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Abstract: This contribution describes a real-time model predictive control allocation algorithm
for over-actuated electric vehicles with individually driven wheels. The proposed method allows
to exploit the inherent redundancy present in these systems to optimally allocate yaw moment
and longitudinal force while considering actuator dynamics and complying with rate and wheel
slip constraints. A linear formulation of the underlying model with varying parameters allows to
take changing driving situations into account while guaranteeing fast computation times. The
algorithm is tested and validated on a comprehensive vehicle model.
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1. INTRODUCTION

In recent years, a trend towards partially or completely
electrified drivetrains in production vehicles became ap-
parent. Apart from the obvious advantages regarding en-
ergy efficiency, several of those topologies offer additional
degrees of freedom to vehicle control strategies. In par-
ticular, electric vehicles equipped with two or four wheel-
independent drives can not only provide longitudinal force
for driving and recuperation purposes, but also actively
influence yaw dynamics.

To this end, hierarchical approaches have shown to be ben-
eficial in regard to modularization and reduced complexity.
Generally, a high-level controller is used to fulfill control
objectives like improved yaw response or a specific desired
over- or understeering behavior of the vehicle. Usually,
the output of this controller is a moment to be applied
to the yaw axis of the vehicle. The main objective of
this contribution is a real-time model predictive control
allocation strategy to provide this additional yaw moment
as well as the longitudinal force requested by the driver.
This is done utilizing the available motors optimally while
accounting for actuator and wheel slip dynamics as well as
for physical limits of the drivetrain and the wheel-ground
contact.

The subject of resolving the redundancy of over-actuated
systems has been an active field of research, see e. g. Jo-
hansen and Fossen (2013) for a comprehensive overview.
In fact, various strategies have been proposed ranging
from active-set methods (Schofield and Hagglund, 2008),
quadratic programming (Plumlee et al., 2004), nonlinear
optimization techniques with focus on feasibility (Knobel
et al., 2006), and optimal utilization of adhesion potentials
(Orend, 2005). Additionally, actuator dynamics can be
considered by model predictive control allocation (MPCA)
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Fig. 1. Geometry of the considered vehicle

as shown by Vermillion et al. (2009) for an automotive
thermal management system. However, the application of
model predictive control as an on-line optimizing control
allocation method taking into account the fast dynamics of
wheel slip requires an efficient and real-time capable algo-
rithm. In this contribution, a recently published gradient-
based algorithm is utilized to provide optimal solutions to
the control allocation problem in real-time.

This paper is organized as follows: Section 2 motivates the
considered control allocation problem and also introduces
the constraints to adhere to. In Section 3, the proposed
control allocation method is introduced and the strategy to
include slip constraints is explained. A simulation example
in Section 4 demonstrates the performance of the proposed
method, while Section 5 gives a short summary.

2. PROBLEM FORMULATION

The considered close-to-production prototype vehicle with
the geometry shown in Fig. 1 features four independently
controlled motors, where each motor drives one wheel
through a fixed transmission unit. The forces, torque and
rotational speed of each wheel are given in the wheel’s
frame of reference. The steering angle δ is directly given
by the driver who also commands the longitudinal force
Fx using the gas and brake pedals. In addition to the
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longitudinal force, the moment about the yaw axis Mz is
considered as the second control objective to be allocated
by the MPCA scheme using the individual wheel drives.
The dependence of these two control objectives on the four
longitudinal tire forces Ftx,i, i ∈ {fl,fr,rl,rr}, is given by

Mz = bT
TF tx =(−ls cos δ + lf sin δ)Ftx,fl (1)

+ (ls cos δ + lf sin δ)Ftx,fr
− lsFtx,rl + lsFtx,rr ,

Fx = bT
FF tx = cos δ(Ftx,fl + Ftx,fr) (2)

+ Ftx,rl + Ftx,rr

with the geometry parameters bT and bF and the steering
angle δ assumed to be equal between both front wheels.
The tire forces themselves are generated by the longitudi-
nal steady-state tire slip κ, which is defined by

