
Stochastic MPC for Systems with both
Multiplicative and Additive Disturbances ?

Qifeng Cheng ∗ Mark Cannon ∗∗ Basil Kouvaritakis ∗∗

Martin Evans ∗∗

∗ School of Science, Liaoning Technical University, Fuxin City,
Liaoning Prov., 123000, China (e-mail: chengqifeng@tsinghua.org.cn)
∗∗Department of Engineering Science, University of Oxford, Parks

Road, Oxford OX1 3JP, UK

Abstract: A stochastic MPC strategy is proposed to handle systems with both multiplicative
and additive random uncertainty. Through a dual mode strategy, the system can be divided into
a nominal dynamics and an error dynamics. The errors are further decomposed into two parts:
one for which it is possible to construct probabilistic tubes offline with the explicit use of the
disturbance distribution information, and the other which can be handled through the use of a
set of robust tubes with bounding facets of fixed orientation, whose distances from the origin
are optimized online. The robust tubes can exhibit little conservativeness on account of the
fact that the number of the bounding facets of tubes in the predictions can be varying through
online optimization. A tailored terminal set is investigated to ensure the recursive feasibility and
stability of the algorithm. The online computation is turned into a standard quadratic program,
which is of comparable order of complexity as that of robust MPC. A numerical example is
given to illustrate the effectiveness of the algorithm.

1. INTRODUCTION

Model predictive control (MPC) is a powerful control
methodology that has been successfully applied in a very
wide variety of fields [Qin and Badgwell, 2003, Kouvari-
takis et al., 2004, Pasik-Duncan et al., 2004]. It employs
an explicit model to optimize the predicted system per-
formance subject to constraints on input, output, states
in a receding horizon manner. In most cases, models can
only approximate the physical systems and will inevitably
introduce uncertainties. Researchers have developed two
different methods to cope with uncertainties, i.e. robust
MPC and stochastic MPC. In robust MPC, uncertainties
are only considered in their worst case scenarios and no
use is made of information about probabilistic distribution
that may be available. Instead, stochastic MPC exploits
the distribution of uncertainties and aims to achieve bet-
ter performance compared with the corresponding robust
MPC strategy.

To date, robust MPC has achieved a plethora of results
and has reached a considerable state of maturity [Kothare
et al., 1996, Mayne et al., 2000, Kouvaritakis et al., 2000,
Löfberg, 2003, Mayne et al., 2005, Goulart et al., 2006, etc.
and references therein]. Generally, robust MPC handles
only hard constraints, which cannot be transgressed for
any realization of the uncertainty. When constraints are al-
lowed to be violated but with a frequency less than a given
prescribed threshold, they are considered to be probabilis-
tic and are addressed by stochastic MPC. One can always
exploit the benefits afforded by allowable constraint viola-
tions. The challenge in stochastic MPC revolves around to
? This work was supported in part by the National Natural Science
Foundation of China (61304090) and the Department of Education
of Liaoning Province, China (L2013132).

two key issues. One is to reformulate, with the minimum
degree of conservativeness, the probabilistic constraints as
hard constraints which can be handled easily, and the other
is to ensure the control theoretic properties of stochastic
MPC such as recursive feasibility and stability.

Several stochastic MPC strategies have been proposed for
the case where uncertainty takes the form of additive
disturbances. For example Cannon et al. [2011] designs
tubes with a series of stochastic ellipsoidal cross sections
and then relaxes the probabilistic constraints so that the
online optimization can be performed efficiently and such
that the algorithm achieves recursive feasibility. Yet the
employment of the ellipses incurs a degree of conservative-
ness. An alternative approach by Kouvaritakis et al. [2010]
considers tubes with cross section of a polytopic nature
and makes the explicit use of information on the proba-
bilistic distribution of disturbances to compute offline the
cross section parameters which allow for the tight satis-
faction of constraints under the control structure adopted.
In Korda et al. [2012] and Oldewurtel et al. [2013], the
joint probabilistic constraints have been investigated, and
the relaxed constraints are adjusted online according to
their past violations, thereby further reducing the degree
of conservativeness.

