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Abstract: In this paper, an adaptive neural network control scheme is developed for a class
of uncertain nonlinear systems in strict-feedback form subject to the constraints on the full
states and unknown system drift dynamics. The Integral Barrier Lyapunov Functionals (iBLF)
are utilized to handle the state constraints directly, leading to the relax of the feasibility
conditions compared with pure tracking errors based Barrier Lyapunov Function. The radial
basis function neural networks (RBFNN) are adopted to approximate and compensate for
the unknown continuous packaged functions composed of the unknown system nonlinearities.
Novel adapting parameters are constructed to estimate the unknown bounds in neural networks
approximation in real time. Based on backstepping design and Lyapunov synthesis, we show
that the developed control scheme can guarantee that all signals are semi-globally uniformly
ultimately bounded (SGUUB), all states remain in the predefined constrained state space and
system output converges to a small neighborhood of the desired trajectory. A practical three-
order example is provided to demonstrate the performance of proposed methods.
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1. INTRODUCTION

Control of nonlinear systems with constraints on states
and inputs has gained an increasing research attention due
to its practical needs and theoretical challenges. Mean-
while, due to the modeling errors, unmodeled dynamics
and external disturbance, or a combination of these un-
knowns etc., it is difficult to obtain an accurate system
model for control design. This paper aims at solving the
trajectory tracking problem for strict-feedback nonlinear
systems subject to both full state constraints and unknown
system drift dynamics.

Numerous methods have been proposed to address the
control problems of linear and nonlinear constrained sys-
tems, including the invariance control in Bayer et al.
(2011), Model Predictive Control in Mayne et al. (2000),
non-overshooting control in Krstic and Bement (2006),
extremum seeking control in DeHaan and Guay (2005)
and error transformation in Do (2010), .etc. Motivated
by the spirit of reshaping a control Lyapunov function
using barrier function, Barrier Lyapunov Functions (BLF)
have been developed to guarantee the constraints satis-
faction. Based on the Lyapunov stability theorem and
BLF’s property of growing to infinity at some limits,
the BLF based design methodology is to guarantee the
boundedness of BLF in the closed-loop system, hence the
stability of closed-loop system and constraint satisfaction
can be ensured. BLF-based control design has been used
⋆ This work was supported by the National Basic Research Program
of China (973 Program) under Grant 2011CB707005.

to solve for the Brunovsky form constrained systems in
Ngo et al. (2005), strict-feedback form output-constrained
systems in Tee et al. (2009b); Tang et al. (2013); Meng
et al. (2012), output-feedback form output-constrained
systems in Ren et al. (2010) and strict-feedback form state-
constrained system in Tee and Ge (2012), as well as the
application in electrostatic parallel plate microactuatorsin
Tee et al. (2009a) . Although previous works have tackled
the issue of nonlinear systems with unknown dynamics
and constraints, these results are either only applicable
to output-feedback systems in Ren et al. (2010) or require
the bounds of neural network approximation errors known
for control design in Meng et al. (2012), and only the
mode-based control design has been proposed for state-
constrained nonlinear systems in Tee and Ge (2012). In
all, the problem for strict-feedback systems subject to
unknown system nonlinearities and full state constraints
is currently unsolved and also challenging due to coupling
difficulties from unknown system dynamics and state con-
straints.

On the other hand, several kinds of approximators, such
as fuzzy logics and neural networks, have been proved
as the general tools modeling any continuous nonlinear
functions to any desired accuracy over a compact set in
Wang (1992); Chen and Chen (1995) and many results
have been obtained for different classes of systems by
developing the stable adaptive neural network control and
adaptive fuzzy system control for nonlinear systems with
unknown dynamics, for example in Ge et al. (1998, 2002);
Li et al. (2010); Tao et al. (2011).
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To address the previous unsolved problem, in this paper,
we incorporate the integral Barrier Lyapunov functionals
into the adaptive neural network scheme to handle the
full state constraints, for which a conservative mapping of
original constrains to dynamic error space constraints is
avoided, and the system drift nonlinearities can be relaxed
to be unknown; And the bounds of NN approximation
errors, NN weight estimation errors and radial basis func-
tions are not necessarily to be known for control design
in the proposed scheme by constructing novel adapting
parameters to estimate these unknown bounds online; The
closed-loop system is proved to SGUUB, all the constraints
on states are guaranteed provided the feasibility conditions
are satisfied, and system output can stay arbitrarily close
to the desired trajectory.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Plant Dynamics