κ = −v − ωr
v

(3)

as the normalized difference between the velocity of the
tire-road contact patch ωr and the vehicle’s longitudinal
velocity v as shown in Fig. 2. Furthermore, the relationship
between the longitudinal wheel slip κ and the longitudinal
tire force Ftx is influenced by the normal force on the tire
Fwz, the tire-road friction coefficient 1 and the tire side slip
angle α shown in Fig. 3. Among several existing models de-
scribing tire behavior, Pacejka’s Magic Formula (Pacejka,
2012) has found wide-spread application due to its high
fidelity and is also the base for this contribution. Since
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Fig. 4. Longitudinal force over tire slip for several values
of Fwz and α according to Pacejka’s Magic Formula

1 For this contribution, dry concrete conditions are assumed.

small wheel slip values are generally desired to achieve
reduction of drivetrain losses and improved durability of
the tires, this contribution intends to constrain wheel slip
to values of |κ| < 0.05. As this constraint can be enforced
by the proposed MPCA scheme, a linear approximation

Ftx(κ, Fwz, α) ≈ cκ(Fwz, α)κ,

cκ(Fwz, α) =
∂Ftx
∂κ

(0, Fwz, α) (4)

can be performed which captures the dependency on
normal force and tire side slip angle for small slip values,
see Fig. 4. This provides the additional advantage of
faster evaluations which is of importance especially for
real-time optimization methods, where a large number of
evaluations is performed. The prerequisite of small slip
values is accounted for by imposing a box constraint

κ ∈
[
−κ+, κ+

]
, κ+ > 0 , (5)

on the wheel slips in the MPCA scheme. Considering the
system shown in Fig. 2, the dynamics of the wheel slip
with respect to the wheel torque Tw,i can be described by

κ̇ = −1

v

(
κ− 1

m
+
r2

J

)
cκκ+

1

v

r

J
Tw (6)

using the quarter vehicle mass m and the combined mo-
mentum of inertia J given by wheel and motor. Since
the dynamics of κ is inversely dependent on the vehicle’s
velocity v, the slip dynamics becomes increasingly more
difficult to control for slower vehicle velocities. Although
the first-order approximation given in (6) does not account
for relaxation length effects which are more difficult to
model and evaluate (see Zegelaar (1998)), this model has
proven suitable for wheel slip control in experiments (see
Johansen et al. (2003)). Furthermore, the simplification

κ̇ ≈ −1

v

(
r2

J
cκκ−

r

J
Tw

)
(7)

can be performed under the assumption κ−1
m � r2

J , which
holds for large masses of the quarter vehicle and yields a
linear system description.

The driving torque Tw for each wheel is provided by an
electric motor operated by means of an AC controller in
torque-control mode. That introduces an additional first-
order linear dynamics of the form

Ṫw = − 1

Tm
Tw +

1

Tm
Td (8)

with the desired torque Td as input and the actual torque
on the wheel Tw as output, which is assumed equal to
Td in steady-state. Furthermore, the considered motor
controllers impose fixed rate limits∣∣∣Ṫw∣∣∣ ≤ Ṫ+

w , Ṫ+
w > 0 (9)

on the generated torques. This can be modeled by aug-
menting (8) with an additional upstream integrator with
a limit imposed on its input according to (9).