For systems with multiplicative uncertainty, the formula-
tions of stochastic MPC raise more challenges. This arises
from the multiplications between the uncertain parameters
and future states, both of which are random variables.
Tubes with cross sections consisting of polytopic sets
are optimized online in Cannon et al. [2009a]. Although
the recursive feasibility is guaranteed, a requirement that
constraints are invoked at each vertex of a confidence
polytope can be computationally demanding. A scenario
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approach to handle LPV systems is developed in Calafiore
and Fagiano [2013], which imposes no restrictions on the
distributions of the parameters. However, this approach
may involve too many constraints if one aims at a high
confidence level, and it does not address the problem
of keeping, at each time instant, the probability of con-
straint violations below a prescribed level in closed loop
and requires softening of constraints. In this paper, we
decompose the uncertain part of the predictions into two
components and construct two kinds of tubes separately.
One deploys tubes with polytopic cross sections with facets
whose distance from the origin is computed offline using
the methodology developed in Kouvaritakis et al. [2010]
and the other part is to be included by robust tubes with
bounding facets of fixed orientation and variable scalings,
which provide a low conservative estimation by allowing
the number of the bounding facets (the corresponding
active constraints) to change throughout the optimization
[Evans et al., 2012, Cheng et al., 2013]. Our method is
translated into a standard quadratic program to be solved
online and thus can be implemented efficiently, in a time
comparable to that of robust MPC. A tailored terminal
set is devised to guarantee the recursive feasibility of the
algorithm, which is shown to be quadratically stable.

Notation: The subscript k denotes the values at the
instant k, while the subscript i|k, i is used to denote
the future values of time k + i which are predicted at
the current instant k. N≥0 := {0, 1, 2, . . .}, N≥i := {i, i +
1, . . .}, N[i, j] := {i, i + 1, . . . , j}, iρ := i − ρ. E is the
expectation operator. Pr{♦} represents the probability
with which event ♦ happens.

2. PROBLEM FORMULATION

Consider the discrete-time system with the following un-
certainty description

xk+1 = Akxk +Bkuk + wk, (1)

[Ak Bk] = [A0 B0] +

L∑
j=1

[A(j) B(j)]qjk, (2)

L∑
j=1

qjk = 1, qjk ≥ 0, k ∈ N≥0, (3)

where x ∈ Rnx , u ∈ Rnu , Ak ∈ Rnx×nx , Bk ∈
Rnx×nu , Ak, Bk involves the multiplicative uncertainty,
qjk (k = 0, 1, 2, . . .) are temporally independent and
identically distributed (i.i.d.) random variables such that

E
(∑L

j=1[A(j) B(j)]qjk
)

= [0 0], wk represents the i.i.d.
random additive disturbance with known, compactly sup-
ported distributions and each element of wk is indepen-
dent. The probabilistic constraint set to be considered is

Pr{(x, u) ∈ Ξ} ≥ p, (4)

where Ξ is a compact convex polytope, p is a column
vector and the vector inequality in (4) is interpreted
elementwise with each element of p lying inside (0, 1]. For
ease of discussion, one of the constraints defining (4) is
explicitly expressed as

Pr{gTxk + fTuk−1 ≤ h} ≥ p, 0 < p ≤ 1, (5)

where g and f are column vectors with appropriate di-
mensions and h is a constant. We will focus on (5) in the

paper, as the other constraints can be handled in a similar
way and hard constraints can be treated as a special case
of (5) by setting p equal to 1.

The aim of the MPC strategy is to minimize a cost over
the sequence of predicted inputs, ui|k, subject to the
satisfaction of constraint (5), and the cost is expressed as

Jk =

∞∑
i=0

Ek
(
xTi|kQxi|k + uTi|kRui|k

)
. (6)

A quasi-closed loop dual mode strategy will be employed
according to which:

ui|k = Kxi|k + ci|k, cN+i|k = 0, i ≥ 0, (7)

where K is designed offline, u = Kx is assumed to be sta-
bilising and optimal for (6) in the absence of constraints,
and the perturbations ci|k, i = 0, 1, . . . , N − 1 provide
degrees of freedom to optimize system performance when
constraints are present. The original system (1) will be
decomposed into nominal dynamics and error dynamics:

xi+1|k = Φi|kxi|k +Bi|kci|k + wi|k, (8)

xi|k = zi|k + ei|k, (9)

zi+1|k = Φ0zi|k +B0ci|k, (10)

ei+1|k = Φi|kei|k + wi|k + δΦi|kzi|k + δBi|kci|k, (11)

with Φi|k = Ai|k + Bi|kK, Φ0 = A0 + B0K and δΦi|k =

Φi|k − Φ0, δBi|k = Bi|k −B0. Then constraint (5) can be
rewritten as

Pr{ηT zi|k + ηT ei|k + fT ci−1|k ≤ h} ≥ p, (12)

with ηT = gT + fTK for i ∈ N≥1.