Consider the following nonlinear system in strict feedback
form Krstic et al. (1995)

ẋi(t) = fi (x̄i(t)) + gi (x̄i(t))xi+1(t),

i = 1, 2, . . . , n− 1

ẋn(t) = fn(x̄n(t)) + gn(x̄n(t))u(t)

y(t) = x1(t), t ∈ R+ (1)

where x̄i(t) , [x1(t), x2(t), . . . xi(t)]
T ∈ Ri, i = 1, . . . , n,

u ∈ R and y ∈ R are the system states, control input
and system output, respectively; fi(·) : Ri → R are
the unknown system drift dynamics and gi(·) : Ri →
R represent the control coefficients and are assumed as
known. The system states xi(t) are required to satisfy the
constraints as follows

|xi(t)| < kci , ∀t ≥ 0, i = 1, . . . , n. (2)

where kci are positive constants, which represent the
predefined constraints on the states and the constrained
state space is denoted as the set χ := {x ∈ Rn : |x1(t)| <
kc1 , . . . , |xn(t)| < kcn , t ≥ 0} ⊂ Rn.

In this paper, the control objective is to enforce the system
output y(t) track a desired trajectory yd(t) meanwhile all
signals in the closed-loop system remain bounded, and the
state constraints are not violated.

Assumption 2.1. Tee and Ge (2012) For any kc1 > 0,
there exits positive constants A0, Yi, i = 1, . . . , n, such that
the desired trajectory yd and its time derivative satisfy

|yd(t)| ≤ A0 < kc1 , |y
(i)
d (t)| < Yi, ∀t ≥ 0 and i = 1, . . . , n.

We also denote ȳdi
, [yd, y

(1)
d , . . . , y

(i)
d ] ∈ Ri+1.

Assumption 2.2. The signs of gi(x̄i), i = 1, 2, . . . , n, are
known, and there exists positive constants gi,min and
gi,max such that 0 < gi,min ≤ |gi(x̄i)| ≤ gi,max < ∞
for |xj | < kcj , j = 1, 2 . . . , i. Without loss of generality,
we further assume that the gi(x̄i) are all positive for
|xj | < kcj , j = 1, 2 . . . , i.

2.2 Radial Basis Function Neural Networks

In this paper, the continuous function h(Z) : Rq → R is
approximated as

hnn(Z) = WTS(Z), (3)

where Z ∈ Ωz ⊂ Rq and W = [w1, w2, . . . , wl]
T ∈ R

l are
the NN input vector and weight vector, respectively, the
NN node number l > 1; and S(Z) = [s1(Z), . . . , sl(Z)]T ,
with si(Z) being chosen as the commonly used Gaussian
functions form.

It has been proved that WTS(Z) can approximate any
continuous h(Z) over a compact set ΩZ ⊂ Rq to any
desired accuracy as by choosing l sufficiently larege

h(Z) = W ∗TS(Z) + ǫ(Z), (4)

where W ∗ is the ideal constant weight vector and ǫ(Z) is
the unknown approximation error and bounded over the
compact set. The ideal weight vector W ∗ is defined as

W ∗ := arg min
W∈Rl

{ sup
Z∈Ωz

|h(Z)−WTS(Z)|}. (5)

Assumption 2.3. For a given smooth function h(Z), there
exist ideal unknown constant weight vector W ∗ such that
|ǫ| ≤ ǫ∗n with unknown positive constant ǫ∗n for all Z ∈ Ωz.
The radial basis function is also bounded as ‖S(Z)‖ ≤ s∗n
with unknown positive constant s∗n for all Z ∈ Ωz .

