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Rennes France (e-mail: belmiloudi@math.cnrs.fr)

Abstract: In this paper we consider the problem of artificial blood glucose control for a type
1 diabetic using delay differential equations to model the glucose metabolism. This model is
obtained by considering an adjustment of the minimal model of Bergman. In order to design
a controller which can stabilize blood glucose in a safe range, the design of a robust model
predictive controller is considered. The various uncertainties and disturbances are introduced
through the introduction of perturbed parameters. Finally, the performances of the controller
are exemplified on an approved virtual testing platform showing the good properties of the
developed controller.
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1. INTRODUCTION

Diabetes is a group of diseases marked by high levels of
blood glucose resulting from defects in insulin production,
insulin action or both [Control and Prevention, 2011]. For
healthy people, glucose is regulated within narrow range
i.e. in the interval [60; 120]mg.dL−1 [diabetes control and
complications trial research group, 1993]. Type 1 diabetes,
which represents approximately 5% of the prognosed dia-
betes, is developed when the immune system has destroyed
the pancreatic β cells. These cells are normally responsible
for insulin secretion. Because it is the only hormone that
can favor glucose storage, a patient which suffers from
this disease can not self-regulate its blood glucose. If not
treated, this can lead to various complications including
heart diseases, blindness, nervous system diseases [Control
and Prevention, 2011] . . . In order to live a normal life, the
patients require exogenous insulin which is delivered either
by injection or by continuous subcutaneous infusion using
an insulin pump. An extensive long-term study [diabetes
control and complications trial research group, 1993] has
demonstrated that intensive diabetes therapy , i.e. the
cure which consists in regular insulin injection guided by
frequent blood glucose monitoring, efficiently reduces the
complication of type 1 diabetes.

However, despite the availability of glucose sensors which
regularly provide glucose measure, the task of maintaining
a safe glycemia still remains a difficult goal to achieve.
In fact this is not surprising as, in the every day life,
it seems complicated, if not impossible, to control one’s
insulin injection at such a high rate. That is why there
have been considerable interests in developing an artificial
pancreas [Nicolao et al., 2011], [Patek et al., 2012]. The
aim is to use the sensor information to automatically
adjust, in real-time, the insulin injection using an adequate
control algorithm. To provide a potential solution, many

algorithms have already been proposed (see e.g. [Bequette,
2012] for a review of the considered controller and the
remaining challenge).

Even if each control approach presents its own advantages,
lately, it seems that the model predictive control (MPC)
approach is the more promising because of numerous
attractive features such as its ability to handle constraints.
When using such a controller, a model of the process is
needed. It can be chosen to be either a simple transfer
function (see e.g. [van Heusden et al., 2012]) or to be
expressed using a state space model given by a set of
ordinary differential equations (see e.g. the minimal model
of Bergman [Bergman et al., 1979], the Dalla Man et al.
model [Man et al., 2007] or the Sorensen model [Sorensen,
1985]).

When dealing with glucose control it has often been
suggested that this problem is concerned with delays (see
e.g. [Keenan et al., 2012]). It is thus quite natural that
some models of the glucose metabolism use the delay
differential equations (DDE) framework. Once again it is
possible to distinguish between models based on transfer
function (see e.g. [Abu-Rmileh and Garcia-Gabin, 2012]
or [Lee et al., 2013]) and models which use a state space
model (see e.g. [Li et al., 2006] or [Palumbo et al., 2011]).

Amongst the above mentioned model, the minimal model
of Bergman has often been solicited has a good compro-
mise between accuracy and simplicity (see e.g. [Kirch-
steiger and del Re, 2009]). In this work we propose to
reformulate this model using a discrete delay in the state in
order to suppress the only state of the model which has no
physical meaning. The interest of this approach is to obtain
a model which is closer to the glucose metabolism and
which shares the simple structure of the original model.
Then, the problem of artificially controlling the blood
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glucose of a type 1 diabetic is addressed by designing
a controller which uses this new adjusted model. To do
so, it is intended to use a formal extension of a recently
designed robust model predictive controller called saddle
point MPC [Penet, 2013].

This paper is organized as follows. In section 2 the retained
model is presented and the control model is derived using a
variational formulation of the control problem. In section
3, the design of the controller is exposed from a formal
point of view. A special point on the numerical aspect
is addressed. In section 4, numerical results based on
simulations using a testing platform approved by the
Food and Drug Administration are presented in order to
show the performances and the robustness of the designed
controller. The paper is concluded in section 5.