3. PREDICTIONS AND CONSTRAINT HANDLING

To handle the probabilistic constraint (12), we need to
characterize the distribution of the error e. According
to (11), the error dynamics involves not only the multi-
plicative and additive uncertainties, but also future con-
trol parameters ci|k. Therefore, the computation of the
probabilistic distributions of predictions on the basis of
information on the distribution of the uncertainty is likely
to be intractable. Instead this problem is handled here by
decomposing the error e into a part, ε, that can be handled
offline and a part, ζ, that is to be optimized online:

ei|k = εi|k + ζi|k, (13)

εi+1|k = Φ0εi|k + wi|k, (14)

ζi+1|k = Φi|kζi|k + δΦi|kzi|k + δBi|kci|k + δΦi|kεi|k. (15)

The benefit of this formulation is that ε and ζ can be
treated separately. It is assumed that state x0|k at time
k is measurable, and the initial conditions ε0|k = 0 and
z0|k + ζ0|k = x0|k will be deployed. Then the probabilistic
distribution of ε, under the dynamics of (14), can be
computed offline with the explicit use of the distribution
information of wi|k [Kouvaritakis et al., 2010]. For the
other part, ζ can be described by a series of tubes with
bounding facets of fixed orientation. The tubes will be
constructed to be robust (i.e. cater for all realization of
the uncertainty), they can be arbitrarily complex in terms
of the facet numbers and thus will reduce the degree of
conservativeness, while the distance of the facets from the
origin will be optimized efficiently online. This leads to
the suboptimal receding horizon control strategy which is
described in the sequel.
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3.1 Recursively Feasible Probabilistic Tubes for ε

In this section, the probabilistic distribution of ε is ana-
lyzed and the recursively feasible probabilistic tubes for
ε are constructed. This follows the methodology of [Kou-
varitakis et al., 2010]. The evolution of the other random
variable ζ will be treated in next section.

At instant k, for a given prediction horizon N and vector
of perturbations cTk =

[
cT0|k c

T
1|k · · · c

T
N−1|k

]
, constraint

(12) is equivalent to

Pr{ηTFick + ηT (Φ0)izk + ηT εi|k + ηT ζi|k

+ fTEM i−1ck ≤ h} ≥ p,
(16)

where Fi =
[
(Φ0)i−1B · · · B 0 · · · 0

]
, and

E =
[
I 0 · · · 0

]
, Eck = c0|k,

M =


0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 · · · 0 I
0 0 · · · · · · 0

 , Mck =


c1|k
c2|k

...
cN−1|k

0

 .
Theorem 1. Recursive feasibility of constraint (12)/(16) is
ensured if and only if, for each i = 1, 2, . . . ,

ηTFick+ηT (Φ0)izk+ηT ζi|k+fTEM i−1ck ≤ h−βi, (17)

where βi is the maximum element of the ith column of the
matrix

γ1 γ2 γ3 γ4 · · ·
null γ1 + a1 γ2 + a2 γ3 + a3 · · ·

... null γ1 + a1 + a2 γ2 + a2 + a3 · · ·

...
... null γ1 + a1 + a2 + α3 · · ·

...
...

...
...

. . .


, (18)

ai = max
w

ηT (Φ0)iw, (19)

and ‘null’ means no value, γi is defined as the minimum
value such that

Pr{ηT ((Φ0)i−1wk + . . .+ wk+i−1) ≤ γi} = p. (20)

Proof. According to (14), we perform predictions at the
instant k,

εi|k = (Φ0)i−1wk + . . .+ wk+i−1. (21)

Then, in combination with the definition of γi in (20), it
follows that if the term ηT εi|k in (16) is replaced by the
elements, γi, of the first row of the matrix (18), then the
probabilistic constraint (16) is satisfied. However, since γi
is computed by the predictions at instant k, this cannot
guarantee the recursive feasibility of the perturbation
vector ck. From the instant k + j (j = 1, . . . , i − 1),
predictions are made as follows

εi−j|k+j = (Φ0)i−jε0|k+j + (Φ0)i−j−1w0|k+j

+ . . .+ wi−j−1|k+j .
(22)

