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Abstract: Modelling dynamic networks is important in different fields of science. At present,
little is known about how different inputs and sensors contribute to the statistical properties
concerning an estimate of a specific dynamic system in a network. We consider two forms of
parallel serial structures, one multiple-input-multiple-output structure and one single-input-
multiple-output structure. The quality of the estimated models is analysed by means of the
asymptotic covariance matrix, with respect to input signal characteristics, noise characteristics,
sensor locations and previous knowledge about the remaining systems in the network. It is shown
that an additive property applies to the information matrix for the considered structures. The
impact of input signal selection, sensor locations and incorporation of previous knowledge is
illustrated by simple examples.

1. INTRODUCTION

Considerable research effort has been devoted to control of
dynamic networks. The modelling problem is less under-
stood. Some contributions to structured systems can be
found in [Dayal and MacGregor, 1997], [Massioni and Ver-
haegen, 2009], [Van den Hof et al., 2013], and [Wahlberg
et al., 2009]. The paper [Gevers et al., 2006] provides an
analysis of which parameter estimates are improved by
different inputs. The aim of this paper is to quantify the
improvement in two specific structures. The first structure
has its origin in boiler control, and has been considered in
the paper [Hägg et al., 2011]; key results concern the case
when there is common dynamics in the subsystems. The
structure also appears, as a special case, when estimating
a subsystem in a dynamic network, using the two-stage
method [Van den Hof et al., 2013]. The second struc-
ture can be an example of a sensor network of spatially
distributed sensors where the sensor dynamics are not
completely known. Given the structure of the network
and a subsystem of interest, our aim is to quantify how
different inputs and sensors improve the estimate of that
particular subsystem, in terms of the asymptotic statistical
properties of the estimator. The main contribution of this
paper is to provide an upper bound on the variance of
an estimate of a subsystem. Additionally the variance
reduction is characterized as a projection onto a certain
row space.

The outline of this paper is as follows. In Section 2 we
state the problem formulation, Section 3 gives some tech-
nical preliminaries. Section 4 contains results for the first
structure, both for an example of m = 2 inputs and the
general case. Similarly, in Section 5, results for the second

⋆ This work was partially supported by the Swedish Research Coun-
cil under contract 621-2009-4017, and by the European Research
Council under the advanced grant LEARN, contract 267381.

structure for an example of m = 2 additional sensors and
the general case can be found. Results are exemplified
in low-order FIR examples in Section 6, and Section 7
concludes the paper.

Notation

We will treat vector valued complex functions as row
vectors, and the inner product of two such functions
f(z), g(z) : C → C1×m is defined as

〈f, g〉 , 1

2π

∫ π

−π

f(eiω)g∗(eiω) dω (1)

where g∗ denotes the complex conjugate transpose of g.
Furthermore f denotes the complex conjugate of f . In
case f, g are matrix valued functions we keep the same
notation whenever the matrix dimensions are compatible.
We denote by ‖f‖ =

√

Tr 〈f, f〉 the L2-norm of f : C →
Cn×m. We call two functions f, g orthogonal if 〈f, g〉 = 0;
if f, g are matrix valued, they are considered orthogonal
if every entry of 〈f, g〉 is zero. A set of functions {Bk}nk=1
is said to be orthonormal if they are mutually orthogonal
with unit L2-norm. If Ψ ∈ Ln×m

2 , we denote by SΨ ⊂ Lm
2

the subspace spanned by the rows of Ψ. For two subspaces
X and Y, such that X ⊆ Y ⊆ Lm

2 , X⊥(Y) denotes the set
of functions in Y that are orthogonal to X . We denote the
orthogonal projection of f onto the space SΨ by PSΨ

[f ],
i.e., PSΨ

[f ] is the unique solution to

min
g∈SΨ

‖g − f‖.