The combination of (7), (8) and the aforementioned in-
tegrator yields the linear model of the quarter vehicle
wheel slip dynamics shown in Fig. 5 with one constrained
input and a constrained final state. Accordingly, the model
equations are given by
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Fig. 5. Overview of resulting wheel slip model

ẋi = f i(xi, ui) =

− 1
v

(
r2i
Ji
cκ,ixi,1 − ri

Ji
xi,2

)
− 1
Tm
xi,2 + 1

Tm
xi,3

ui

, (10)

ui ∈ [−Ṫ+
d,i, Ṫ

+
d,i], xi,1 ∈

[
−κ+, κ+

]
,

with the state vector xi = [κi, Tw,i, Td,i]
T

. Combining the
four independent quarter vehicle models yields the overall
dynamics

ẋ = f(x,u) =

ffl (xfl, ufl)
f fr (xfr, ufr)
f rl (xrl, url)
f rr (xrr, urr)

, x =

xfl

xfr

xrl

xrr

, u =

ufl

ufr

url

urr

,
(11)

which is pivotally defined in its behavior by the vehicle
velocity v, the steering angle δ, and the longitudinal tire
stiffnesses cκ,i, which vary during driving according to
the maneuvers performed (see (4)). Since the dynamics
of these variable parameters are generally governed by the
large mass and moment of momentum of the vehicle, they
are assumed to be fixed in each sampling step of the MPCA
for the duration of the prediction horizon. However, they
are updated in each sampling step to account for changing
driving conditions.

3. CONTROL ALLOCATION

An MPC scheme is used to optimally allocate wheel
torques. In order to improve the convergence behavior
of the resulting MPCA scheme, the process of control
allocation is subdivided into two stages.

3.1 Static Preallocation

The first stage creates a distribution of the wheel torques
and slips solely based on geometrical considerations, de-
termining preallocated values for the torque distribution

T̂w =
(
Mzb

†
T + Fxb

†
F

)
r0 (12)

with the unloaded tire radius r0, yielding the wheel torques
based on pseudo inverses of bT and bF . Essentially, the
highest torque is assigned to the wheel constituting the
most effective lever on the center of gravity. Furthermore,
the steady-state slip values

κ̂i =
T̂w,i
r0cκ,i

(13)

are calculated in accordance to (10), which combined with
(12) provides preallocated values

x̂ =
[
κ̂fl, T̂w,fl, T̂w,fl,···

]T
(14)

for the entire state vector. These values represent one
possible solution to the control allocation problem, but do
not necessarily account for any dynamics or constraints.

3.2 Model Predictive Control Allocation (MPCA)

For the second stage, a recently published gradient-based
model predictive control algorithm is employed. It relies on

the solution of an optimal control problem (OCP) with an
additional penalty term to account for the slip constraints.

Model predictive control relies on the solution of an OCP
of the form

min J(xk, ū) =

∫ tk+T

tk

l(x̄(t), ū(t)) dt (15)

s.t. ˙̄x(t) = f(x̄(t), ū(t)) , x̄(tk) = xk , (16)

ui(t) ∈ [−T+
d,i, T

+
d,i] , i ∈ {fl,fr,rl,rr} , (17)

with the positive definite integral cost function l : R12 ×
R4 → R+

0 that is minimized over the prediction horizon
[tk, tk + T ] with the horizon length T > 0. The dynam-
ics (16) are given by the linear model (11) of the four
quarter vehicle models. The current state at time tk is
denoted by xk = x(tk), which represents the initial con-
dition for the MPC scheme. The bounds on the controls
(17) account for the rate constraints in (10).

In MPC, it is often assumed that the optimal solution of
the OCP (15)-(17)

ū∗k(t) = ū∗(t;xk) ,

x̄∗k(t) = x̄∗(t;xk, ū
∗
k) , t ∈ [tk, tk + T ] ,

(18)

with the optimal cost J∗(xk) = J(xk, ū
∗
k) is computed at

time tk and the first part of the control trajectory ū∗k(t) is
applied as control input

u(t) = ū∗k(t) , t ∈ [tk, tk + ∆t) (19)

for the system. In the next sampling instant tk+1 = tk+∆t
with the sampling time ∆t > 0, the OCP (15)-(17) is
solved again with the system state xk+1 as the new initial
condition in (16).