Remark 2.1. Although we utilize the RBFNN in the con-
trol design, it can be replaced by other linearly parame-
terized approximators, such as fuzzy logic system, splines,
wavelet networks and high-order NNs. We refer to Farrel
and Polycarpou (2006) for interested readers on a unified
framework of approximation-based control.

3. CONTROL DESIGN FOR FIRST-ORDER SYSTEM

This paper considers the following integral Barrier Lya-
punov Functionals in Tee and Ge (2012)

Vzi(t) =

∫ zi

0

σk2ci
k2ci − (σ + αi−1)2

dσ, i = 1, . . . , n, (6)

where zi = xi−αi−1, α0 = yd and α1, . . . , αn−1 are contin-
uously differentiable functions satisfying |αi| ≤ Ai < kci+1

for positive constants Ai, i = 0, 1, . . . , n− 1. The function-
als (6) are positive definite, continuously differentiable and
satisfy the decresent condition in the set |xi| < kci ,

To illustrate the design method, the first-order system is
considered firstly

ẋ1(t) = f1(x1(t)) + g1(x1(t))u(t), (7)

where f1 is the unknown smooth function. By taking the
time derivative of Vz1 , it is not difficult to obtain the
following ideal control for system (7),

u∗(t) = −κ1z1 − h1(Z1), (8)

where κ1 is a positive constant and

h1(Z1) =
1

g1

(

f1 −
(k2c1 − x2

1)ẏdρ1

k2c1

)

, (9)

ρ1 =
kc1
2z1

log
(kc1 + z1 + yd)(kc1 − yd)

(kc1 − z1 − yd)(kc1 + yd))
, (10)

Z1 = [x1, yd, ẏd] ∈ Ωz1 ⊂ R
3. (11)

However, Under the condition that the function f1(x1) is
unknown, the desired feedback control u∗ is not available
due to the unknown smooth function h1(Z1). In this paper,
the appropriate controller by approximating unknown
smooth function h1(Z1) using RBFNN (3) is presented as

h1(Z1) = W ∗T
1 S1(Z1) + ǫ1, (12)
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where W ∗

1 is the unknown ideal weight vector defined in
(5) and |ǫ1| < ǫ∗n1

with ǫ∗n1
> 0. Hence, the NN controller

for system (7) is designed as

u(t) =− κ1z1 − ŴT
1 S1(Z1)−

p̂1
g1

tanh

(

z1k
2
c1

k2
c1

−x2
1

δ1

)

(13)

where Ŵ1 denotes the estimation of ideal weights vector
W ∗

1 . Define the estimation errors W̃1 = Ŵ1 − W ∗

1 , and

‖W̃1‖ ≤ ǫ∗w1
with ǫ∗w1

being a positive constant; p̂1 repre-
sents the parameter estimates of the grouped unknown
bounds of ǫ∗n1

+ ǫ∗w1
s∗n1

, and define p̃1 = p̂1 − p∗1, p∗1
represents the ideal unknown parameters to be estimated.
δ1 > 0 is a small positive constant. The update laws for p̂1
and Ŵ1 are designed as

˙̂p1 =
z1k

2
c1

k2c1 − x2
1

tanh

(

z1k
2
c1

k2
c1

−x2
1

δ1

)

− σp1
p̂1, (14)

˙̂
W1 = Γ1(S1(Z1)z1 − σw1

|z1|Ŵ1), (15)

where p̂1(0) ≥ 0, σw1
, σp1

,Γ1 = ΓT
1 > 0. From (14), it

is easy to see that p̂(t) ≥ 0, ∀t ≥ 0. Based on (15) and
Huang et al. (2003), we have the following result on the

boundedness of Ŵ1:

Lemma 3.1. Huang et al. (2003). Under the update law

(15), the Ŵ1(t) is semiglobally uniformly bounded in the
compact set

Ωw1
= {Ŵ1|‖Ŵ1‖ ≤

s∗n1

σw1

}, (16)

where ‖S1(Z1)‖ ≤ s∗n1
, provided Ŵ1(0) ∈ Ωw1

.