2. A DDE MODELING OF THE GLUCOSE-INSULIN
METABOLISM

2.1 Model of the glucose metabolism

To consider the problem of artificial blood glucose control,
it is desired to use a model of the glucose metabolism. Be-
cause of its good balance between accuracy and simplicity,
the minimal model of Bergman [Bergman et al., 1981] has
often been envisaged as a good candidate. This model has
been built so that all the states represent quantities or
concentrations except one. The latter has been introduced
to model the fact that it is not insulin that ensures glucose
storage but that it only initiates a sequence of action
leading to glucose storage.

From a control point of view, it may be advantageous to
consider an adjusted model which only use states having
a physical meaning. By doing so, it is aimed at obtaining
a model which is closer to the real glucose metabolism (in
the sense that, in the human body, all is a concentration
or a quantity). As we are not really interested in modeling
the biological phenomenon which lead to glucose storage
but rather in considering the delay in the insulin action,
we have envisaged a model which uses delay differential
equations.

Also, since a subcutaneous way of action seems more viable
(see e.g. [Renard, 2008]), a diffusion process has to be
modeled. Indeed, the insulin is injected under the skin
but it only becomes active when it reaches the blood
stream. So, if it is aimed at good control performances, it
is important to consider this phenomenon. Practically, this
implies that the problem of artificial blood glucose control
is potentially concerned by delays in regards to the use of
the subcutaneous route for the insulin injection [Hovorka,
2006]. However, it is not clear whether this diffusion is at
the origin of a delay in the control sense or whether it is
more at the origin of some kind of filtering. That is why,
according to [Fisher, 1991], a simple first order filter has
been introduced.

Finally, this leads to consider the following model of the
glucose metabolism

dG

dt
= −PG− k0GI(t− τ) +D +Ra,

dI

dt
= −kf I + bfU,

dU

dt
= −ksU + g,

(G, I, U)(t0 + s) = (G0, I0, U0)(s)for all s ∈ [−τ, 0],

(1)

where G is the blood glucose, I stands for the blood
insulin and U is the insulin in the skin. The control input g
stands for the injected insulin and the rate of appearance
Ra stands for a glucose input, e.g. due to the digestion
of a consumed meal. The parameters P , k0, D, kf , bf
and ks are given positive. The discrete delay τ is assumed
to be given positive and constant. The initial condition
(G0, I0, U0) is a function of C([−τ, 0],R+3).

In the next part, we will reformulate the previously ob-
tained model in order to solve the problem of artificial
blood glucose control by considering the design of a robust
controller.

2.2 Formulation of the control model

The objective of this paper is to use the previously
presented model of the glucose metabolism to tackle the
problem of artificial blood glucose control. More precisely,
it is desired to formulate the original control problem as
the problem of tracking a known and given nominal model.
The latter can either stands for a trajectory or a steady
state of the system. To do so, in this section, we are
interested in formulating the robust control problem using
a variational formulation.

The nominal model corresponds to (1) where the initial
condition (G0, I0, U0), all the model parameters and the
inputs g and Ra are assumed to be perfectly known. The
state trajectory generated by this nominal model is called
nominal trajectory.

To formulate the control problem, we begin to write
the nominal model when disturbed both in states and
parameters. This leads to the following disturbed model

d(x1 +G)

dt
= −(p+ P )(x1 +G) + (D + d) + (Ra + ra),

− (k0 + k0)(x1 +G)(x2(t− τ) + I(t− τ))

d(x2 + I)

dt
= −(kf + kf )(x2 + I) + (bf + bf )(x3 + U),

d(x3 + U)

dt
= −(ks + ks)U + (g + f),

(x1 +G, x2 + I, x3 + U)(t0 + s)

= ξ0(s) + (G0, I0, U0)(s) ∀s ∈ [−τ, 0],

(2)

where ξ0 ∈ C([−τ, 0],R3). The control input f is a
disturbance of the control input g. It has been introduced
in order to reject the state disturbances (xi)i∈1,2,3 despite

the parameters disturbances p, d, k0, kf , bf and ks and
the disturbance of the rate of appearance ra. In the

sequel we denote w =
(

p d k0 kf bf ks ra
)T

the vector
of parameter disturbances.

