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87 Umeå, Sweden, (e-mail: leonid.freidovich@umu.se)

Abstract: The problem of first order differentiation, when an estimation of an upper bound of the
second derivative is available on-line, is studied in this paper. The proposed method include two
approaches: Second Order Sliding Mode and High-Gain algorithms, and consider the differentiator gain
as a continuous time varying function. This scheme provides chattering attenuation, increasing at the
same time the overall performance. Experimental results, realized over an Industrial Hydraulic System,
confirm the efficiency of the methodology.

1. INTRODUCTION

In the last years, High Order Sliding Mode Differentiator, has
shown very good performance even in the presence of noise.
Basically, the work of Levant, see Levant [1998], introduced a
robust exact differentiator using a Second Order Sliding Mode
technique, known as Super-Twisting algorithm. This first order
differentiator has become focus of intensive research. An ob-
server for mechanical systems was proposed in Davila et al.
[2005]. In order to estimate the convergence time, in Polyakov
and Poznyak [2011] and Moreno and Osorio [2012] the design
of strong Lyapunov functions was introduced. Uniformly con-
vergent algorithms were designed in Cruz-zavala et al. [2011]
and Angulo et al. [2013]. Recently, some interesting remarks
about the convergence time and disturbance rejection were pre-
sented in Utkin [2013]. In order to attenuate the characteris-
tic chattering phenomenon, some adaptive schemes have been
developed in Utkin and Poznyak [2013] and Shtessel et al.
[2012]. In Gonzalez et al. [2013], a Variable-Gain approach
was proposed, achieving chattering attenuation. An adaptive
Super-Twisting algorithm for actuator oscillatory failure case
reconstruction was proposed in Alwi and Edwards [2013].
The extension to arbitrary order has been developed in Levant
[2003], assuming that the (n+1)th-order derivative is bounded
by a known constant, L. However, if a global constant bound
is chosen for the whole practical operation region, the con-
stant would be excessively large that results in increasing the
differentiator errors. Recently, a differentiator of signals with
unbounded higher derivatives was developed in Levant and
Livne [2012], removing the requirement of L, the differentiator
gain, to be a constant, and assuming that the (n + 1)th order
derivative has a variable upper bound available in real time.
Main system features are often determined by a few variables
available in real time (pressures in cylinders in the case of
study) allowing a variable upper bound for (n + 1)th-order
derivative. In this note we want to use this idea for an Industrial
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Hydraulic System, where measurements of the pressures in the
cylinders are available; this information can be used to obtain an
upper bound of the second derivative of the cylinders position.
Then, the time varying gain, L(t) is designed using this time
varying upper bound.
Three approaches are explored in this paper: High-Gain, Super-
Twisting and Asymptotic Second Order Sliding Mode algo-
rithms with time-varying gain. Besides, it is designed a new
time-varying Second-Order Sliding Mode algorithm, which al-
lows the gain to be dependent of a time-varying upper bound,
available in real time. This algorithm combine two approaches:
High-Gain and Sliding Mode algorithms. A Lyapunov based
analysis is presented to demonstrate its properties, including the
convergence rate and the ultimate boundennes of differentiation
error. Experiment over an Industrial Hydraulic System have
been carried out, obtaining very good results. The comparison
of the presented methods, including an off-line estimation of
the velocity, verify the efficacy of the methodology.
The remainder of this paper is organized as follows. First, a
brief description of the first order differentiator and Super-
Twisting algorithm is presented in section II. Section III
presents the Time-Varying High-Gain Observer. Section IV,
introduces the design of the Time-Varying Gain Second Order
Sliding Mode differentiator. The model description of mechan-
ical and hydraulic systems is presented in Section V. Experi-
mental results are presented in Section V. Finally in Section VI,
the Conclusions are drawn for this study.

2. FIRST ORDER DIFFERENTIATOR

In Mechanical systems, the first order differentiator should
estimate the first derivative of a position signal x(t). In this note
we consider the next assumptions:

(i) The second derivative of the position signal x(t) is uni-
formly bounded by a signal L(t): |ẍ(t)| ≤ L(t).

(ii) The signal L(t) is available in real time and L ≤ L(t) ≤
L.

