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Abstract:
In this paper, a model-based strategy for the air-path, fuel injection timing, and fuel pressure
control of a heavy-duty Diesel engine is presented. The engine system is a six-cylinder Diesel
engine, equipped with a dual-stage fixed geometry turbo system and a variable valve actuation
(VVA) system. The VVA operates on the intake valves, and realizes a late Miller combustion
cycle. The control strategy implemented is a multilinear - model predictive control (MPC), which
manipulates the intake valve hold and closure timing, the fuel injection timing, and the needle
opening pressure. The MPC objectives are: (i) to keep NOx emissions under a reference level,
(ii) to keep the air-fuel ratio over a certain reference, while (iii) minimizing fuel consumption
under other constraints. The use of a model predictive control strategy is motivated by the fact
that the system is a multi-input multi-output system, with several constraints applied to it. This
paper presents the applied control strategy and simulation results illustrating the potential of
the proposed control. The simulation results show that the control strategy is applicable, and
that the fuel consumption is minimized, but also that further refinements are required.

Keywords: Diesel engines; Engine control; Model predictive control; Variable valve timing
control; Constraints.

1. INTRODUCTION

Environmental requirements of Diesel engines have con-
tinuously increased over the last years. Consequently, new
developments have been required in order to fulfill the
new emissions legislation limits, as well as to improve the
performance of the engines, and for example, reducing
fuel consumption. Some of those developments have been
related to the engines intake valves.

Intake valve closing has a significant impact on the fresh
air amount, and thus influences fuel efficiency and engine
performance Deng and Stobart [2009]. Alvarenga et al.
[2012] proposes a map of the valve management strategies
according to the engine operating conditions for an engine
with early intake valve closing. Simulation studies have
shown the benefits by late intake valve closing (LIVC),
brake-specific fuel consumption (BSFC) benefits are shown
in Deng and Stobart [2009], as well as the emissions
benefits in He et al. [2009]. Different approaches to control
intake valve actuation have been demonstrated (Plianos
and Stobart [2007], Wu and Wang [2009]). In Plianos and
Stobart [2007], a feedback linearization technique is used
to control the air system of an engine equipped with intake
variable valve actuation (VVA), exhaust gas recirculation
(EGR), and variable geometry turbine (VGT). In Wu and
Wang [2009], an intake valve actuation governed by a
genetic algorithm that minimizes BSFC is proposed.
? This work has mainly been carried out within the EU 7th Frame-
work Program in the EU project CORE.

The additional hardware has increased the complexity of
the control strategies with multiple coupled actuators. In
order to obtain a desirable behavior of systems with several
output variables, by simultaneously manipulating several
input variables, a multivariable control is needed. Since
the controller not only has to compute the optimal control,
but must also deal with a constrained system, the method
chosen in this work is the model predictive control (MPC).
MPC is a control strategy that uses a model of the system
in order to predict future outputs, and to determine an
optimal control sequence that optimizes a cost function
Camacho et al. [2004], Maciejowski [2002]. The optimal
control sequence is computed at each decision instant, and
only the first control signal is applied to the system. MPC
has already been successfully applied to the Diesel engine
air path. In for example, Ferreau et al. [2007], Ortner et al.
[2009], Wahlström and Eriksson [2013], MPC was applied
to the air-path of Diesel engines equipped with an EGR
valve and a VGT.

The main objective of this work is to implement a transient
control of a VVA system with LIVC, also called added
motion system, using a multivariable controller and model-
based techniques.

This paper is organized as follows. In Sections 2 and 3,
the problem is formulated. In Section 4, the models used
in the proposed control design are described. In Section
5, simulation results are presented and discussed. Finally,
Section 6 concludes the paper.
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2. PROBLEM FORMULATION

The aim of this work is to design a controller that min-
imizes the fuel consumption and emissions along a driv-
ing cycle. The combustion performance with respect to
BSFC, brake-specific oxides of nitrogen (BSNOx), and
particulate emissions depends highly on combustion rate
and air-fuel ratio (AFR), Lancefield [2003]. The ignition
timing depends on advanced fuel injection timing and
LIVC timing, Murata et al. [2006]. To avoid particulate
emissions a constraint on AFR is applicable. The AFR
is related to control of high pressure fuel injection (con-
trolled by needle opening pressure, NOP) and air-charging,
Murata et al. [2006]. Consequently, in addition to intake
valve timing, also advanced injection timing, and NOP
need to be controlled simultaneously. Hence, manipulated
variables considered in this context are intake valve hold
(IVH), intake valve close (IVC), advanced angle (advanced
injection timing) and NOP.