Remark 1. It has to be noticed that the discrete delay τ
is assumed to be perfectly known.

Finally, let us subtract the nominal model (1) from the
previous disturbed model. This leads to the following
control model
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dx1

dt
= −p(x1 +G)− k0(x1 +G)(x2(t− τ) + I(t− τ)) + d

− (P + k0I(t− τ))x1 − k0Gx2(t− τ)− k0x1x2(t− τ) + ra,

dx2

dt
= −kf (x2 + I) + bf (x3 + U)− kfx2 + bfx3,

dx3

dt
= −ks(x3 + U)− ksx3 + f,

(x1, x2, x3)(t0 + s) = ξ0(s) ∀s ∈ [−τ, 0].

(3)

The next part will be interested in formally presenting
a robust MPC algorithm to consider the problem of
stabilizing (3) toward the origin.

3. DESIGN OF A NONLINEAR ROBUST RECEDING
HORIZON CONTROLLER

3.1 General points

In order to track a given nominal model, it is desired to
control a perturbed model toward the origin. To do so, it
is intended to use a recently developed saddle point MPC
(SPMPC) controller. It has been proved that this con-
troller can be used to robustly stabilized systems described
by ordinary differential equation (ODE) in a sampled-
data framework [Penet, 2013]. In this part we consider
a formal presentation to tackle the problem of controlling
systems described by delay differential equation (DDE).
The control input is calculated according to the following
definition.
Definition 1 (SPMPC). The saddle point model predic-
tive control (SPMPC) consists, for a given sampling rate
δ, robust control positive invariant set ΩfE

a and prediction
horizon T > δ, in calculating f(t) = f∗

i (t) for t ∈ [ti; ti+1[
where f∗

i is computed with respect to the initial condition
xi ∈ C([−τ, 0],Rnx) at t = ti and the optimal disturbances
w∗

i , as the optimal solution of:

(f∗
i , w

∗
i ) = arg inf

f∈U
sup
w∈W

Jti (f, w) = arg sup
w∈W

inf
f∈U

Jti (f, w),

s.t. z ∈ Ω
fE
a .

(4)

with
z : [−τ, 0] → R

nx

t → x(xi, f, w, ti; ti + T + t),
(5)

where x(xi, f, w, ti; t) stands for the state value at time
t with respect to the initial condition xi and the inputs
(f, w). The cost function J ti(f, w) is defined as:

Jti (f, w) = E(z) +

∫ ti+T

ti

F (x(xi, f, w, ti; s), f, w)ds, (6)

The final cost E : C([−τ, 0],Rnx) → R
+ and the stage

cost F : Rnx × R
ng × R

nw → R are given.

In the ODE case, the stability results were obtained by
choosing a suitable final cost and an adequate terminal
state constraint. Based on the remark that it is sufficient
to adjust the tools used for the usual NMPC to design
a stable NMPC controller for time delay system (see e.g.
[Esfanjani and Nikravesh, 2011] or [Reble and Allgöwer,
2010]), it is conjectured that by choosing an adequate final
cost and terminal state constraint, it is possible to design
a SPMPC controller which can robustly stabilize systems
described by delay differential equations in a sampled-
data framework. The aim of this paper is then to test this
hypothesis by considering the problem of artificial blood
glucose control when using the DDE model (3).

Inspired from the results presented in [Reble and Allgöwer,
2012], the final cost E is chosen to be a Krasovskii
functional and the terminal state constraint ΩfE

a is de-
fined by using Razumikhin argument (for more details on
Krasovskii and Razumikhin functional see e.g.[Gu et al.,
2002]). The idea behind these results is to introduce a final
cost and a terminal state constraint which share the same
meaning as for the usual ordinary differential case. Namely,
the final cost is a local Lyapunov function and the terminal
state constraint is a robust control positive invariant set
under a feedback controller fE (see e.g. [Blanchini, 1999]
for a definition).

More precisely, the final cost E : C([−τ, 0],Rnx) →

R
+, the terminal state constraint ΩfE

a and the feedback
controller fE : C([−τ, 0],Rnx) → R

ng are chosen a priori
as follows

fE(y) = K0y(0) +K1y(−τ),

E(y) = y(0)TS1y(0) +

∫ 0

−τ

y(s)TS2y(s)ds,

Ω
fE
a = {y ∈ C([−τ, 0],Rnx )/ max

θ∈[−τ ;0]
y(θ)TP0y(θ) ≤ a},

(7)

where K0 ∈ R
nx,ng and K1 ∈ R

nx,ng . The matrices
S1 ∈ R

nx,nx , S2 ∈ R
nx,nx and P0 ∈ R

nx,nx are symmetric
definite positive.