Theorem 3.1. Consider the closed-loop system consisting
of the first-order system (7), controller (13) and update
laws (14) with (15), then for any bounded initial condi-
tions x1(0) ∈ χ1 := {x ∈ Rn : |x1(t)| < kc1 , ∀t ≥ 0}

and Ŵ1(0) ∈ Ωw1
, the tracking error z1(t) is bound-

ed as |z1(t)| ≤
√

2(V1(0) +
C1

θ1
), ∀t ≥ 0, with θ1 :=

min{κ1g1,min, σp1
}, C1 := 0.2785δ1p

∗

1 +
σp1

2 p∗21 , the state
x1(t) remains in the constrained set χ1 and the semiglob-
al uniform ultimate boundedness of other signals in the
closed-loop system are obtained.

Proof: See the Appendix A.

4. CONTROL DESIGN FOR NTH-ORDER SYSTEM

In this section, the results in first-order system are
extended to the nth-order system (1) based on back-
stepping methodology. The intermediate so-called stabi-
lization functions αi(t) will be designed step by step
to render each subsystem the stability. Further, the
stabilizing functions αi(t) require the computation of
α̇i−1(t), α̈i−2(t), . . . , α

i−1
1 (t). Accordingly, αi should be at

least (n− i)th differentialbe. To this end, consider the fol-
lowing Lyapunov functionals candidate for control design

V (t) =

n
∑

i=1

Vzi(t) +

n
∑

i=1

1

2
p̃2i (t) (17)

where Vzi is defined in (6), W̃i = Ŵi−W ∗

i and W̃i, Ŵi,W
∗

i

are the NN weight errors, estimates and ideal values

respectively, Γi = ΓT
i , i = 1, . . . , n; p̃i = p̂i − p∗i and

p̃i, p̂i, p
∗

i are the estimation errors of unknown bounds, the
estimation and ideal values, respectively.

Remark 4.1. Since the boundedness of NN weight esti-
mate can be guaranteed by Lemma (3.1), this paper de-
rives the control input by considering the functional (17)
without the inclusion of estimation errors as usual.

The time derivative of Vzi(t) can be obtained as

V̇zi(t) = zi

(

k2ci
k2ci − x2

i

(fi + gizi+1 + giαi − α̇i−1)

+α̇i−1(
k2ci

k2ci − x2
i

− ρi(zi, αi−1))

)

, (18)

where

ρi(zi, αi−1) =
kci
2zi

log
(kci + zi + αi−1)(kci − αi−1)

(kci − zi − αi−1)(kc1 + αi−1))
.

The following lemma show that ρi are continuously differ-
entiable up to n− i times:

Lemma 4.1. Tee and Ge (2012). The functions ρi(zi, αi−1)
are well defined at zi = 0 and Cn−i in the set Ψ = {zi ∈
R, αi−1 ∈ R : |αi−1 < kci |, |zi + αi−1| < kci}.

According to the Lyapunov’s direct method, the interme-
diate stabilizing functions are designed as

α1 =− κ1z1 − ŴT
1 S1(Z1)−

p̂1
g1

tanh

(

z1k
2
c1

k2
c1

−x2
1

δ1

)

αi =− κizi −
k2ci−1

(k2ci − x2
i )gi−1zi−1

k2ci(k
2
ci−1

− x2
i−1)

− ŴT
i Si(Zi)−

p̂i
gi

tanh

(

zik
2
ci

k2
ci
−x2

i

δi

)

,

i = 2, . . . , n (19)

where

Zi =[x1, . . . , xi, αi−1,
∂αi−1

∂x1
, . . . ,

∂αi−1

∂xi−1
, wi−1]

∈ Ωzi ⊂ R
2i+1

wi−1 =
i−1
∑

j=1

∂αi−1

y
(j)
d

ẏd +
i−1
∑

j=1

∂αi−1

∂Ŵj

˙̂
Wj +

i−1
∑

j=1

∂αi−1

∂p̂j
˙̂pj

˙̂
Wi =Γi(Si(Zi)zi − σwi

|zi|Ŵi) (20)