The cost functional in (15) is designed to satisfy several
demands:

• to account for the preallocated state (14);
• to avoid high utilization of the inputs;
• to deliver the desired torque Mz,d about the yaw axis

and the longitudinal force Fx,d in accordance to (1),
(2), and (4);

• to account for the slip constraints in (10).

The slip constraints xi,1(t) ∈ [−κ+, κ+] are considered
as soft constraints within the cost functional (15) and
not as hard constraints in order to maintain the solvabil-
ity of the OCP (15)-(17) if the constraints are violated
(e.g. in unexpected driving situations) and to reduce the
numerical complexity of the MPC scheme in view of the
future automotive implementation. The four design goals
are accounted for by the following terms in the integral
cost function:

l(x,u) = (x− x̂)TQ(x− x̂) + (u− û)TR(u− û)

+ γM (Mz −Mz,d)
2 + γF (Fx − Fx,d)2 (20)

+ γκ
∑4

i=1
κpen(κi) .

The penalty function κpen is designed as

κpen(κi) =


(κi/κ

+ − 1)4 if κi ≥ κ+

(κi/κ
+ + 1)4 if κi ≤−κ+

0 else

. (21)
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3.3 Real-time optimization algorithm

The efficient numerical solution of the OCP (15)-(17) is of
utmost importance in view of the considerable complexity
of the problem (x ∈ R12, u ∈ R4) with respect to the
anticipated sampling time in the millisecond range and
keeping in mind a future automotive implementation with
limited hardware resources.

A suitable real-time MPC algorithm to cope with these
problems was recently presented (Graichen and Käpernick,
2012). The algorithm uses a tailored gradient method in
combination with an adaptive line search strategy. The
gradient method thereby takes advantage of the special
structure of the optimality conditions that results from the
OCP formulation (15)-(17) without terminal constraints.

With the definition of the Hamiltonian

H(x,λ,u) = l(x,u) + λTf(x,u) , λ ∈ R12 , (22)

and assuming an initial control trajectory ū
(0)
k (t) and

initial state x̄
(0)
k (t), t ∈ [tk, tk + T ] , that satisfies the

constraints (17), a gradient iteration j consists of the
following steps:

• Forward integration of the system dynamics:

˙̄x
(j)
k (t) = f

(
x̄

(j)
k (t), ū

(j)
k (t)

)
,

x̄
(j)
k (tk) = xk . (23)

• Backward integration of the adjoint dynamics:

˙̄λ
(j)

k (t) = −Hx

(
x̄

(j)
k (t), λ̄

(j)
k (t), ū

(j)
k (t)

)
,

λ̄
(j)
k (tk + T ) = 0 , (24)

with Hx = ∂H
∂x .

• Computation of the search direction:

s̄
(j)
k (t) = −Hu

(
x̄

(j)
k (t), λ̄

(j)
k (t), ū

(j)
k (t)

)
,

t ∈ [tk, tk + T ] (25)

with Hu = ∂H
∂u .

• Step size computation by (approximately) solving:

α̃
(j)
k = arg min

α̃>0
J
(
xk,ψ

(
ū

(j)
k + α̃s̄

(j)
k

))
, (26)

where ψ = [ψfl, . . . , ψrr]
T is a point-wise in time

projection function defined by

ψi(ui) =


ui if ui ∈ (−Ṫ+

d,i, Ṫ
+
d,i)

−Ṫ+
d,i if ui ≤ −Ṫ+

d,i

Ṫ+
d,i if ui ≥ Ṫ+

d,i .

(27)

• Control update:

ū
(j+1)
k (t) = ψ

(
ū

(j)
k (t) + α̃s̄

(j)
k (t)

)
,

t ∈ [tk, tk + T ] . (28)

One gradient step basically consists of two integrations of
the adjoint and system dynamics (24) and (23) as well as
the solution of the line search problem (26) that basically
forms a scalar optimization problem. In the MPC imple-
mentation, (26) is approximately solved by using a poly-
nomial fitting with three sample points α̃1 < α̃2 < α̃3 that
are adapted over the single gradient iterations (Graichen
and Käpernick (2012)).