These various elements can be computed using linear ma-
trix inequalities and a local linear differential embedding
of the system dynamic. First, for a given structure of
the final cost E, the final controller fE is computed by
designing a controller which can robustly stabilize the
differential inclusion. Then, the terminal state constraint
ΩfE

a is computed by searching for a Lyapunov function of
the closed-loop. More details on how these elements can
be computed when using a SPMPC controller in order to
consider the control of (3) can be found in [Penet, 2013].

In the next part we are interested in the numerical aspect
which arises when it comes to solve the constrained saddle
point problem (4).

3.2 Some words on the resolution

To solve the control problem given by (4), we have to
consider the solution of a constrained saddle point opti-
mization problem. To meet this objective, we propose a
method which has been inspired by the augmented La-
grangian technique (see e.g. Nocedal and Wright [1999]).
The idea is to substitute the original constrained saddle
point problem by a sequence of unconstrained saddle point
problem whose solution tends to the solution of the con-
strained problem. To do so, instead of optimizing the cost
function J ti , we optimize a modified functional which is
given as a sum between the original cost function and a
penalty function

L
ti,µ
A (f, w̃) = J ti(f, w) + Ψµ(c(x(ti + T )), λΩ), (8)

where

c(x(ti+T )) = a− max
θ∈[−τ,0]

x(ti+T+θ)TP0x(ti+T+θ), (9)

with x(ti + T + θ) = x(xi, f, w, ti; ti + T + θ). The penalty
function Ψµ is given by

(z, λ) → Ψµ(z, λ) =

{

−λz + 1
2µ

z2 if z − µλ ≤ 0

−µ
2
λ2 if z − µλ ≥ 0

, (10)
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where (z, λ) ∈ R
2. The vector of augmented disturbances

w̃ is defined by w̃ =
(

wT λΩ

)T
.

The saddle point (f∗,µ
i , w̃

∗,µ
i ) of the unconstrained func-

tional is characterized as follows (see e.g. [Belmiloudi,

2008]), for all f ∈ U and for all w̃ ∈ W̃ we have

∫ ti+T

ti

(

∂L
ti,µ
A

∂f
(f∗,µ

i
, w̃∗,µ

i
)T (f − f∗,µ

i
)

)

ds ≥ 0,

∫ ti+T

ti

(

∂L
ti,µ
A

∂w̃
(f∗,µ

i
, w̃∗,µ

i
)T (w̃ − w̃∗,µ

i
)

)

ds ≤ 0.

(11)

This means that to determine whether we have found
the saddle point of the game, we need to evaluate the
gradient of the functional (8). To do so we use adjoint
model technique. Let us assume that the stage cost F is
chosen quadratic

F (x, f, w) = xTRx+ fTαf − wTQw, (12)

where the matrices R, Q and α are chosen symmetric
definite positive.

If we choose a final cost and a terminal state constraint
according to (7) then, associated to the primal problem
(3), the adjoint model is given by

−
dx̃1

dt
= −

(

P + p+ (k0 + k0)(x2(t− τ) + I(t− τ))
)

x̃1

+

3
∑

k=1

(

R(1,k) + S2,(1,k)1I(t)
)

xk,

−
dx̃2

dt
= −(kf + kf )x̃2

− (k0 + k0(t+ τ))(x1(t+ τ) +G(t+ τ))x̃1(t+ τ)1J (t)

+

3
∑

k=1

(

R(2,k) + S2,(1,k)1I(t)
)

xk,

−
dx̃3

dt
= −(ks + ks)x̃3 + (bf + bf )x̃2

+

3
∑

i=k

(

R(3,k) + S2,(1,k)1I(t)
)

xk,

x̃(ti + T ) = 2S1x(ti + T ) +∇x (Ψµ(c(x(ti + T )), λΩ)) ,

(13)

where I = [ti+T − τ, ti+T ] and J = [ti, ti+T − τ ]. The
notation 1I(t) denotes the indicator function.