A sequence of subspaces {Xn}, Xn ⊆ Lm
2 is said to

converge to Y ⊆ Lm
2 if for any f ∈ Lm

2

lim
n→∞

‖PXn [f ]− PY [f ]‖ = 0. (2)

We denote this by limn→∞ Xn = Y or simply Xn → Y as
n → ∞. The asymptotic covariance matrix of a stochastic
sequence {fN}∞N=1, fN ∈ Cq is defined as
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Fig. 1. Structure 1: Parallel serial structure.
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Fig. 2. Structure 2: Multi-sensor structure.

AsCov fN , lim
N→∞

N ·E
[

(fN − EfN)T (fN −EfN )
]

.

For a differentiable function f : Rn → Cq, f ′(x̄) is a

n × q matrix with
dfj(x)
dxi

∣

∣

∣

x=x̄
as (i, j)th entry. For a row

vector X , we will denote by diag{X} the matrix with the
elements of X in the main diagonal and where all other
elements equal zero. The vec {X} operator transforms a
matrix into a vector by stacking the columns of X on
top of each other [Seber, 2008]. ⊗ denotes the Kronecker
product [Seber, 2008]. We use the notation A† for the
Moore-Penrose pseudo inverse of A. Function arguments
will, for clarity and lack of space, often be omitted.
However, they should be clear from the context.

2. PROBLEM FORMULATION

We consider two types of networks of linear dynamic
systems, where we wish to identify subsystem Gm+1. The
first is the parallel serial (cascade) structure considered in
[Hägg et al., 2011], see Figure 1.
Structure 1:

ym+1(t) =

m
∑

k=1

Gm+1(q)Gk(q)uk(t) + em+1(t), (3a)

yk(t) = Gk(q)uk(t) + ek(t), k = 1, . . . ,m, (3b)

where q denotes the forward shift operator, i.e., q−1u(t) =
u(t − 1) using normalized sampling time. The second is
the multi-sensor structure of Figure 2. The structure is
modelled as
Structure 2:

yk(t)=Gk(q)Gm+1(q)u(t) + ek(t), k = 1, . . . ,m, (4a)

ym+1(t)=Gm+1(q)u(t) + em+1(t). (4b)

We assume that the additive zero mean white noise se-
quences {ei(t)} are mutually independent, and indepen-
dent of the input u(t), with variances λi, i = 1, . . . ,m+ 1.
The input is assumed to be a realization of a weakly sta-
tionary stochastic process with spectrum Φu. The models
of the subsystems are independently parametrized with
θ = [θ1, . . . , θm+1], where θi ∈ Rdi , di ∈ R for all i =
1, . . . ,m+ 1. We assume the model structure is uniformly
stable (see [Ljung, 1999]), the true system is in the model
set and we denote the true parameters by θo, that is,

Gk(q) = Gk(q, θ
o
k), k = 1, . . . ,m. (5)

We assume that the parameter vector θ is estimated from
a data set of measured inputs and outputs of sample
size N using the prediction error method, and we denote

the estimate by θ̂N . Under mild regularity conditions
(see [Ljung, 1999] for details), as N goes to infinity, the

parameter error
√
N(θ̂N − θo) converges in distribution

to a normal distribution with zero mean and covariance
matrix P , which we conveniently denote by√

N(θ̂N − θo) ∈ AsN (0, P ). (6)

Here P is the asymptotic covariance matrix of the param-
eter estimates, which we assume for the moment can be
written as

Pθ = AsCov θ̂N = 〈Ψ,Ψ〉† , (7)

where Ψ : C → Cn×m, for some integer m > 0, which in
our case corresponds to the number of subsystems. All
the elements of Ψ are assumed to belong to L2

1 . Let
J : R1×n → C1×q be a differentiable function of θ. From
(6), it follows that√

N(J(θ̂N )− J(θo)) ∈ AsN (0,AsCov J(θ̂N )). (8)

Using the Gauss’ approximation formula (or delta method)
[Ljung, 1999] and (6) it can be shown that

AsCov J(θ̂N ) = ΛT [〈Ψ,Ψ〉]†Λ, (9)

where Λ is the derivative Λ , J ′(θo) ∈ Cn×q. We will
use the formulation of the asymptotic covariance matrix
given in [Agüero et al., 2012](Theorem 4) which, under our
assumptions 2 and adapted to our notation, is

P−1
θ =

〈

[

∂L

∂θT

]H

Wχ,

[

∂L

∂θT

]H
〉

, (10)

where
L = vec {G} , Wχ = ΦT

u
⊗ Φ−1

e , (11)

and G is the transfer function matrix between all inputs
and all outputs.