At k + j, ε0|k+j cannot be treated as a random variable
because at that time a realization of ε0|k+j will have
already occurred. As a consequence, one must consider the
worst case for ε0|k+j when computing the distribution of
εi−j|k+j in (22):

max ηT (Φ0)i−jε0|k+j

= max
w

ηT (Φ0)i−j((Φ0)j−1wk + . . .+ wk+j−1)

=

i−1∑
t=i−j

at, (i ≥ 2 and j = 1, . . . , i− 1)

(23)

where at is defined in (19). It is then noted that the
(j+1)th row in matrix (18) provides the prediction values
of ηT εi−j|k+j from instant k+j when taking the worst case
for ε0|k+j into account. Obviously, j should be no greater
than i and ‘null’ is used to denote the case j > i. Therefore,
the recursive feasibility of ck can be guaranteed if and only
if the largest element of the ith column of matrix (18), βi,
is utilized. �

Constraint (17) defines the facets of a region in which state
xi|k must lie. Therefore one can use (17) to cater for the
the recursively feasible probabilistic tubes for ε, while the
tube positions will be determined by the reference points,
i.e. the nominal states zi|k.

Assumption 2. For any finite i ∈ N≥1, ai > 0.

This is a mild assumption, because an obvious sufficient
condition to ensure ai > 0 is that each element of w can
range from negative to positive value.

Corollary 3. The sequence β1, β2, . . . is monotonically
non-decreasing and converges to a limit, of which an ar-
bitrarily precise upper bound, β̄, can be calculated offline
[Kouvaritakis et al., 2010].

Remark 4. The values of βi and the upper bound, β̄, can
be computed offline. One can get ai of (19) by solving a set
of linear programs. Furthermore, the computation of γi can
be implemented by discretizing the distributions of the ele-
ments of w and performing univariate convolutions, which
can make the approximation error (due to discretization)
as small as required with a reasonable computational cost.
For further details, the interested reader is referred to
Kouvaritakis et al. [2010].

3.2 Robust Tubes for ζ, with Bounding Facets of Fixed
Orientation

The dynamics of ζi|k is described in (15). Since this
involves the future nominal states zi|k and perturbations
ci|k, it is not possible to analyze offline the distribution of
ζi|k. Instead a series of robust tubes with bounding facets
of fixed orientation is formulated here to characterize the
evolution of ζi|k [Cheng et al., 2013]. These tubes deploy
the following features:

1. the directions of bounding facets of the tubes are
chosen offline and fixed online,

2. the distances from the origin to the facets are opti-
mized online,

3. the facet number of the tubes may be less than the
original design, since the corresponding constraints
may become inactive for the optimized facet distances
(from the origin).

The last feature provides a flexible mechanism to adjust
the tube geometry, thus these tubes only incur a low degree
of conservativeness. At each instant k, by assumption xk is
known and z0|k+ζ0|k = xk. For i ≥ 0, a series of polytopic
tubes are designed as
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V ζi|k ≤ θi|k, (24)

with V ∈ RnV ×nx to be chosen offline and parameters
θi|k ∈ Rnx to be optimized online. Thus (24) prescribes
nV simultaneous linear inequalities:

Vjζ ≤ σj , j = 1, . . . , nV , (25)

where Vj is the jth row of V and σj is the jth component
of θi|k. Each active constraint among the nV simultaneous
linear inequalities defines a bounding facet of the tube.
If, at the instant i|k, some of inequalities in (25) become
inactive, then the number of bounding facets will be
less than nV . However, the directions of the facets are
determined by the vectors Vj , and these are to be designed
offline and kept fixed during the online computations, the
tubes are referred to as having bounding facets of fixed
orientation.

The number of rows in the matrix V , nV , reflects the
complexity of the tubes. Generally, larger nV results in
less conservative tubes, however as discussed in Remark
10, the wish to keep computational complexity down will
impose limits on how large nV can be chosen to be.

The recursion equation can be obtained from (15):

V ζi+1|k = V Φi|kζi|k+V (δΦi|kzi|k+δBi|kci|k)+V δΦi|kεi|k.
(26)

Then the tube evolution can handled through a one-step-
ahead scheme, following the methodology described in
Evans et al. [2012].