˙̂pi =
zik

2
ci

k2ci − x2
i

tanh

(

zik
2
ci

k2
ci
−x2

i

δi

)

− σpi
p̂i (21)

p̂i(0) ≥ 0,Γi = ΓT
i > 0, σwi

> 0, σpi
> 0. (22)

The final control input is specified as

u(t) = αn. (23)

Accordingly, the control design yields

V̇ (t) ≤−

n
∑

i=1

κigik
2
ci
z2i

k2ci − x2
i

−

n
∑

i=1

σpi

2
p̃2i

+ 0.2785

n
∑

i=1

δip
∗

i (24)

Using Lemma 1 in Tee and Ge (2012), it is further obtained
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V̇ (t) ≤ −θV + C, (25)

where θ := min{κigi,min,minσpi
} > 0,

C := 0.2785
∑n

i=1 δip
∗

i +
∑n

i=1

σpi

2 p∗2i .

In the following, it is proved that the states x(t) ∈ χ :=
{x ∈ Rn : |xi| < kci , i = 1, . . . , n}, ∀t > 0, and the
boundedness of all signals in the closed-loop system.

Theorem 4.1. Consider the closed-loop system consisting
of system (1), controller (23) and update laws (20) with
(21), then for any bounded initial conditions x(0) ∈ χ :=

{x ∈ Rn : |xi| < kci , i = 1, . . . , n} and Ŵi(0) ∈ Ωwi
. Let

Ai = max
(x̄n,ȳdn ,Ŵi)∈Ω

|αi(x̄i, Ŵi, p̂i, ȳdi
)|, i = 1, . . . , n,

(26)

where

Ω = {x̄n ∈ R
n, ȳdn

∈ R
n+1, Ŵi ∈ R

li :

|xi| ≤ kci , |yd| ≤ A0, |y
(j)
d | ≤ Yj ,

||Ŵj || ≤
s∗nj

σj

, j = 1, . . . , n}. (27)

If there exist positive constants κ1, . . . , κn−1 that satisfy
the following feasibility conditions:

kci > Ai−1(κ1, . . . , κi−1), i = 1, . . . , n. (28)

where |yd(t)| ≤ A0 < kc1 , then we have the following
properties

i) The error signals zi(t), i = 1, . . . , n are bounded as

|zi(t)| ≤

√

2(V (0) +
C

θ
). (29)

ii) The state x(t) remain in the constrained set χ.
iii) The intermediate stabilization functions αi(t), i =
1, . . . , n−1 and the control input u(t) are bounded ∀t > 0.
Proof: See the Appendix B.

Remark 4.2. Compared with previous works in Tee et al.
(2009b); Ren et al. (2010), the proposed control scheme in
this paper handle the constraints on xi directly, which is
less conservative than considering transformed constraints
on tracking errors zi. With respect to Tee and Ge (2012),
the drift system functions in (1) are relaxed to be unknown
and not necessary to be assumed as linearly parameteriz-
able. Further, the unknown bounds of neural network ap-
proximation errors and neural weight estimation errors as
well as radial basis function are also adaptively estimated,
which reduces the conservatism in Meng et al. (2012) on
requiring these bounds exactly known for control design.

Remark 4.3. The advantage of employing iBLF for control
design is the reduce of number of constraints in the
optimization problem, i.e., the feasibility conditions kci >
Ai−1(ξ)+kbi with kbi are transformed constraints on errors
zi are eliminated, and the initial constrained states x have
been expanded to any point in the constrained space χ.
Compared with Tee and Ge (2012), the difference is that
the bounds Ai, i = 1, n− 1 on the intermediate stabilizing
functions αi depends on the neural network estimation
vector Ŵi and the estimation of unknown bounds p̂i, thus
leads to different optimal control gains. Due to the limited
space, interested readers can refer to Tee and Ge (2012)
on the details of feasibility check.