3. TECHNICAL PRELIMINARIES

Here we recall some technical preliminaries that reformu-
late the Schur complement into orthogonal projections.

Lemma 3.1. Let f ∈ Ll
2 and let Sm

n be a (closed) subspace
of Lm

2 with orthonormal basis {Bk}nk=1. Then

PSm
n
[f ] ,

n
∑

k=1

〈f,Bk〉 Bk (12)

is the orthogonal projection of f onto Sm
n .

1 This is the standard situation when the true parameter vector
corresponds to a stable predictor in the prediction error method, see
[Ljung, 1999].
2 The main simplification of the general formula of [Agüero et al.,
2012] comes from knowing the noise models and the noise variances.
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Proof. See, e.g., [Friedman, 1970]. ✷

Lemma 3.2. (Lemma II.3 in [Hjalmarsson andMårtensson,

2011]) Let γ ∈ Lq×m
2 , Ψ ∈ Ln×m

2 . Then the orthogonal
projection of the rows of γ onto SΨ (the subspace to Lm

2
spanned by the rows of Ψ) is given by

PSΨ
[γ] = 〈γ,Ψ〉 [〈Ψ,Ψ〉]†Ψ. (13)

Furthermore

〈γ,Ψ〉 [〈Ψ,Ψ〉]† 〈Ψ, γ〉 = 〈PSΨ
[γ],PSΨ

[γ]〉 . (14)

Finally it holds that

〈PSΨ
[γ],PSΨ

[γ]〉 =
r

∑

k=1

〈γ,Bk〉 〈Bk, γ〉 (15)

where {Bk}rk=1, for some r ≤ n, is any orthonormal basis
of SΨ.

Lemma 3.3. Assume that the asymptotic covariance ma-
trix for a vector θ = [θ1 θ2], θ1 ∈ Rn1 , θ2 ∈ Rn2 , can be
written as

P−1
θ = 〈Ψ,Ψ〉 =

[

〈Ψ1,Ψ1〉 〈Ψ1,Ψ2〉
〈Ψ2,Ψ1〉 〈Ψ2,Ψ2〉

]

(16)

where Ψ =
[

ΨT
1 ΨT

2

]T
, Ψ1 ∈ Ln1×m

2 , Ψ2 ∈ Ln2×m
2 , and

Ψ1(e
jω)ΨT

1 (e
−jω) is positive semidefinite and has rank p.

Then the asymptotic covariance matrix for θ2 is

Pθ2 =
[

〈Ψ2,Ψ2〉 −
〈

PSR1
[γ],PSR1

[γ]
〉]†

(17)

with γ = Ψ2Ψ
H
1 [R†

1]
H , where R1 is a spectral fac-

tor of Ψ1(e
jω)ΨT

1 (e
−jω), that is, Ψ1(e

jω)ΨT
1 (e

−jω) =
R1(e

jω)RT
1 (e

−jω) such that the function R1(z) is analytic
in the unit disc and has rank p for all z in this domain.

Proof. The spectral factor R1 exists under the given
assumptions, see Theorem 10.1 in [Rozanov, 1967]. Rewrit-
ing

〈Ψ2,Ψ1〉 =
〈

Ψ2Ψ
H
1 [R†

1]
H , R1

〉

, (18)

and applying the standard inverse of a partitioned matrix
[Horn and Johnson, 1990] and Lemma 3.2 proves the
Lemma. ✷

In the next lemma, we let number of estimated parameters
in the m first subsystem grow large to make the projection
trivial to calculate.