Theorem 5. For any ζi|k in the polytope {ζ : V ζ ≤ θi|k},
a necessary and sufficient condition for V ζi+1|k ≤ θi+1|k
is that there exist matrices H(j), j = 1, . . . , L, with non-
negative elements such that

H(j)V = V Φ(j), (27a)

H(j)θi|k+V (δΦ(j) zi|k + δB(j) ci|k) + d
(j)
i ≤ θi+1|k, (27b)

with
d

(j)
i = max

w
V δΦ(j)εi|k, (28)

where the maximisation is performed elementwise.

The proof of Theorem 5 is omitted here; the interested
reader is referred to Evans et al. [2012] for more details.
Recalling the definition of εi|k in (21), it is noted that

d
(j)
i are not influenced by the information at k and can be

obtained by implementing a set of linear programs offline.

Remark 6. For each vertex j = 1, 2, . . . , L, the sequence

d
(j)
1 , d

(j)
2 , . . . is monotonically non-decreasing (similar to

sequence {βi}i∈N≥1
), and an arbitrarily close upper bound,

d̄(j), can be computed offline.

Similar treatments can be used to handle constraint (17).
The result is given below directly without proof.

Corollary 7. For any ζi|k in the polytope {ζ : V ζ ≤ θi|k},
constraint (17) is satisfied if there exists a matrix Hc with
non-negative elements such that

HcV = ηT , (29a)

ηTFick + ηT (Φ0)izk +Hcθi|k + fTEM i−1ck ≤ h− βi.
(29b)

The matrices H(j), Hc, V, as well as the parameter-
s θi|k should ideally be optimized online, but treating

H(j), Hc, V and θi|k as free variables implies that the
constraints of (27a), (27b), (29a) and (29b) are nonlinear,
thereby leading to a difficult online optimization problem.
Instead here H(j), Hc and V will be chosen offline subject
to (27a), (29a) and therefore (27b), (29b) will in fact define
linear inequalities in θi|k, which thus leads to an online
quadratic programming problem. To relax constraint (27b)
and (29b), one way to calculate H(j), Hc offline is to
minimise their respective row sums subject to (27a), (29a).

4. TERMINAL CONSTRAINTS

In order to construct a strategy based on finite-dimensional
online and offline optimisation problems, we split the infi-
nite prediction horizon into three stages, making different
assumptions at each stage about the variables that param-
eterise the evolution of predicted states, inputs and tubes.
For given N and N̂ , the three stages are defined as follows.

Stage 1: for i ∈ N[0,N−1], ci|k and θi|k are decision vari-
ables,

Stage 2: for i ∈ N[N,N+N̂ ], ci|k = 0, and θi|k are decision
variables,

Stage 3: for i ∈ N≥N+N̂+1, ci|k = 0 and θi|k = θ̄k is a
decision variable.

This 3-stage approach is a variant of the dual mode pre-
diction strategy that is typically used to limit the number
of decision variables in MPC [Mayne et al., 2000]. However
our approach allows different horizons for the degrees of
freedom parameterising predicted control trajectories and
tube evolution. Hence by using N̂ > 0 the designer can
choose, at the expense of introducing a greater number of
variables in the online optimisation, to mitigate the effects
of the finite parameterisation of predicted tubes.

Although the 3-stage scheme described above leads to a
finite number of decision variables, the number of con-
straints implied by (27b) and (29b) remains infinite. How-
ever, using an extension of the method proposed in Gilbert
and Tan [1991] for LTI systems, the constraints of (27b)
and (29b) over the infinite horizon of Stage 3 are equivalent
to a finite number of linear constraints, as we now show.
In Stage 3, (27b), (29b) can be expressed[

V δΦ(j)

ηT

]
(Φ0)iN zN |k +

[
H(j) − I
Hc

]
θ̄k ≤

[
−d(j)

i
h− βi

]
. (30)

The minimum number of constraints needed to ensure
satisfaction of (30) for all i ∈ N≥N+N̂+1 can be found using
the following result, which we state in terms of the set

Sn = {(zN |k, θ̄k) : (30) holds for all iN+N̂ ∈ N[1,n]}. (31)

Theorem 8. If

max
(zN|k,θ̄k)∈Sn∗

{[
V δΦ(j)

ηT

]
(Φ0)iNzN |k+

[
H(j)−I
Hc

]
θ̄

}
≤
[
−d(j)

i
h−βi

]
for i = N + N̂ + n∗ + 1, then:
(i). (Φ0zN |k + (Φ0)Nw, θ̄k) ∈ Sn∗ for all admissible values
of w;
(ii). (30) holds for all i ∈ N≥N+N̂+1 if (zN |k, θ̄k) ∈ Sn∗ .