Remark 2. It is worth noticing that the adjoint problem is
well-defined. Indeed the previous differential equations are
characterized by a terminal condition. Thus the differential
problem has to be solved in a backward fashion. For t 6∈ J
the adjoint model is given by a simple ODE and so the
corresponding problem is well defined. When t ∈ J , the
value of x̃1(t+ τ) for t ∈ [ti + T − 2τ, ti + T − τ ] is given
by the solution of the previous ODE and so we can solve
the corresponding DDE.

Then, assuming that the matrix Q is diagonal, the follow-
ing expression of the gradient of Lti,µ

A is deduced

∂L
ti,µ
A

∂f
(f, w̃) = x̃3 + αf,

∂L
ti,µ
A

∂w̃
(f, w̃) =



























−x̃1(x1 +G)−Q(1,1)p

x̃1 −Q(2,2)d

x̃1 −Q(3,3)ra
−x̃1(x1 +G)(x2(t− τ) + I(t− τ))

−Q(4,4)k0
−x̃2(x2 + I)−Q(5,5)kf
x̃2(x3 + U)−Q(6,6)bf
−x̃3(x3 + U)−Q(7,7)ks
∂Ψµ

∂λ
(c(x(ti + T )), λΩ)



























,

(14)

where x is the solution of (3) with initial condition ξ0
under the influence of the couple control disturbances
(f, w) and x̃ is the solution of (13) according to x.

Using these expressions it becomes possible to find the
saddle point (f∗,µ

i , w̃
∗,µ
i ) of the unconstrained optimization

problem characterized by (8). Then, by reducing the value
of the parameter µ and starting from the optimal solution
(f∗,µ

i , w̃
∗,µ
i ) obtained for the previous larger value of µ,

it becomes possible to find iteratively the solution of the
original constrained problem (4).

Remark 3. One interest of this approach is that the
considered numerical scheme has the same complexity as
for the ODE case. Indeed, to control a system modeled
by DDE in a sampled-data framework, we just have to
consider the integration of a primal and a dual problem.
Then, according to the resulting state trajectories, we
obtain an expression of the gradient of the criterion that
has to be optimized. Finally, using any gradient based
algorithm, we can solve the robust control problem.

4. NUMERICAL RESULTS

Before further proceeding with simulations, let us recall
that the classical cure of a type 1 diabetic can be split into
two parts: the basal term which consists in the constant
injection of small quantity of insulin and whose objective
is to stabilize blood glucose in a safe interval (usually set
to [70, 140]mg.dL−1) and the bolus part which consists in
injecting important quantity of insulin in a short lapse of
time to counter sudden blood glucose increase, e.g. due the
consumption of a meal. For control purpose we will only be
interested in controlling the basal component of the cure
(see e.g. [diabetes control and complications trial research
group, 1993]).

4.1 Simulation setting

In order to test the interest of the proposed approach,
simulation has been realized on a virtual testing platform
(Uva/Padova T1DM metabolic simulator the distributed
version [Kovatchev et al., 2009]). The numerical simula-
tion consists in a day with three meals according to the
following scenario

t = 0h The initial blood glucose is set at 100mg.dl−1. The
observer is switched on.

t = 2h The controller is switched on.
t = 7h The patient eats a meal of 25g.
t = 12h The patient eats a meal of 70g.
t = 20h The patient eats a meal of 80g.
t = 35h The simulation is ended.
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Adult % G ∈ [70; 140] minG mg.dL−1 maxG mg.dL−1

Std SPMPC Std SPMPC Std SPMPC

1 70 83 60 83 160 163
2 89 92 87 80 148 144
3 99 96 83 85 141 149
4 93 91 75 80 178 187
5 96 94 81 84 146 149
6 80 77 84 87 174 186
7 100 93 77 81 134 153
8 81 100 60 82 127 134
9 69 71 70 73 187 183
10 80 80 86 84 176 179

Table 1. Simulation results using the UVA/
Padova testing platform, injection of 75% of

the optimal bolus

It is assumed that each meals are regulated via injection of
75% or 125% of the optimal bolus (according to the insulin
to carbohydrate ratio determined by the physician). The
information concerning the real meal size and the bolus
are provided when the corresponding event occurs.

The stage cost F is chosen quadratic (12) with

R = diag

(

1

G2
eq

,
1

I2eq
, 0

)

, α =
1

u2
eq

,

Q = diag

(

1

(P + 10−10)2
,
1

D2
,
1

k20
,
1

k2f
,
1

b2f
,
1

k2s

)

,

(15)

where Ieq =
D − PGeq

k0Geq

and ueq =
kskf

bf
Ieq.