In order to ensure real-time feasibility and a constant
computational load in each MPC step, a fixed number N
of gradient iterations (i.e. j = 0, 1, . . . , N − 1) is used in
each MPC step and the first part of the control trajectory

ū
(N)
k (t) is applied as control input, i.e.

u(t) = ū
(N)
k (t) , t ∈ [tk, tk + ∆t) . (29)

In the next MPC step k + 1, ū
(N)
k (t) is recycled to

reinitialize the gradient algorithm.

In contrast to the optimal solution (18) and the optimal
MPC control (19), this premature stopping criterion will
in general result in suboptimal trajectories in the sense
that

J
(
xk, ū

(N)
k

)
≥ J∗(xk) . (30)

However, incremental improvement as well as asympotic
stability of the MPC scheme is nevertheless guaranteed if
the number of iterations N is sufficiently large, as shown
in Graichen and Kugi (2010); Graichen and Käpernick
(2012).

The gradient-based MPC scheme used in this paper is
implemented in the software GRAMPC (GRAdient based MPC
– [græmp ′ si:]) that will be made available as open source
within the next weeks. GRAMPC also includes an interface
to Matlab/Simulink with an additional Matlab GUI in
order to provide a convenient and interactive MPC design
procedure (Käpernick and Graichen (2014)).

4. RESULTS

The proposed strategy for dynamic control allocation in
an experimental vehicle is validated in simulations on a
comprehensive nonlinear vehicle model which was devel-
oped following Schramm et al. (2010). This vehicle model
comprises nine coupled bodies with fourteen degrees of
freedom. It accepts front steering angle and individual
wheel torques as inputs and is parameterized to represent
a medium sized sedan. In contrast to the simplified model
used within the MPCA scheme, this model explicitly con-
siders suspension influences regarding load transfer as well
as rolling friction and aerodynamic drag. Simulation of
the tire behavior is performed according to Pacejka (2012)
including relaxation lengths and combined slip conditions.
Additionally, the vehicle model provides feedback for the
vertical tire loads Fwz,i, the tire side slip angles αi, as
well as the vehicle speed v. Those variables update the
underlying system model (11) within the MPCA scheme.

The drivetrain is modeled in accordance to the motor
dynamics (8) and the rate limits (9). Table 1 shows the
most important parameters of the simulation setup.

The performance of the MPCA approach will be demon-
strated in a substantial longitudinal deceleration scenario
and an aggressive lane change maneuver featuring large
lateral accelerations. In all cases, the input constraints are
set to

Ṫ+
d,i =

{
800 N m/s , for i ∈ {fl, fr}
1000 N m/s , for i ∈ {rl, rr} .

These rather restrictive limits are imposed since similar
values are implemented by motor controllers considered for
the prototype vehicle which is the scope of this contribu-
tion. Additionally, in actual applications, a corresponding
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Table 1. Parameters of the MPCA scheme and
the simulation model

parameter value

û
[
(0, 0, 0, 0) N m s−1

]T
Q diag

(
1, 100 N−2 m−2, 100 N−2 m−2, · · ·

)
R diag (1, 1, 1, 1) s2 N−2 m−2

γM 5000 N−2 m−2

γF 2500 N−2

γκ 2.5 × 1012

T 0.05 s
Nhor 26
N 3
∆t 2 ms

Tm 0.1 s
Jfl, Jfr 1.6965 kg m2

Jrl, Jrr 0.4037 kg m2

ri 0.307 m
lf , lr 1.38 m
ls 0.7705 m

rate limit may be implemented to prevent damage to the
transmission units due to gear lash zone effects. Since
the input constraints inherently guarantee that the rate
limits are met, the internal state prediction of the desired
wheel torques can be used directly as command to the
corresponding motor controllers.