Proof. From the definitions of d
(j)
i and βi we have[

d
(j)
i+1
βi+1

]
=

[
d

(j)
i
βi

]
+ max

w

[
V δΦ(j)

ηT

]
(Φ0)iw, (32)
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and the condition of the theorem therefore implies that[
V δΦ(j)

ηT

]
(Φ0)iN(Φ0zN |k+(Φ0)Nw)+

[
H(j)−I
Hc

]̄
θk ≤

[
−d(j)

i
h− βi

]
for i = N + N̂ + n∗. Hence property (i) holds, whereas
property (ii) follows directly from (i) and (32). �

Theorem 8 shows that (zN |k, θ̄k) ∈ Sn∗ constitutes a
terminal constraint ensuring satisfaction of (27b) and
(29b) in stage 3. Furthermore, for each i ∈ N[1,N+N̂+n+1],
βi and d

(j)
i can be computed offline and the condition of

Theorem 8 can be checked offline by solving a sequence
of linear programs. Finally we note that feasibility of (30)
when d

(j)
i and βi are replaced by the asymptotic bounds

d̄(j) and β̄ is a sufficient condition for existence of n∗

satisfying the condition of Theorem 8.

5. STOCHASTIC MPC ALGORITHM

Since the persistent non-zero additive uncertainty wk
exists, the stage cost Ek

(
xTi|kQxi|k + uTi|kRui|k

)
in (6) will

tend asymptotically to a non-zero limit [Cannon et al.,
2009b] and thus the objective of (6) will be infinite.
Accordingly, we take the nominal cost to be the objective:

J̃k =

∞∑
i=0

(
zTi Qzi + (Kzi + ci)

TR(Kzi + ci)
)
,

this can be further written in a lifted form:

J̃k =

∞∑
i=0

([
zi
ci

]T
Q̃

[
zi
ci

])
,

[
zi+1

ci+1

]
= Ψ0

[
zi
ci

]
, (33)

Ψ0 =

[
Φ0 B0E
0 M

]
, ci = M ick, Q̃ =

[
Q+KTRK KTRE
ETRK ETRE

]
,

with ck, M, E defined in (16). Therefore, the nominal cost
is equal to

J̃k =

[
zk
ck

]T
W̃

[
zk
ck

]
, (34)

where W̃ is the solution of the Lyapunov equation W̃ −
(Ψ0)T W̃Ψ0 = Q̃.

Algorithm 1.

Offline: Choose V in (24); compute βi and d
(j)
i and deter-

mine n∗ satisfying the condition of Theorem 8; calculate

W̃ in the cost function (34); set d
(j)
0 = 0.

Online: At each time step k = 0, 1, . . . compute

ck = arg min
ck, z0|k, {θ0|k, θ1|k, ..., θN+N̂|k, θ̄k}

J̃k subject to
V (xk − z0|k) ≤ θ0|k
constraints in Stages 1 and 2:

(27b) for i ∈ N[0,N+N̂−1], (29b) for i ∈ N[1,N+N̂ ],

constraints in Stage 3: θN+N̂ ≤ θ̄k and (zN |k, θ̄k) ∈ Sn∗ .
(35)

Then, using the first element, c0|k, of the optimal value of
ck, implement uk = Kxk + c0|k and repeat the online step
at the next time instant.

Theorem 9. If the online optimisation (35) is feasible at
k = 0, then it remains feasible for all k > 0. Under
Algorithm 1, the probabilistic constraint (4) is satisfied
for all k ≥ 0 and the MPC law converges asymptotically
to the unconstrained feedback law: uk → Kxk as k →∞.

Proof. Assume that the optimisation in (35) is feasible at
instant k and has optimal solution

(ck, z0|k, {θ0|k, θ1|k, . . . , θN+N̂ |k, θ̄k}).
and denote the predicted sequence generated by (10) with
this solution as {z0|k, z1|k, . . . , zN |k}. Then, at time k + 1,
the choice of parameters