Lemma 3.4. Let Ψ be defined as in Lemma 3.3 and assume
that Ψ1 = Γ1Ψ̃1 and Ψ2 = Γ2Ψ̃2 for some Γ1 ∈ Ln1×m1

2 ,
Γ2 ∈ Ln2×m2

2 , Ψ̃1 ∈ Lm1×m
2 and Ψ̃2 ∈ Lm2×m

2 , and that

rank
{

Ψ̃1Ψ̃
H
1

}

= m1. If SΓ1
= Lm1

2 , then

Pθ2 =
[〈

Γ2(Ψ̃2Ψ̃
H
2 − γγH),Γ2

〉]−1

, (19)

with γ = Ψ̃2Ψ̃
H
1 [R−1

1 ]H , where R1 is a spectral factor of
Ψ1(e

jω)ΨT
1 (e

−jω), analytic in the unit disc with rank m1

for all z in this domain.

Proof. R1 is an invertible mapping, hence SΓ1R1
= SΓ1

=
Lm1

2 , which implies PSΓ1R1
[Γ2γ] = PL

m1
2

[Γ2γ] = Γ2γ in

Lemma 3.3. ✷

4. STRUCTURE 1: PARALLEL SERIAL STRUCTURE

In this section we study the parallel cascade structure
described by Equation 3, visualized in Figure 1. Before

giving the general theorem, it is instructive to consider
the case m = 2. When m = 2,

P−1
θ = 〈ΓA,Γ〉 ,

where

A =

[

Ψ̃1Ψ̃
H
1 Ψ̃1Ψ̃

H
2

Ψ̃2Ψ̃
H
1 Ψ̃2Ψ̃

H
2

]

Ψ̃2Ψ̃
H
1 =

[

Φu1
G1G3

λ3

Φu2
G2G3

λ3

]

Ψ̃1Ψ̃
H
1 = diag

{

Φu1

λ1
+
Φu1

|G3|2
λ3

,
Φu2

λ2
+
Φu2

|G3|2
λ3

}

Ψ̃2Ψ̃
H
2 =

Φu1
|G1|2
λ3

+
Φu2

|G2|2
λ3

,

Γ1 = diag
{

G′
1, G

′
2

}

, Γ2 = G′
3.

Notice that rank
{

Ψ̃1Ψ̃
H
1

}

= 2 when Φu1
,Φu2

> 0. We

let the number of estimated parameters in θ1 and θ2 grow
large. Naturally, if SG′

1
,SG′

2
→ L2, then, SΓ1

→ L2
2. From

Lemma 3.4 we have that

lim
SΓ1

→L2
2

Pθ3 =
[〈

G′
3 (Mu1

+Mu2
) , G′

3

〉]−1

(20)

where

Muk
=

Φuk
|Gk|2

λ3 + |G3|2λk

, k = 1, 2. (21)

Remark 1. Notice that if we only use input u1, we obtain
the covariance matrix

Pθ3 =
[〈

G′
3Mu1

, G′
3

〉]−1

(22)

and similar results hold if we only use u2. The information
is additive, which may come as no surprise considering that
the same kind of relations hold for optimal combination of
uncorrelated estimators cf. [Kailath et al., 2000].

For m input signals we have the following theorem.

Theorem 4.1. Consider structure 1 with m inputs, and
define

Γ1 = diag
{

G′
1, . . . , G

′
m

}

, Γ2 = G′
m+1.

If SG′

1
,SG′

2
, . . . ,SG′

m
→ L2, SΓ1

→ Lm
2 . Then

lim
SΓ1

→Lm
2

Pθm+1
=

[〈

G′
m+1

m
∑

k=1

Muk
, G′

m+1

〉]−1

(23)

where

Muk
=

Φuk
|Gk|2

λm+1 + |Gm+1|2λk

, k = 1, . . . ,m. (24)

Proof. The proof is provided in Appendix A

5. STRUCTURE 2: MULTI SENSOR STRUCTURE

In this section we study the multi sensor structure de-
scribed by Equation 4, visualized in Figure 2. For this
structure, we also first consider the case m = 2, before
providing the general formulation. For m = 2 additional
sensors