4.1 Longitudinal Deceleration

In the first simulation scenario, the driver commands
a negative longitudinal force Fx,d corresponding to a
longitudinal deceleration of about −5 m/s2 for a period of
2 s with an initial velocity of 100 km/h. The corresponding
trajectories for the cases of disabled slip limit (solid) and
an imposed slip limit of κ+ = 0.025 (dotted) are shown in
Fig. 6. This maneuver gives rise to considerable changes
in tire stiffnesses due to load transfer influencing the
dynamics (11). The effect of the rate limits are obvious
in the slow gradient in the allocated longitudinal force
Fx, while the bang-bang-like control action is visible in
the trajectory of the input values ui. In the upper left
plot of Fig. 6 the wheel slip values are shown which
exhibit undesirably high values on the rear axle for the
unconstrained case. In the constrained case, however, the
slip value only momentarily overshoots the limit owing to
the penalty terms in (20). Despite the active slip constraint
on the rear axle, the desired value of Fx is allocated
reproducibly by the MPCA scheme, which shifts effort
onto the front axle to compensate for the active constraint.

4.2 Lange Change with High Lateral Displacement

For the second example, a reference model approach is
used to generate appropriate desired values for the yaw
moment Mz,d. Based on the driver’s commands on the
steering wheel and the vehicle velocity, a single-track
model generates a yaw rate trajectory which is used as a
reference to a P-type feedback controller, which determines
the desired yaw moment Mz,d. The single-track reference
model is parameterized to correspond to the comprehen-
sive model with three quarters of the yaw axis’ moment of
inertia, yielding a faster yaw rate response. Since the focus
of this contribution is the control allocation scheme, this

relatively simple approach was chosen over more sophisti-
cated methods to create desired yaw moments.

Fig. 7 shows the trajectories for this scenario for an aggres-
sive steering action at a velocity of about 70 km/h, during
which the steering wheel is operated in a lane-change re-
sembling maneuver featuring higher lateral displacement.
As was the case considered in the previous example, the
reference yaw moment is tracked accurately and without
significant difference between the constrained and uncon-
strained cases. In this scenario, however, the change in
tire stiffnesses is more prominent due to considerable load
transfer caused by lateral acceleration as well as the tire
side slip angle. In the period from 3.5 s to 4.5 s, the slip
constraints of κ+ = 0.015 chosen for this example become
active. During that time, the steering wheel is turned from
one extremal point to the other, decreasing vertical load of
the two wheels previously on the outer side of the curve.
This necessitates a quick reaction of the MPCA scheme
due to the already applied wheel torque and the consider-
able dynamics of the drivetrain(11). As shown in Fig. 7,
the constraints are again met with minimal overshoot.

In light of the velocity-dependent dynamics (11), the sam-
pling time of the MPCA scheme needs to be sufficiently
small for the considered speed range. The choice of the
sampling time ∆t = 2 ms has proven sufficient for speeds
up from 4 m/s. Each sampling step requires a fixed compu-
tation time 2 of 150 µs, which is well below the sampling
time. Since the scope of this contribution is not yet the
direct implementation on board an experimental vehicle,
some potential for improved performance remains.

5. CONCLUSION

In this contribution, a strategy to optimally operate over-
actuated electric vehicles was presented. The correspond-
ing constrained dynamic control allocation problem was
solved employing a gradient based MPC scheme. Despite
the simplifications performed to achieve real-time capa-
bility, the results demonstrate this approach as a very
powerful method of resolving the redundancy represented
by the considered topology and reproducibly allocating the
desired value for yaw moment and longitudinal force while
adhering to the constraints on slip values and the rate
limits on the wheel torques. Besides the inclusion of online
estimations of tire side slip angle and normal load, further
work will be focused on energy efficiency and adhering to
constraints imposed by the traction battery.
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Fig. 6. Unconstrained (solid) and constrained (dotted) trajectories for longitudinal deceleration
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Fig. 7. Unconstrained (solid) and constrained (dotted) trajectories for lane change
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