(iii) The derivative of L(t) is bounded: |L̇(t)| ≤ δ0, δ0 a
known constant.
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Defining x1 := x and x2 := ẋ, the problem can be settled as
the design of an observer for the system below:

ẋ1 = x2, ẋ2 = ẍ, (1)
with output y = x, and ẍ is described by Newton’s Law
like equation. We will study two approaches in order to solve
this problem: Second Order Sliding Modes and Second Order
High-Gain Observer. The design is motivated by Levant and
Livne [2012], where the inclusion of a time varying gain which
depend of the signal L(t), available on-line, is the key idea.
Remark 1. If some noise µ is present in the measurement,
y = x + µ, and this noise is uniformly bounded by δ, a
constant; then, no first order exact differentiator can provide for
accuracy better than L

1
2 ||δ|| 12 , see Levant [2003] and Vasiljevic

and Khalil [2008].

2.1 Constant-Gain Super-Twisting Differentiator

First, the Super-Twisting, ST, algorithm with constant gains
will be presented:

˙̂x1 = −κ1|x̂1 − x(t)| 12 sign(x̂1 − x(t)) + x̂2,
˙̂x2 = −κ2sign(x̂1 − x(t)),

(2)

where κ1 and κ2 are positive constants to be designed, and x(t)
is the position measurement, such that |ẍ(t)| < L, L a known
constant. Defining e1 = x̂1 − x(t) and e2 = x̂2 − ẋ(t):

ė1 = e2 − κ1|e1|
1
2 sign(e1),

ė2 = −κ2sign(e1)− ẍ(t).
(3)

Solutions of (2) and (3) are understood in Filippov sense,
see Filippov [1988]. A necessary condition of convergence is
κ2 > L, if in addition, we select the gain κ1 sufficiently large,
the appearance of a Second Order Sliding Mode is guaranteed
after a finite time transient, i.e. e1 = e2 = 0 in system (3).
A very crude condition is 2(κ2 + L)2/(κ21(κ2 − L)) < 1, see
[Shtessel et al., 2014, Theorem 4.6, p. 159.]. In Moreno and
Osorio [2012], a Lyapunov function is introduced that permits
the design of κ2 and κ1 providing the estimation of convergence
time. Recently, in Utkin [2013], it was demonstrated that for
any κ > 0, κ = κ2 − L, and δ > 0, there exists λ∗ such that
e1 is reduced to zero in finite time less than (e1(0)/α) + δ, if
κ1 > λ∗. The convergence time cannot be less than e1(0)/κ.
However, if the maximum acceleration, ẍ, is excessively large,
it will imply the selection of high gain parameters κ1 and κ2,
resulting in the amplification of differentiation errors. This will
be overcome in the next sections with the introduction of time
varying parameters.

3. TIME-VARYING HIGH-GAIN DIFFERENTIATOR

High Gain Observers have been demonstrated to achieve sim-
ilar steady-state errors in presence of noises, see Vasiljevic
and Khalil [2008]. In this section we implemented the same
idea, over a first order High Gain Observer. We consider the
differentiator:

˙̂x1 = −κ1

ε L
1
2

h (t)(x̂1 − x(t)) + x̂2,
˙̂x2 = −κ2

ε2 Lh(t)(x̂1 − x(t)),
(4)

where parameters κ1, κ2 and ε are positive constants, andLh(t)
is a time varying definite positive continuous function, to be
designed. Defining the errors functions e1 = (x̂1 − x(t))ε−1,
e2 = x̂2 − ẋ(t) and e = [e1, e2]T , we obtain:

ė = ε−1A(t)e+ g(t), (5)

with:

A(t) =

[
−κ1L

1
2

h 1
−κ2Lh 0

]
, g(t) =

[
0
−ẍ(t)

]
.

Consider the Lyapunov function V = eTP (t)e, with:

P (t) =

δ1L 1
2

h −1
−1 α

L
1
2
h

 , (6)

where δ1 = κ2α−κ1 and α > κ1/κ2. Consider Lh ≤ Lh(t) ≤
Lh. If Lh/Lh > 1/(δ1δ3)2 we have P (t) > 0. Moreover, this
matrix P (t) satisfy, P0 < P (t) < P1, where:

P0 =

δ1L 1
2

h −1
−1 α

L
1
2
h

 , P1 =

δ1L 1
2

h −1
−1 α

L
1
2
h

 .
Taking the derivative of V we obtain:

V̇ = −2eTQ(t)e+ 2eTP (t)g(t),

Q(t) =

δ2Lh − δ1εL̇h

4L
1
2
h

0

0 1 + αεL̇h

4L1.5
h

 ,
with δ2 = κ2 − κ1δ1. If the condition below is satisfied:

|L̇h| < min{4δ2
εδ1

L
3
2

h ,
4

εα
L

3
2

h } = δ3,

then, it imply Q(t) > 0. Furthermore,

Q(t) > Q0 =

δ2Lh − δ1εδ3

4L
1
2
h

0

0 1− αεδ3
4L1.5

h

 , (7)

taking into account |ẍ| ≤ L(t), it implies,

V̇ ≤ −2ε−1
λmin[Q0]

λmax[P1]
V + 2

√
2
Lmax{1, α/L

1
2

h }

λ
1
2

min[P0]
V

1
2 .

Setting W 2 = ε2V , we obtain: Ẇ ≤ −ε−1β0W + εβ1, where

β0 = λmin[Q0]
λmax[P1]

and β1 =
Lmax{1,δ3/L

1
2
h
}

λ
1
2
min

[P0]
. ensuring ultimate

boundedness. Note that, if ε → 0, the ultimate bound of the
error also tends to zero.

4. SECOND ORDER SLIDING MODE DIFFERENTIATOR

With the addition of a discontinuous term, the time-varying
high-gain algorithm (4) has the next form:

˙̂x1 = −κ1L
1
2

h (t)e1 + x̂2,
˙̂x2 = −κ2

ε Lh(t)e1 − κ3L(t)sign(e1)︸ ︷︷ ︸,
SM-term

(8)

where κ3 is a positive constant and L(t) is a positive continuous
function. As before, we defined e1 = (x̂1 − x)ε−1 and e2 =
x̂2 − ẋ, obtaining the error dynamics:

ė1 = ε−1(−κ1L
1
2

h e1 + e2),
ė2 = −ε−1κ2Lhe1 − κ3L(t)sign(e1)− ẍ,

(9)

with |ẍ| ≤ L(t) and L ≤ L(t) ≤ L. A necessary condition
of convergence is κ3 > 1, and the sliding set is given by e1 =
e2 = 0, however, instead of finite time convergence, in this
case the convergence is asymptotic, see [Fridman and Levant,
2002, p. 65]. In order to prove the ultimate boundedness of the
error, consider the next Lyapunov function V = eTP (t)e +
γ|e1|, with P (t) as in (6), but considering α = 1/(κ3α0),
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α0 a positive constant. By other hand γ = 2εL/(α0

√
Lh).

Considering the conditions below:

α0 < min

{
κ2
κ1κ3

,
κ1

2(κ3 + 1)

}
,
L

L
>

κ23α
2
0

κ2 − κ1κ3α0
,

function V is positive definite and decrescent. Besides, function
V is differentiable almost everywhere, taking its derivative, it is
obtained:

V̇ ≤ −2

ε
min{λmin[Q0], εc}(||e||2+ |e1|)+2

√
2

L

α0κ3L
1
2

h

||e||.

where Q0 is defined as in (7), and:

c =
κ1 − α0(κ3 + 1)

α0
L− ε2Lh|L̇|+ L|L̇h|

2α0L1.5
h

> 0

with |L̇| ≤ δ0, L̇h ≤ δ3 and κ1 > α0(κ3 + 1) +

εL−1L
−3/2
h (2Lhδ0 + Lδ3). Considering W 2 = ε2V and

Lh = φL, it is obtained: Ẇ ≤ −ε−1β0W + εβ1, where
β0 = min{λmin[Q0],εc}

max{λmax[P1],γ} and β1 =
√
2L

α0φκ3λ
1
2
min

[P0]
, ensuring ul-

timate boundedness.

4.1 Time-Varying Gain Super-Twisting Differentiator

In this section we introduce the time varying version of ST
algorithm. This is a particular case of the general version of
the algorithm presented in Levant and Livne [2012]. Again,
considering the measurement of position x(t), the estimation
of its velocity is obtained by the next differentiator:

˙̂x1 = −κ1L
1
2 (t)|x̂1 − x(t)| 12 sign(x̂1 − x(t)) + x̂2,

˙̂x2 = −κ2L(t)sign(x̂1 − x(t)).
(10)

where κ1 and κ2 are positive constants and the parameter L(t)
is a time varying definite positive continuous function. The
recommendation given in Levant and Livne [2012] is κ1 = 1.5
and κ2 = 1.1. Defining the errors functions e1 = x̂1−x(t) and
e2 = x̂2 − ẋ(t), we obtain:

ė1 = e2 − κ1L
1
2 |e1|

1
2 sign(e1),

ė2 = −κ2Lsign(e1)− ẍ(t).
(11)

With κ2 > 1, equalities e1 = 0 and e2 = 0 define a formal
Filippov solution. Following Levant and Livne [2012], it is
assumed the propositions below:

• |e1(0)| ≤ δ0L(t) for some constant δ0.
• |L̇/L| ≤ δ1, for some constant δ1.