5. AN APPLICATION EXAMPLE

To demonstrate the validity and performance of proposed
method, a 1-link manipulator actuated by a brush dc
motor in Tee and Ge (2011) is utilized for application.
The dynamics are described as

ẋ1 = x2

ẋ2 = −φ1 sin(x1)− φ2x2 + φ3x3

ẋ3 = −φ4x2 − φ5x3 + φ6u (30)

where x1 = q, x2 = q̇, x3 = I, φ1 = mgl/M, φ2 =
D/M,φ3 = kI/M, φ4 = km3

/km1
, φ5 = km2

/km1
, φ6 =

1/km1
and control input u represetns the input voltage.

. In the simulation, the parameters are chosen as m =
1, l = 0.15,M = 1, D = 1, kI = 1, km1

= 0.05, km2
= 0.5

and km3
= 10. The drift nonlinearities in the above model

are assumed as unknown in the simulation. The control
objective is to guarantee the state constraints |q(t)| <
π/2, |q̇(t)| < π and |I(t)| < 20, and let the output q(t)
track the desired trajectory yd(t) = 0.7 sin(2.5t) as closely
as possible, and the boundedness of other signals in the
closed-loop system.

As Sanner and Slotine (1992) pointed, Gaussian RBFNNs
arranged on a regular lattice on Rn can uniformly ap-
proximate sufficiently smooth functions on closed bounded
subsets. Accordingly, in the simulation studies, the local-
ization of centers and widths are chosen on a regular lattice
in the respective compact sets. In particular, we set three

nodes for each input dimension of ŴT
1 S1(Z1), Ŵ

T
2 S2(Z2)

and ŴT
3 S2(Z3), thus we have 27 nodes (i.e, l1 = 27) with

centers µl = 0.0 evenly spaced in [−2, 2]× [−1, 1]× [−1, 1]

and widths ηl = 1.0 for NN ŴT
1 S1(Z1), and 243 (i.e,

l2 = 243) nodes with centers µl = 0.0 evenly spaced in
[−2, 2] × [−4, 4] × [−4, 4] × [−3, 3] × [−3, 3] and widths

ηl = 1.0 for NN ŴT
2 S2(Z2), and 2187 (i.e, l2 = 2187)

nodes with centers µl = 0.0 evenly spaced in [−2, 2] ×
[−4, 4]× [−4, 4]× [−4, 4]× [−20, 20]× [−2, 2]× [−2, 2] and

widths ηl = 1.0 for NN ŴT
3 S3(Z3).

The initial conditions are selected as [x1(0), x2(0), x3(0)]
T =

[0.2, 0.8, 0]T , which lie in the predefined constrained set,
and the desired reference signal yd(t) = 0.7 sin(2.5t).
Using the Matlab command fmincon.m, we obtain κ∗

1 =
10.6275, κ∗

2 = 8.0006 and choose κ3 = 10. Other param-
eters are selected as δ1 = δ2 = δ3 = 0.1, σp1

= σp2
=

σp3
= 0.5. The initial neural network weight estimates

and unknown bounds estimates are assumed as Ŵ1 =
Ŵ2 = Ŵ3 = 0 and p̂1 = p̂2 = p̂3 = 0, repsectively. Fig.
1 shows that the tracking objective is achieved without
the violation of constraint on x1, and Fig. 2 shows the
evolutions of state trajectories without the violation of
constraints on states. The boundedness of NN estimation
weights and adapting parameters are also presented in Fig.
3 and Fig. 5, respectively. Fig. 4 shows the boundedness
of control input, and the peaks in the initial control input
are due to the states approach the constraint boundaries.

6. CONCLUSION

In this paper, a novel neural networks based control design
has been proposed for strict-feedback nonlinear systems
subject to both full state constraints and unknown system
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Fig. 1. The profile of system tracking performance.