Consequently, the control objectives of the proposed ap-
proach, to be translated into an optimization problem in
the following section, are:

• Fuel consumption should be minimized.
• NOx emissions should be below a set point NOxsmax

(soft limit).
• Air-fuel ratio should be greater than a set point
AFRsmin (soft limit).

3. MPC DESIGN

MPC is based on an online optimization and a prediction
model of the system, to obtain optimal control actions.
A typical MPC scheme involves a linear process model,
linear constraints, and a quadratic objective function. It
is a quadratic programming (QP) problem which can be
solved online with a QP solver efficiently.

The discrete-time state-space linear model used in the
MPC has the following form:

x(k + 1) =Ax(k) +Bcuc(k) +Bdud(k)

y(k) =Cx(k) +Dcuc(k) +Ddud(k) (1)

where A, Bc, Bd, C, Dc, and Dd are the state space
matrices, x is the vector of state variables, uc the control
inputs, ud the measured disturbances, and y the outputs:

uc = [uivh, uivc, uadvangle, unop]
T (2)

ud = [ne, uδ]
T (3)

y = [BSNOx,BSFC,AFR]T (4)

This is, the control inputs are IVH (uivh), IVC (uivc), fuel
injection timing—advanced angle (uadvangle), and NOP
(unop). The measured disturbances are engine speed (ne)
and injected fuel (uδ). The model outputs are BSNOx,
BSFC, and AFR. Note that the control signals not only
include the intake valve timings, but also the advanced
injection timing and NOP, which also influences emissions
and fuel consumption as was mentioned in Section 2.

The control problem of a Diesel engine air path, to be
solved at each sample time, is formulated as an optimal
problem with constraints as:

min
U

q1

N2−1∑
j=N1

y2(k + j + 1)

+

Nc−1∑
j=0

||uc(k + j)− uc(k + j − 1)||2Q2

+q3

N1+Nc−1∑
j=N1

ε1(k + j + 1)

+q4

N1+Nc−1∑
j=N1

ε2(k + j + 1) (5)

s.t. x(k+j+1) =Ax(k+j) +Bcuc(k+j) +Bdud(k+j)

j = 0, . . . , N2 − 1

y(k + j) =Cx(k + j) +Dcuc(k+j) +Ddud(k+j)

j = 0, . . . , N2

uc(k + j)≥ ucmin j = 0, . . . , Nc − 1

uc,2(k + j)≥ uc,1(k + j) j = 0, . . . , Nc − 1

uc(k + j)≤ ucmax j = 0, . . . , Nc − 1

uc(k + j) = uc(k +Nc − 1) j = Nc, . . . , N2

AFRsmin(k)≤ y3(k + j + 1) + ε2(k + j + 1)

j = N1, . . . , N2 − 1

ε2(k + j + 1)≥ 0 j = N1, . . . , N1 +Nc − 1

ε2(k + j + 1) = ε2(k +N1 +Nc)

j = N1 +Nc, . . . , N2 − 1

y1(k + j + 1)≤NOxsmax(k) + ε1(k + j + 1)

j = N1, . . . , N2 − 1

ε1(k + j + 1)≥ 0 j = N1, . . . , N1 +Nc − 1

ε1(k + j + 1) = ε1(k +N1 +Nc)

j = N1 +Nc, . . . , N2 − 1 (6)

Where ε1 and ε2 are the slack variables representing the
constraint violations of the soft constraints, i.e. ε = 0 if
the constraints are satisfied. Nc is the control horizon, and
N1 and N2 are the lower and higher prediction horizons,
respectively. The first summation of the objective function
(5) minimizes the fuel consumption, and the second one
penalizes changes in the control signals. The last two
summations try to keep the slack variables at zero, if
possible.

In (6), hard constraints are imposed on the control inputs,
which should belong to the interval [ucmin, ucmax].