Then, differentiator (10) gives the exact derivative for any t ≥
t0 + T (t0). Consider any arbitrary moment t0 > 0, and define
some L(t) in the interval L0(1 − γ) ≤ L(t) ≤ L0(1 + γ),
where γ and L0 are positive constants. Since the logarithmic
derivative of L(t), L̇/L, is bounded, it follows T (t0) ≤ T0 =
ln(1 + γ)/δ1. Choosing L(t) sufficiently large, the finite time
convergence of (11) is ensured. In fact, the constants δ0 and T0
depend only on δ1. See the details in [Levant and Livne, 2012,
Theorems 1 and 2].

5. INDUSTRIAL HYDRAULIC SYSTEM

The experimental setup under the study is a laboratory proto-
type of an Industrial Hydraulic Forestry Crane. Such industrial
equipment is widely used in forestry and is a subject of many re-
searches aimed to automation of these systems, see Papadopou-
los et al. [2003]. One important issue of the automation is the

online velocity estimation problem. In this section we show
how this problem can be successfully solved by the proposed
differentiators. We solve this problem for a telescopic link of
the crane, however similar results can be easily obtained for
other joints. Some physical parameters of the link are given in
the table I.

Table I: Physical parameters of the link
Aa, m2 Ab, m2 Va0, m3 Vb0, m3

1.26 · 10−3 0.76 · 10−3 0.012 · 10−3 1.19 · 10−3

Pt, Pa Ps, Pa q̄, l/min β, Pa
5 · 105 180 · 105 90 17 · 108

m, kg f̄h, N fc, N fv , N·s/m
200 8000 750 6500

5.1 Mechanical and Hydraulic systems

The telescopic link of the crane consists of a double-acting
single-side hydraulic cylinder and a solid load which is attached
to a piston of the cylinder. Position of the link x varies from 0
to 1.55m; positive velocity ẋ corresponds to extraction of the
cylinder. This link can be described as a 1-DOF mechanical
system actuated by a hydraulic force, and the equation of the
motion is

mẍ = fh − fgrav − ffric,
where m is the mass, fh is the force generated by the hy-
draulics, fgrav is the gravity force and ffric is the friction force.
The force generated by the hydraulics is given by:

fh = PaAa − PbAb. (12)
The piston areas Aa and Ab are known geometric parameters,
Pa and Pb are the measured pressures in chambers A and B
of the cylinder. The friction is modeled as a Columbus friction
plus a viscous friction: ffric = fc sign(ẋ) + fv ẋ. Hence

ẍ =
fh
m
− 1

m
(fgrav + fc sign(ẋ))− fv

m
ẋ

=
fh
m
− µ0 − µ1 ẋ.

(13)

The dynamics of the pressures is given, see [Merrit, 1967, Sec.
3.8], by

Ṗa = β
Va(x)

(−ẋ Aa + qa) , Ṗb = β
Vb(x)

(ẋ Ab − qb) , (14)

where Va(x) = Va0+xAa and Vb(x) = Vb0−xAb are volumes
of the chambersA andB at the given piston position x, Va0 and
Vb0 are known geometric constants, β is a known bulk modulus,
qa and qb are flows to the chamber A and from the chamber B.
Differentiating (12) and substituting (14) leads to

ḟh =
β

Va(x)Vb(x)
(Aa Vb(x) qa +Ab Va(x) qb)

− β

Va(x)Vb(x)

(
A2
a Vb(x) +A2

b Va(x)
)
ẋ.

It leads to ẋ = η0(x, qa, qb)− η1(x) ḟh, where:

η0(x, qa, qb) =
Aa Vb(x) qa +Ab Va(x) qb
A2
a Vb(x) +A2

b Va(x)
,

η1(x) =
Va(x)Vb(x)β−1

A2
a Vb(x) +A2

b Va(x)
.