−1

−0.5

0

0.5

1

−2

−1

0

1

2

3
−25

−20

−15

−10

−5

0

5

10

15

x1
x2

x
3

Intial Point

Fig. 2. The state trajectories in constrained space.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

‖Ŵ
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‖Ŵ
2
‖

Time (s)

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8
x 10

−19

‖Ŵ
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drift dynamics. By the incorporation of RBFNN based
compensator into iBLF based control design, the proposed
control design is valid in the constrained systems with un-
known dynamics, and the feasibility conditions are relaxed
by avoiding the formulation of transformed constraints on
errors. It has been proved that the closed-loop tracking
error has been semiglobally uniformly ultimately bounded,
all states always remain in the constrained region and
other signals in the closed-loop system are also bounded.
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Appendix A. PROOF OF THEOREM 3.1

Consider the following Lyapunov functional candidate

V1(t) = Vz1(t) +
1

2
p̃21 (A.1)

where p̃1 = p̂1−p∗1. Based on (12), (13) and (14), the time
derivative of V1 can be obtained as

V̇
1
=− κ1g1

z21k
2
c1

k2c1 − x2
1

+ g1
z1k

2
c1

k2c1 − x2
1

(−Ŵ1S1(Z1)− p̂1 tanh

(

z1k
2
c1

k2
c1

−x2
1

δ1

)

+W ∗

1 S1(Z1) + ǫ1) + p̃1 ˙̂p1

≤− κ1g1
z21k

2
c1

k2c1 − x2
1

−
σp1

2
p̃21 + p∗1|

z1k
2
c1

k2c1 − x2
1

|

− p∗1
z1k

2
c1

k2c1 − x2
1

tanh

(

z1k
2
c1

k2
c1

−x2
1

δ1

)

+
σp1

2
p∗21 (A.2)

According to the claim in Plycarpou and Ioannou (1996)
and Lemma 1 in Tee and Ge (2012), it is further obtained

V̇1 ≤ −θ1V1 + C1, (A.3)

where θ1 := min{κ1g1,min, σp1
}, C1 := 0.2785δ1p

∗

1+
σp1

2 p∗21 .
According to the Lemma 1 in Ren et al. (2010), we
conclude that |x1(t)| remains in the constrained set χ1

provide |x1(0)| ∈ χ1. Further, as
z2
1

2 ≤ Vz1(t), it is obtained

that |z1(t)| ≤
√

2(V1(0) +
C1

θ1
). In terms of the control

design (13) and Lemma (16), the control input u is also
bounded.

Appendix B. PROOF OF THEOREM 4.1

i) Multiplying (25) by eθtyields

d

dt
(V eθt) ≤ Ceθt. (B.1)

Integrating the above inequality, it yields

V ≤ (V1(0)−
C

θ
) +

C

θ
≤ V (0) +

C

θ
, (B.2)

Using the fact 1
2

∑n

i=1 z
2
i (t) ≤ V (t), it has

|zi(t)| ≤

√

2(V (0) +
C

θ
) ∀t > 0, (B.3)

which leads to the conclusion.

ii) According to the Lemma 1 in Ren et al. (2010) and
inequality (25), it is concluded that x(t) remain in the
constrained set χ, ∀t > 0.

iii) As the feasibility condition (28) is satisfied, this paper
has |αi−1(t)| < kci , ∀t > 0, with the result in item (ii),
i.e., |xi(t)| < kci , ∀t > 0, it is obtained zi(t), αi−1(t) ∈
Ψ, ∀t > 0, i = 1, . . . , n, where Ψ is defined in Lemma (4.1).
Thus, it is concluded that ρi(zi(t), αi−1(t)) and its partial
derivatives are bounded ∀t > 0. Further, the NN weight
estimation vectors Ŵi, i = 1, . . . , n are bounded according
to Lemma (3.1). Similar to zi, it also has |p̃i(t)| ≤
√

2(V (0) + C
θ
), and then p̂(t) is also bounded. Hence, the

stabilizing functions αi and control input u are bounded
as well under the design form (19) with the boundedness
of yd and its derivatives, ρi and its derivatives, and the
constraint satisfaction |xi(t)| < kci , ∀t > 0, ∀i = 1, . . . , n.
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