The MPC optimization problem is reformulated in the
form of a standard QP problem, so that it can be solved
using an online QP solver:

min
U

1

2
UTHU + UT g(w)

s.t. GU ≤ b(w) (7)

with two fixed matrices, the Hessian matrix H and the
constraint matrix G; and two vectors depending affinely on
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a varying parameter w, the gradient vector g(w) = h+Fw
and the constraint vector b(w) = e+ Ew, where

w= [xT (k) uTd (k) . . . uTd (k +N2) AFRsmin(k)

NOxsmax(k) uTc (k − 1)]T (8)

H, h, F , G, e, and E are calculated offline from (5) and
(6). Note that for solving the optimization problem, a
prediction of the disturbances ud during the prediction
horizon N2 is needed. In this work, it is assumed that ud
is constant within the prediction horizon, and equal to the
values measured at time k.

4. LINEAR MODELS

In the operating range of the engine, due to nonlinearities
in the system, it is not possible to obtain only one linear
model accurate enough for control purposes. The solution
chosen in this work is to consider a multilinear approach,
i.e. the operating range is partitioned into separate regions
and local linear models are applied to each region.

Multiple local linear models are obtained from a highly
complex nonlinear gas exchange model of the engine at
different stationary operating points. In this way, the MPC
uses at each time step, the linear model corresponding to
the closest operating point. The operating points are the
combinations of positions of the control inputs and values
of the measured disturbances, namely IVH positions, IVC
positions, advanced angles, nozzle-opening pressures, fuel
injections, and engine speeds.

Local linear models suitable for control purposes, and
derived uniquely from first principles, could be difficult to
obtain and identify. Because of that, in order to capture
the dynamics of the engine, the model identification is
empirically performed, by completing matrices A, Bc, Bd,
C,Dc, andDd of model (1), given a set of input and output
variables

y = [y1, y2, y3]T = [BSNOx,BSFC,AFR]T . (9)

The parameters of the models are estimated using a
subspace iteration method described in Ljung [1999]. Low-
order models obtained have demonstrated to capture the
most important characteristics of the system dynamics.
As example of this, Figure 1 depicts the applied input
signals, and Figure 2 shows the simulated response of one
of the linear models of 4th order and the outputs using the
nonlinear model. For this linear model, the normalized root
mean square error (NRMSE) that measures the goodness
of fit for each output, is approximately 84%, where 100%
represents a perfect fit. In average, the NRMSE for all the
obtained linear models is 84.5%, showing that the obtained
models can capture the dynamics of the system sufficiently.

4.1 State variables estimation

In order to solve the MPC problem stated in (5) and (6),
information about the state variables is required. A set of
linear observers are used at each time step to estimate the
state variables of all the linear models, and in this work,
these observers are linear Kalman filters. A brief overview
of them is given below.
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Fig. 1. Input excitation signals used for the identification
of the linear models.
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Fig. 2. Comparison of the simulated response of one of
the linear models and the corresponding estimates by
using the nonlinear model.
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The Kalman filter is a well-known method for estimating
the state variables of dynamic systems by means of a set
of recursive equations, Welch and Bishop [1995]. There are
two main steps, the first one “Time Update”, and the sec-
ond one “Measurement Update”. In the time update, the
states at the current time step are estimated based on the
states and its covariance from the previous time step. In
the measurement update, the measurement information at
the current time step is considered to refine the estimated
states. Let us assume that the controlled-process has a
state vector x ∈ Rn, and the process is governed by the
linear stochastic difference equation

xk = Axk−1 +Buk + wk−1, (10)

with a measurement z ∈ Rm that is

zk = Hxk + vk. (11)

The random variables wk and vk represent the process
and measurement noise, respectively. They are assumed to
be independent from each other, white, and with normal
probability distributions, process noise covariance Q and
measurement noise covariance R.

5. SIMULATION RESULTS

The engine that was used in these experiments, is a six
cylinder heavy-duty Volvo Diesel engine with 13 L dis-
placement rated at 460 HP. This six cylinder Diesel engine
has a geometric compression ratio of 18:1. A schematic of
the engine architecture is presented in Figure 3.