(15)

From (13) it follows:
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ẍ =
1

m
fh − µ0 − µ1 η0(x, qa, qb) + µ1 η1(x) ḟh

=
fh
m
− c0(x, qa, qb) + c1(x) ḟh.

(16)

5.2 Bounds of the variables

Both pressures Pa and Pb are bounded by the tank pressure
Pt and the supply pressure Ps. However it is not a realistic
practical situation when both pressures have extreme contrary
values simultaneously. Due to internal restrictions the practical
bound is |fh| ≤ f̄h. The bound for the gravity force f̄g is
defined by the given mass. Hence for equation (13) we can
define the upper bound |µ0| ≤ µ̄0 with µ̄0 = (fgrav + fc)/m.
The parameter µ1 > 0 is constant.

Both flows qa and qb are bounded by a factory-set level of a
maximum flow through a valve, |qa,b| ≤ q̄, see Aranovskiy
[2013].. Moreover, the flows cannot go in the same direction
simultaneously, i.e. they always are of the same sign. Hence
upper bounds |η0(x, qa, qb)| ≤ η̄0 and |η1(x)| ≤ η̄1 can be
defined for equation (15), and functions c0(x, qa, qb) and c1(x)
in equation (16) are bounded by |c0(x, qa, qb)| ≤ c̄0 and
|c1(x)| ≤ c̄1, where c̄0 = µ̄0 + µ1 η̄0 and c̄1 = µ1 η̄1.

A practical bound of the velocity is |ẋ| ≤ x̄(1) with x̄(1) =
1.1m/s. It follows from (13) that the acceleration ẍ is bounded
by |ẍ| ≤ x̄(2), where

x̄(2) =
1

m
f̄h + µ̄0 + µ1 x̄

(1).

As the flows qa and qb are bounded it follows from (14)
that both time derivatives Ṗa and Ṗb are bounded |Ṗi| ≤
(β/Vi0)(Aix̄

(2) + q̄), i = a, b. This imply |ḟh| ≤ |Ṗa|Aa +

|Ṗb|Ab ≤ c2.

5.3 Measured and estimated signals

The experimental tests are carried out with a real-time platform
dSpace 1401 at a sampling interval 1ms using forward Euler
integration method. The pressures are measured with installed
pressure transducers that allows to estimate the force (12). The
position of the telescopic link is measured with a wire-actuated
encoder. The encoder provides 2381 counts for the range from 0
to 1.55m; the quantization interval is Q = 0.651mm. The mea-
sured signal x can be seen as the position signal with an additive
uniform noise with a variance Q2/12. Such quantization inter-
val makes it hard to use a direct difference of the position for
velocity estimation as resulting velocity quantization interval is
inappropriately high.

The differentiators considered in this paper are online ones.
However, it is obvious that a better velocity estimation can be
achieved with an offline method when both previous and future
values of the position are used. Based on this idea we suppose
to post-process the measured position with the offline velocity
estimation method to obtain an estimation x̂2,off . Further we
evaluate the designed online differentiators in comparison with
this offline estimation.

To obtain the offline estimation we use splines. First the mea-
sured signal x(t) is fitted with a smoothing spline xspl(t). Next
x̂2,off is obtained as an analytical differentiation of the spline
xspl(t). The smoothing spline xspl(t) is found as a cubic spline

which minimizes the following expression, see e.g. [Biagiotti
and Melchiorri, 2008, p. 194]:

ρ

N∑
i=1

(x(ti)− xspl(ti))2 + (1− ρ)

∫ tN

t1

ẍ2spl dt,

where N is a number of measured points, 0 ≤ ρ ≤ 1 is a
smoothing parameter. The smoothing parameter determines a
trade-off between fitting of the measured data and smoothing.
The value ρ = 0 leads to maximum smoothing, i.e. linear
approximation; and ρ = 1 leads to a classic cubic spline with
exact fitting and without any smoothing. For our purpose we
tune the smoothing parameter in order to obtain the smoothest
possible estimation, i.e. the smallest ρ, keeping the fitting error
within the quantization interval Q.