P−1
θ = 〈ΓA,Γ〉

where
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A =

[

Ψ̃1Ψ̃
H
1 Ψ̃1Ψ̃

H
2

Ψ̃2Ψ̃
H
1 Ψ̃2Ψ̃

H
2

]

Ψ̃2Ψ̃
H
1 =

[

ΦuG1G3

λ1

ΦuG2G3

λ2

]

Ψ̃1Ψ̃
H
1 = diag

{

Φu|G3|2
λ1

,
Φu|G3|2

λ2

}

Ψ̃2Ψ̃
H
2 =

Φu|G1|2
λ1

+
Φu|G2|2

λ2
+
Φu

λ3

Γ1 = diag
{

G′
1, G

′
2

}

, Γ2 = G′
3.

Notice that rank
{

Ψ̃1Ψ̃
H
1

}

= 2 when Φu|G3|2 > 0. That

is, we assume that

Φu(ω) > 0, |G3(e
iω)|2 > 0, ω ∈ [−π, π]. (25)

We let the number of estimated parameters in θ1 and θ2
grow large. Naturally, if SG′

1
,SG′

2
→ L2, then, SΓ1

→ L2
2.

From Lemma 3.4 we obtain

lim
SΓ1

→L2
2

Pθ3 =
[〈

Γ2(Ψ̃22Ψ̃
H
22 − γγH),Γ2

〉]−1

(26)

γγH =
Φu|G1|2

λ1
+
Φu|G2|2

λ2
. (27)

We see that

lim
SΓ1

→L2
2

Pθ3 =
[〈

G′
3Φuλ

−1
3 , G′

3

〉]−1

. (28)

Notice that this is the same covariance matrix as if we
would only use output y3. This also holds for any number
of outputs satisfying the constraints of structure 2.

Theorem 5.1. Consider structure 2 with m additional sen-
sors, and assume that

Φu(ω) > 0, |Gm+1(e
iω)|2 > 0, ω ∈ [−π, π]. (29)

Define

Γ1 = diag
{

G′
1, . . . , G

′
m

}

, Γ2 = G′
m+1.

If SG′

1
,SG′

2
, . . . ,SG′

m
→ L2, SΓ1

→ Lm
2 , then

SΓ1
→ Lm

2

and

lim
SΓ1

→Lm
2

Pθm+1
=

[〈

G′
m+1Φuλ

−1
m+1, G

′
m+1

〉]−1

. (30)

Proof. The proof is constructive and provided in Ap-
pendix B

Remark 2. The gain in information becomes arbitrary
small when the number of estimated parameters grow
large. This might (wrongly) lead us to the conclusion that
if we do not know the sensor dynamics completely we
should not bother with the additional sensors. However,
if we can restrict the dimension of the space SΓ1

(knowing
some parts of the dynamics for example) we still gain in-
formation. In fact, we can quantify the gain in information
as a projection.

Theorem 5.2. Consider the same assumptions as in Theo-
rem 5.1. Then

Pθm+1
=

[

〈Γ2S,Γ2〉 −
〈

PS
Γ1Ψ̃1

[Γ2γ],PS
Γ1Ψ̃1

[Γ2γ]
〉]−1

(31)

=
[〈

Γ2Φuλ
−1
m+1,Γ2

〉

+M
]−1

(32)

where the gain in information M is given by

M =

〈

PS⊥

Γ1Ψ̃1

[Γ2γ],PS⊥

Γ1Ψ̃1

[Γ2γ]

〉

, (33)

Proof. The proof is provided in Appendix C

Remark 3. The information gain is a continuum where
another extreme is knowing the m additional sensors
exactly, which corresponds to S⊥

Γ1Ψ̃1

= Lm
2 . In that case,

M is given by

M =
〈

Γ2γγ
H ,Γ2

〉

=

〈

Γ2

m
∑

k=1

Φu|Gk|2λ−1
k ,Γ2

〉

. (34)

