0.907 108 0.892 146 0.854 

Average / 0.813 / 0.799 / 0.762 
 
For MC simulations, 10,000 samples are used to generate the 
PDF profiles. The average fault identification rate is 81.3%, 
as shown in Table 5, which is approximately 10% lower, as 
compared to the result in Table 4 for the first noise level. In 
addition, the detection rate decreases as the noise levels 
increase. This further confirms that the proposed method for 
simultaneously tuning the controller and the fault detection 
algorithm results in improved detection. 

6. CONCLUSIONS 

In the present work, a methodology has been developed to 
simultaneously optimize closed loop performance and fault 
detection efficiency. The proposed approach is tested for an 
endothermic continuous stirred tank reactor (CSTR). The 
main novelty of the proposed approach is that it permits to 
address the effect of stochastic inputs on the outputs by using 
gPC approximations and the process model. The use of gPC 
is shown to be instrumental because the variabilities of the 
input and output variables can be quickly calculated using 
analytical expressions. Since these variabilities have to be 
calculated repeatedly during the optimization search the 
dramatic reduction in computation time with gPC as 
compared to MC simulations makes this approach especially 

attractive for solving the simultaneous optimal tuning and 
fault detection problem for large systems.  
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