6. EXPERIMENTAL STUDIES

6.1 Design of L(t)

The problem is to obtain the velocity of the spool of the cylinder
from the measured position. In order to obtain the estimation of
the velocity, ẋ, differentiator (10) is proposed. For this purpose
we need to design some appropriated time varying gain L(t),
such that |ẍ| ≤ L(t) and |L̇| ≤ δ1. Besides, from equation
(16), it is obtained:

|ẍ| ≤ c̄0 +
1

m
|fh|+ c̄1|ḟh|, (17)

When the cylinder is moving with constant velocity, we have
ẍ ≈ 0 which means that a small constant gainL can be selected.
Besides, if the cylinder is moving with varying velocity, then
the acceleration ẍ(t) is not close to zero anymore and it implies
that the gain L should increase proportionally with rate of
variation of the cylinder velocity. In order to include both cases,
constant and time-varying profiles of velocity, and motivated by
expressions (16) and (17), we proposed the next time varying
gain:

L(t) = γ0 + γ1|fh|+ γ2ζ(fh), (18)
where the parameters γ0, γ1 and γ2 are positive constants; the
rate of variation of fh, is given by ζ(fh), which is a positive
function that depends of the available pressure measurements.
One option is:

ζ(fh) =
|fh(t− τ1)− fh(t− τ2)|

τ2 − τ1
,

with τ2 > τ1 > 0. For constant profiles of velocity ζ(fh) ≈ 0.
With this selection, the upper bound of the derivative, L̇ is given
by: |L̇| ≤ γ1 c2 + 2 γ2 c2

τ2−τ1 .

Four velocity estimation algorithms are tested:

• Super-Twisting with constant gain: ST, (2).
• Super-Twisting with time-varying gain: STV, (10).
• High-Gain with time-varying gain: HGV, (4).
• High-Gain + Sliding Mode (time-varing): HGV+SM, (8).

The STV differentiator, (10), is implemented, considering the
parameters κ1 = 1.5, κ2 = 1.1 and the time varying gain
(18). For the gain L(t) it is taking: γ0 = 0.5, γ1 = 0.0005,
γ2 = 0.0004, τ1 = 0.004 and τ2 = 0.01. The sign function
is approximated by sign(x) = x

|x|+ε , with ε = 0.001. For the
HGV differentiator, algorithm (4), we consider the parameters
κ1 = κ2 = 2, ε = 0.015, and the time varying gain (18)
for the design of Lh, with: γ0 = 0.5, γ1 = 0.00002, γ2 =
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0.00001, τ1 = 0.004 and τ2 = 0.01. For the combined scheme,
HGV+SM algorithm (8), we consider the same gain Lh as in
the case of HGV, κ3 = 1.1 and L(t) as in the case of STV.
For comparison purposes we also test the ST algorithm with
constant gain. Two values were considerd: L = 5 and L = 15;
increasing of this value resulted in increasing of chattering.
For evaluation purposes we compare all the algorithms with
the velocity estimation obtained using post-processing of the
measured data, i.e. off-line velocity estimation, see Sec. 5.3. In
the experiment we consider different input profiles, and fig. 1
shows the measured cylinder position, x. In this experiment the
cylinder was in motion with constant and varying velocity.

Fig. 1. Measured position, x, (m) vs time (seconds).

6.2 Super-Twisting: Time-Varying vs Constant Gain

In this section we compared the ST algorithm, using constant
and time-varying gains. Fig. 2 shows the velocity estimation in
the interval of time (13, 16) and the corresponding differentia-
tor gains, constant and time-varying. In addition, we computed
the estimation of the acceleration, ẍ, using the presented off-
line method, see section 5.3. It is clear that with a constant gain
we can not compensate the acceleration in the whole interval.
By other hand, with the variable gain we can cover the acceler-
ation in the whole region without the increasing of chattering.

Fig. 2. Top: (Velocity (m/s) vs time (seconds)): ST(L=5,–),
ST(L=15,–), STV(L(t),–), Off-line(–).
Bottom: Gains vs |¨̂x|-(Off-line).

6.3 Comparison of time-varying algorithms

In this section we present the obtained result with the proposed
time-varying algorithms. Fig. 3 shows the velocity estimation
in the interval of time (13, 16).

13 14 15 16
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 3. Velocity (m/s) vs time (seconds): Off-line(–), STV(–),
HGV(–), HGV+SM(–).

.