A detailed nonlinear model is used to evaluate the per-
formance of the MPC controller that uses multiple linear

Fig. 3. Schematic drawing of the Diesel engine with VVA
used for control and simulation. This figure shows the
engine system excluding the after-treatment systems.
The engine system comprises: the six-cylinder engine
with unit injectors (UI) and NOP for fuel control,
the intake valves with IVH and IVC actuation, the
dual-stage fixed geometry turbo and charge air cooler
(CAC).
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Fig. 4. Illustration of the engine operating cycle used
in this study. The upper plot shows the normalized
engine torque demand, and the lower plot shows the
engine speed.

models. The QP problem of the MPC, (7), is solved using
the open-source software package qpOASES, Ferreau et al.
[2008].

The number of stationary operating points used to obtain
the local linear models is 162. These operating points
covers the operating region and are obtained from a regular
grid of a 6-dimensional Euclidean space as follows: 3 engine
speeds, 3 fuel injections, 2 advance angles, 3 needle opening
pressures, and 3 IVH-IVC positions.

The sampling time is set to 100 ms. The control horizon
Nc, the lower prediction horizon N1, and the higher
prediction horizon N2, are set to 2, 10, and 20 samples,
respectively.

The input signals, engine speed, and demanded torque,
follow a step sequence which changes every 10 seconds as
shown in Figure 4.

For a sake of simplicity, the AFRsmin value is assumed
constant, so its normalized value λsmin is:

λsmin =
AFRsmin
AFRstoich

= 1.2

The constraint on the engine-out BSNOx, has a maximum
value NOxsmax, which changes with time depending on
engine speed and torque. The results of two simulation
cases are presented in the next.

In the first experiment, the value of NOxsmax is set to a
high value in order to show the performance close to an
unconstrained NOx situation, see Figure 5. A close look at
the figure reveals some oscillations in the control signals.
This is due to the modeling errors and their associated
discontinuities when switching between different operating
points. Although, transient spikes are not observed in
the outputs during simulations, in order to decrease the
oscillations in the actuators various solutions have been
proposed in the literature. In Wahlström and Eriksson
[2013], a linear interpolation is done at each sampling
instant between the results of two QP problems with
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Fig. 5. Control and output signals when constraint on the engine-out BSNOx is set to a high value.
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Fig. 6. The constraint on BSNOx emissions is stepped down approx. 2g/kWh for the same controller.

different operating points. In Ortner et al. [2009], a linear
parameter varying model is used instead of the multilinear
approach, which avoid the switching in the controller.

In the second experiment, the NOx constraint is lowered.
Figure 6 shows the ability of the controller to accom-
modate constraint variations. It is observed that at low
engine speed and torque, the VVA system is used to fulfill
the NOx requirements. There is a trade-off between NOx
and fuel consumption that is defined by using the VVA
system in different ways. Compared to the previous case,
engine-out NOx emissions have decreased 4.6% along the
simulation time, whereas fuel consumption has increased
0.4%.

Figure 7 summarizes the results obtained for the previ-
ous two experiments depending on the engine operating
conditions. There are three main regions when working at
steady state. The first one, where the intake valve closing
is delayed the maximum possible. The second one, where
the intake valve in not delayed. And the third one, where
the intake valve closing (and holding) depends on the NOx
emissions soft constraint.
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Fig. 7. Map of the LIVC strategies at steady state. Three
main regions are distinguished, in particular the third
one depends on the NOx emissions limit.
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6. CONCLUSIONS

In this work we have developed a multi-input multi-output
(MIMO) air path, advanced injection timing, and fuel
pressure control of a Diesel engine. We use an MPC
approach which combines multiple linear models and a QP
optimization algorithm, to give the control actions for each
time step.

The simulations have shown good performance in terms
of fuel consumption, as well as emissions restrictions, by
controlling adequately the VVA actuation.

Future work could be to improve the physical-based non-
linear model for transient NOx emission. Other camshaft
profile could be needed due to the VVA system is saturated
in some points of operation. Another extension could in-
clude more extensive case studies, for example transient
driving cycles, to test the controller performance. Fur-
thermore, the reduction of the oscillations in the control
signals could be subject of future research. Finally, we are
planning to test the proposed controller on a test bench.
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