(Mck, z1|k + wk, {θ1|k, θ2|k, . . . , θN+N̂ |k, θ̄k, θ̄k})
necessarily satisfies z0|k+1 + ζ0|k+1 = xk+1 for some
ζ0|k+1 ∈ {ζ : V ζ ≤ θ0|k+1} and meets the constraints
of (27b), (29b) for Stage 1 and 2. Furthermore (10) gives
zi|k+1 = zi+1|k + (Φ0)iwk, so property (i) of Theorem 8
ensures that the constraints of Stage 3 are also satisfied
at time k + 1. Hence this choice of parameters gives one
feasible solution of the online optimisation (35) at time
k + 1. The implied recursive feasibility of (35) together
with the property that uk = Kxk is the unconstrained
optimal control law ensures that the perturbation sequence
{c0|0, c0|1, . . .} is in l2 and hence c0|k → 0 as k →∞.
Therefore xk converges asymptotically to the set of states
on which the unconstrained optimal control law uk = Kxk
satisfies constraints, and this unconstrained control law is
stabilising by assumption. �
Remark 10. The online optimization (35) is a standard
quadratic programming problem, and it involves nV (N +

N̂ + 2) + nuN + nx scalar variables. Thus an increase in
nV results in more variables to be optimized online and
more inequality constraints. On the other hand, as nV
represents the number of the tube facets, the larger nV is,
the less conservative the inclusion condition on ζ will be.
Therefore, one needs to make a comprise between tightness
of inclusion and the online computational burden when
choosing nV . However, with the combination of the offline
design of probabilistic tubes and the online optimization of
robust tubes, Algorithm 1 can be efficiently implemented
online and employs guaranteed theoretical properties, i.e.
recursive feasibility and stability with respect to proba-
bilistic constraints.

6. NUMERICAL EXAMPLE

The system model parameters are given as

A0 =

[
1.6 1.1
−0.7 1.2

]
, A(1) =

[
0.11 −0.02
−0.01 0.05

]
, A(2) = −A(1),

B0 =

[
1
1

]
, B(1) =

[
−0.05
0.07

]
, B(2) = −B(1),

Q = [1 0.3] [1 0.3]T , R = 0.1,

and q1k is a uniformly distributed random variable on [0, 1]
and q2k = 1−q1k; each element of wk is a truncated normal
distribution with mean 0 and standard deviation 0.1 and
satisfies: ‖wk‖∞ ≤ 0.12. The constraint set parameters in
(4) are

Ξ :=

{
xk

∣∣∣∣∣
 1 0.3

1 −0.3
−1 −0.3
−1 0.3

xk ≤

1.5
1.5
1.5
1.5

}, p =

0.8
0.8
0.8
0.8

 .

(36)

K is chosen to be unconstrained nominal control law
[−0.9798 − 1.0805]; the lengths of Stage 1 and 2 are set

to be N = 4, N̂ = 6 respectively; nV = 16, and according
to Theorem 8, n∗ = 7.
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For the same initial condition x0 = [1.65 − 5]T , Figure 1
plots the state trajectories 1 and 2 of 100 realizations of un-
certainty under Algorithm 1 and the unconstrained nomi-
nal control law respectively. In this figure, only constraints
2 and 3 of the set (36) are indicated since constraints 1
and 4 are inactive for both algorithms. It is found that
at time instant k = 1, constraint 2 will be violated with
a probability of 100% under the unconstrained control
law. While under Algorithm 1, the violation probabilities
of constraints 2 and 3 are 2.0% and 2.0% respectively
(according to 1000 Monte Carlo simulations), which both
satisfy the probabilistic constraint set (36).

−0.5 0 0.5 1 1.5

−5

−4

−3

−2

−1

0

1

x 2

trajectory 1

trajectory 2

x
1

k=1

constraint 2

constraint 3

k=1

k=0

Fig. 1. Evolution of xk under Algorithm 1 (trajectory 1)
and unconstrained nominal control law (trajectory 2);
state constraints (dashed line).

7. CONCLUSION

In this paper we have presented a stochastic MPC strat-
egy in the presence of both multiplicative and additive
disturbances. Constraint handling is achieved through a
decomposition of the uncertain part of the predicted state
into two parts: the first of which is constrained to lie in
probabilistic tubes that are calculated explicitly offline,
whereas the second part is constrained to lie in tubes
with bounding facets of fixed orientation whose distances
from the origin are optimized online. A tailored invariant
terminal set is investigated to ensure the recursive feasi-
bility and this in turn enables the proof of stability of the
MPC algorithm. The online optimization is transformed
into a quadratic programming problem and thus can be
performed efficiently. The handling of the effects of multi-
plicative uncertainty through the use of robust tubes can
incur a degree of conservativeness, the reduction of which
forms a topic for future research.
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