Fig. 4 shows the velocity estimation in the interval of time
(79, 81.6) and the corresponding time varying gain, L(t). In
this interval a sequence of acceleration and deceleration inputs
was included in the experiment, producing abrupt changes in
velocity. In this case we can not use a constant gain, since the
gain to select should be L = 100, increasing at the same time
the chattering effect.

Fig. 4. Top (Velocity (m/s) vs time (seconds)): Off-line(–),
STV(L(t),–), HGV(–), HGV+SM(–).
Bottom: L(t) vs |¨̂x|-(Off-line).

6.4 Computation of errors

Considering the off-line estimation as the true value of ve-
locity, ẋ, in this section, the second and first norm of the
error are computed for the considered intervals of time. For
this purpose we define ei = ˙̂xi − ẋ, where ẋ is the true
velocity (off-line estimation) and ˙̂xi is the on-line estima-
tion for i = ST, STV, HGV and HGV+SM. Table II shows
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the normalized error, ||ei||/||eHGV+SM||, during intervals of time
that correspond with fig. 2, fig. 3 and fig. 4, with ||ei|| =√

1
tf−t0

∫ tf
t0
|ei(τ)|2dτ . By other hand, table III shows the nor-

malized error ||ei||1/||eHGV+SM||1, where ||ei||1 = max
t0≤t≤tf

|ei|.

In general, the HGV+SM algorithm gives a very good perfor-
mance and this is the reason to choose eHGV+SM for the normaliza-
tion. It means that if the value in the table is below 1, then the
corresponding algorithm performs better, then HGV+SM. And
vice versa. In the interval of almost constant velocity, (13, 14),
the difference in performance is not considerable, except in the
case of L = 15 where the increasing of chattering is evident.
The reason for this, is because during this intervals the accel-
eration ẍ decreases to the smallest values, and the amplitude
of acceleration can be covered with a relatively small constant
gain L = 5.

Table II: ||ei||/||eHGV+SM||
i (13, 14) (14, 14.2) (79, 81.6)

Const. Vel. Abrupt Acce. Var. Vel.
ST (L=5) 1.14 3.32 2.79

ST (L=15) 2.52 1.17 1.4
STV 1.11 0.93 0.79
HGV 0.96 1.3 1.21

Besides, if abrupt changes in acceleration present, we can not
cover the acceleration amplitude choosing a constant gain. As
it can be seen from the columns (14, 14.2) and (79, 81.6) of
the tables II and III, the ST algorithm with the constant gain
L = 5 significantly degrades in performance. Thus, the use
of the algorithm with constant gain for the whole operation
region results in increase of differentiation errors either for the
constant velocity range, or for the abrupt acceleration range.
However, time varying algorithms efficiently perform for the
both profiles of acceleration and provide small errors for the
whole operation region.

Table III: ||ei||1/||eHGV+SM||1
i (13, 14) (14, 14.2) (79, 81.6)

Const. Vel. Abrupt Acce. Var. Vel.
ST (L=5) 1.34 2.34 2.33

ST (L=15) 3.34 1.1 1.5
STV 1.27 0.97 1.19
HGV 0.94 1.23 1.16

7. CONCLUSION

The problem of first order differentiation was studied in this pa-
per. We verify that using a time varying gain is a better option,
instead of use a global constant bound for the whole operation
region. The design of ST and HG differentiators with time vary-
ing gains is presented. Besides, a new differentiator formed by
the HG and SM algorithms with time-varying gains, is proposed
in this work. A Lyapunov based analysis was provided, in order
to demonstrate the stability and convergence properties for both
algorithms. We tested and validated the proposed scheme in an
Industrial Platform, obtaining very good results. The proposed
methodologies showed an increase in performance with respect
to the constant gain algorithm, including chattering attenuation.
The HGV+SM differentiator proposes a good trade-off between
HGV and SM, compromising a transient performance and chat-
tering effect. Extensions of this algorithm applied to a more
general class of mechanical systems are considered for future
work.
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2014.

V. Utkin. On convergence time and disturbance rejection of
super-twisting control. IEEE Transactions on Automatic
Control, 58(8):2013–2017, 2013.

V. Utkin and A. S. Poznyak. Adaptive sliding mode control with
application to super-twisting algorithm: Equivalent control
method. Automatica, 49(1):39–47, 2013.

L. K. Vasiljevic and H. K. Khalil. Error bounds in differenti-
ation of noisy signals by high-gain observers. Systems and
Control Letters, 57:856–862, 2008.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1379