The simulation concerns all the adults of the trial version
of the testing platform. The delay τ is identified for each
patient. The parameters of the model have been identified
with an assumed accuracy of ±30% using optimal control
techniques. The prediction horizon, in minutes, has been
set to max(300, 5τ). To consider the asymmetric control
objective, the supplementary (soft) state constraint G ≥
80mg.dL−1 has been added in the optimization problem.
The control objective is to robustly stabilize the blood
glucose at Geq = 100mg.dL−1. Thus the nominal model
is defined as the steady state corresponding to a blood
glucose value of G = Geq. Also this implies that the meal
information is fully given in the variationnal model. The
observer is an adjusted EKF filter for DDE [Raff and
Allgöwer, 2006].

To assess the controller performances, we introduce the
following metrics: % G ∈ [70; 140] the percentage of time
spent in the interval [70; 140]mg.dL−1, minG the minimal
value of blood glucose and maxG the maximal value of
blood glucose. All metrics are computed when the loop is
closed. To show the interest of dynamically adjusting the
basal, the simulation are also undergone when using the
standard cure (Std), i.e. the basal value is kept constant
equal to ueq.

4.2 Simulation results

The simulation results for all adults for a bolus correspond-
ing to 75% of the optimal bolus and 125% of the optimal
bolus can be seen on table 1 and 2 respectively. The glucose
trajectory and the corresponding control input for adult 9
can be seen on fig.1.

Adult % G ∈ [70; 140] minG mg.dL−1 maxG mg.dL−1

Std SPMPC Std SPMPC Std SPMPC

1 61 93 39 77 147 155
2 86 100 66 76 125 131
3 92 100 61 80 117 134
4 76 95 65 78 155 170
5 72 100 57 82 121 130
6 70 94 58 86 132 155
7 76 100 63 76 108 126
8 45 100 38 79 114 129
9 67 85 27 70 159 164
10 75 91 59 77 151 158

Table 2. Simulation results using the UVA/
Padova testing platform, injection of 125% of

the optimal bolus
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Fig. 1. Simulation for adult 9, injection of 75% of the
optimal bolus

It can be seen that for all adults, and for all kind of
bolus, when using our SPMPC controller, no hypoglycemia
events occur and the time spent in hyperglycemia state
is small enough such that it does not lead to heavy
trauma. Furthermore, the percentage of time spent in
the target is relatively good. Also, the control behavior
is safe in the sense that the control actions consist in
small variations of the insulin dose. This is in agreement
with the retained control objective which is to design a
control law able to handle the basal part of the cure. Also
when comparing our controller with the standard cure, the
interest of dynamically adjusting the basal can be clearly
seen. Especially when we consider the results given by
table 2 where for the standard cure 6 adults have been
subject to at least one hypoglycemia event whereas for
the SPMPC controller none have to be deplored.

5. CONCLUSION

The problem of blood glucose control is a challenging
problem which gathers many control difficulties. To tackle
this problem we have considered a new model of the
glucose metabolism which uses delay differential equations.
This model has been obtained by considering a modified
version of the minimal model of Bergman. Then the control
problem has been considered by designing a robust model
predictive controller which considers the full nonlinear
model. A special point on the numerical issue has been
stressed. It has been shown how a constrained saddle
point problem can be solved by considering an augmented
Lagrangian technique. The interest of this approach is
that the numerical scheme shares the same numerical
complexity as for the ODE case. Finally, simulation on
a FDA approved testing platform have shown the interest
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of the retained approach. For all adults, the blood glucose
is regulated in a safe interval and low blood glucose are
avoided even in case the bolus is over estimated.

For further works, in regards to the positive results ob-
tained in this paper and in order to obtain a better
characterization of the control performances, it is worth
considering the theoretical aspect of the extension of the
SPMPC controller to control time delay systems. From a
more practical point of view it can be interesting to design
an algorithm which can be used to control the remaining
part of the classical cure (i.e. the bolus part of the cure)
and to consider the identification problem of a reliable
model when using clinically realistic experimental data.
Also, because the testing platform is still far to accurately
model a type 1 diabetic, if it is desired to have a more
rigorous proof that the considered algorithm can bring a
potential solution, a practical validation thanks to clinical
studies is required.
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