6. FIR EXAMPLES

We verify the correctness of the presented results on
Monte-Carlo simulations of FIR systems. In all exam-
ples N = 1000 measurements are used and the sample
variances of the frequency function estimate of 500 noise
realisations is computed using (9). The noise source and
input are assumed mutually independent zero mean Gaus-
sian white noise with unit variance. When input r2 is not
considered it is put to zero. The estimates are computed
as the minimizer of 3

f(θ) =
N

2
ln det

{

N
∑

t=1

ǫ(t)TΛǫ(t)

}

(35)

where ǫ(t) = y(t) − ŷ(t), Λ = diag
{

λ−1
1 , . . . , λ−1

m+1

}

. We
consider examples with m = 2 inputs and 3 FIR systems,
all with true order p = 3, i.e.

G1 = G2 = 1+ 0.5q−1 + 0.25q−2,

G3 = 1+ 0.2q−1 + 0.04q−2.

The systems G1, G2 are estimated with 30 parameters and
the system of interest in all examples,G3, is estimated with
3 parameters:

Ĝi =

29
∑

k=0

ĝi,kq
−k i = 1, 2, Ĝ3 =

2
∑

k=0

ĝ3,kq
−k.

For structure 1, the parallel serial structure, the sample
covariance of the transfer function estimates shows strong
similarity to the asymptotic (both in samples and pa-
rameters) theoretic expression, see Figure 3. In the case
m = 1, then r2 = 0 and G3 is estimated. Knowing the
first impulse response coefficient of G1 and G2 gives only
a minor reduction in variance of Ĝ3 as seen in Figure 4.

For structure 2, the multi sensor structure, the variance
of the transfer function estimate Ĝ3 does not improve by
using also y2, and is the same as what would be achieved
by only using y3, cf. Figure 5. When we know the first
coefficient of G1 and G2, the estimate of the first impulse
response coefficient g3,1 is improved which results in a

lower variance for the estimated transfer function Ĝ3,
cf. Figure 6. In contrast to Structure 1, knowing some
parameters in G1 and G2 makes all the difference, cf.
Figure 4 and Figure 6.

7. CONCLUSION

We have examined the variance of the estimate of one
systems in the network, when little assumptions where
made on the remaining systems in the network. We de-
rived asymptotic variance expressions for two types of
structured dynamic systems. The information from us-
ing additional inputs was shown to be additive. Previous
3 The prediction error method is efficient in the Gaussian case
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Fig. 6. Structure 2: Comparison of Monte-Carlo simula-
tions (MC) for m = 2 when the first impulse response
coefficient of G1 and G2 are known.

knowledge about the additional sensors in the multi sensor
structure is imperative for a variance reduction, in fact,
without prior knowledge there is no asymptotic variance
reduction.
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ance results for identification of cascade systems. Auto-
matica, 45(6):1443 – 1448, 2009.

Appendix A. PROOF OF THEOREM 4.1

We define Vk ∈ L(m+1)×m as

[Vk]ij =

{

1, i = j = k,
0, otherwise,

and Qk ∈ L(m+1)×1 as

[Qk]i =







Gm+1, i = k,
Gk, i = m+ 1,
0, otherwise.

Let

Wχk
= Φuk

· diag
{

λ−1
1 , . . . , λ−1

m+1

}

.

We can write
[

Lπ

∂θT

]H

= ΓL, Γ = diag
{

G′
1, . . . , G

′
m+1

}

and Γ should be interpreted as block wise diagonal, where

L = [V1 Q1 . . . Vm Qm] .

Then,

P−1
θ = 〈ΓLWχ,ΓL〉 = 〈ΓA,Γ〉

where

A =

m
∑

k=1

[Vk Qk]Wχk

[

Vk

Qk

]

.

It is readily verified that

A =

[

D T
TH S

]

where

Dij =

{

Φui
(λ−1

i + |Gm+1|2λ−1
m+1), i = j,

0, otherwise,

T ∈ Lm+1×1 is given by

[T ]i = Φui
GiGm+1λ

−1
m+1

and

S =

m
∑

k=1

Φuk
|Gk|2λ−1

m+1.

We identify

Ψ̃2Ψ̃
H
1 = TH , Ψ̃1Ψ̃

H
1 = D, Ψ̃2Ψ̃

H
2 = S

and

Γ1 = diag
{

G′
1, . . . , G

′
m

}

, Γ2 = G′
m+1.

Notice that rank {D} = m when Φu1
, . . . ,Φum

> 0. We let
the number of estimated parameters in θ1, . . . , θm grow
large. Naturally, if SG′

1
,SG′

2
, . . . ,SG′

m
→ L2, SΓ1

→ Lm
2 .

From Lemma 3.4 we have that

lim
SΓ1

→Lm
2

Pθm+1
=

[〈

Γ2(S − γγH),Γ2

〉]−1
(A.1)

γγH =

m
∑

k=1

Φuk
|GkGm+1|2λ−2

m+1

λ−1
k + |Gm+1|2λ−1

m+1

, (A.2)

and the theorem follows after some simplifications.

Appendix B. PROOF OF THEOREM 5.1

We can write
[

Lπ

∂θT

]H

= ΓL, Γ = diag
{

G′
1, . . . , G

′
m+1

}

where Γ should be interpreted as block wise diagonal, and

L =











Gm+1

. . .

Gm+1

G1 . . . Gm 1











Wχ = Φu ⊗ diag
{

λ−1
1 , . . . , λ−1

m+1

}

.

Then,
P−1
θ = 〈ΓLWχ,ΓL〉 = 〈ΓA,Γ〉 , (B.1)

where

A =

[

D T
TH S

]

with

Dij =

{

|Gm+1|2λ−1
i , i = j,

0, otherwise,

T ∈ Lm+1×1 is given by

[T ]i = ΦuGm+1Giλ
−1
i

and

S = Φuλ
−1
m+1 +

m
∑

k=1

Φu|Gk|2λ−1
k .

The next step is to apply Lemma 3.4. We identify

Ψ̃2Ψ̃
H
1 = TH , Ψ̃1Ψ̃

H
1 = D, Ψ̃2Ψ̃

H
2 = S

and
Γ1 = diag

{

G′
1, . . . , G

′
m

}

, Γ2 = G′
m+1.

To ensure that rank
{

Ψ̃1Ψ̃
H
1

}

= m, we again assume that

Φu(ω) > 0, |Gm+1(e
iω)|2 > 0, ω ∈ [−π, π]. (B.2)

We let the number of estimated parameters in θ1, . . . , θm
grow large. Naturally, if SG′

1
, . . . ,SG′

m
→ L2, then, SΓ1

→
Lm
2 . From Lemma 3.4 we have that

lim
SΓ1

→Lm
2

Pθm+1
=

[〈

Γ2(S − γγH),Γ2

〉]−1
(B.3)

γγH =

m
∑

k=1

Φu|Gk|2λ−1
k , (B.4)

and the theorem follows after some simplifications.

Appendix C. PROOF OF THEOREM 5.2

We notice that

Γ2(S − Φuλ
−1
m+1)Γ

H
2 = Γ2γ(Γ2γ)

H (C.1)

=
〈

PLm
2
[Γ2γ],PLm

2
[Γ2γ]

〉

. (C.2)

Applying Lemma 3.3 to Equation (B.1) we see that

Pθm+1
=

[

〈Γ2S,Γ2〉 −
〈

PS
Γ1Ψ̃1

[Γ2γ],PS
Γ1Ψ̃1

[Γ2γ]
〉]−1

(C.3)

=
[〈

Γ2Φuλ
−1
m+1,Γ2

〉

+M
]−1

(C.4)

where the gain in information M is given by

M =

〈

PS⊥

Γ1Ψ̃1

[Γ2γ],PS⊥

Γ1Ψ̃1

[Γ2γ]

〉

, (C.5)

where S⊥

Γ1Ψ̃1

= S⊥

Γ1Ψ̃1

(Lm
2 ).
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