
Optimistic Planning for the Near-Optimal

Control of General Nonlinear Systems with

Continuous Transition Distributions ⋆

Lucian Buşoniu ∗ Levente Tamás ∗

∗ Department of Automation, Technical University of Cluj-Napoca,
Romania (e-mail: {lucian.busoniu, levente.tamas}@ aut.utcluj.ro).

Abstract: Optimistic planning is an optimal control approach from artificial intelligence, which
can be applied in receding horizon. It works for very general nonlinear dynamics and cost
functions, and its analysis establishes a tight relationship between computation invested and
near-optimality. However, there is no optimistic planning algorithm that searches for closed-loop
solutions in stochastic problems with continuous transition distributions. Such transitions are
essential in control, where they arise e.g. due to continuous disturbances. Existing algorithms
only search for open-loop input sequences, which are suboptimal. We therefore propose a closed-
loop algorithm that discretizes the continuous transition distribution into sigma points, and call
it sigma-optimistic planning. Assuming the error introduced by sigma-point discretization is
bounded, we analyze the solution returned, showing that it is near-optimal. The algorithm is
evaluated in simulation experiments, where it performs better than a state-of-the-art open-loop
planning technique; a certainty-equivalence approach also works well.

Keywords: Optimal control, planning, nonlinear predictive control, artificial intelligence.

1. INTRODUCTION

Optimal control problems arise in many areas of technol-
ogy. Here we consider the optimal control of general non-
linear systems with nonquadratic, discounted cost func-
tions, in discrete time and for discrete inputs (control ac-
tions). We employ the optimistic planning (OP) class of al-
gorithms originating in artificial intelligence (Munos, 2014;
Buşoniu et al., 2012). These algorithms work by exploring,
at each state encountered, a space of adaptive-horizon
solutions (e.g. sequences of actions). Usually, only the first
action of the best solution found is applied, and then the
procedure is repeated in receding horizon. OP is based
on insights from optimization, bandit theory, and classical
planning/graph search, while from the control point of
view it is classified as nonlinear model-predictive control
(MPC) (Grüne and Pannek, 2011; Grimm et al., 2005;
Camacho and Bordons, 2004, Ch. 9). OP is, however, quite
different from traditional nonlinear MPC approaches, e.g.
by fully analyzing the complete implementation, down
to a solution with guaranteed near-optimality. The main
features of OP are a tight relationship between the com-
putation budget allocated to the algorithm and near-
optimality, together with the generality of dynamics and
cost functions: due to discounting, the only requirement is
cost boundedness. The functions may e.g. be nonsmooth,
in which case gradient-based MPC is not applicable.

OP algorithms have been introduced e.g. in (Hren and
Munos, 2008; Bubeck and Munos, 2010; Buşoniu and

⋆ This work was supported by a grant of the Romanian National
Authority for Scientific Research, CNCS-UEFISCDI, project number
PNII-RU-TE-2012-3-0040, contract number 58/2013, and by SCIEX-
NMS-CH project number 12.239.

Munos, 2012; Weinstein and Littman, 2012, 2013), and
they have performed well in control problems (Weinstein
and Littman, 2013). However, there does not yet exist an
OP method that finds closed-loop solutions for stochastic
systems with continuous transition distributions, and our
aim in this paper is to develop such an algorithm. This
type of transitions is essential in practical applications of
control, arising e.g. due to continuous disturbances and
noise. Some OP techniques can be applied to continuous
transition distributions (Bubeck and Munos, 2010; Wein-
stein and Littman, 2012, 2013) but they only search for
open-loop action sequences. Such solutions are suboptimal
in the stochastic case, and closed-loop solutions are needed
to react to the transition realizations. On the other hand,
our previous closed-loop OP (Buşoniu and Munos, 2012)
only works for stochastic transitions that can end up in a
finite number of states.

The proposed method tackles continuous transition dis-
tributions by discretizing them into sigma points as in
the unscented transform (Julier and Uhlmann, 1997; Ris-
tic et al., 2004, Ch. 2). The method is therefore called
sigma-OP. This simple idea allows us to directly apply
closed-loop OP to the discretized version of the model; the
solution it returns is then applied to the original system.
Building on existing OP guarantees, we show that this
solution is near-optimal, where the bound includes a new,
constant term due to the error (assumed bounded) made
by the unscented transform in approximating the relevant
expectations. The method is evaluated in simulations on
a linear system and a nonlinear one.

It should be noted that OP for stochastic systems is re-
lated to planning-based approaches for so-called partially

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 1910

observable problems (Ross et al., 2008; Silver and Veness,
2010; Smith and Simmons, 2004), where not all the states
are measured – the AI approach to output feedback.

Next, Section 2 introduces OP for the discrete-distribution
case. The new sigma-OP for continuous transition distri-
butions is described in Section 3, analyzed in Section 4,
and evaluated in simulation experiments in Section 5.
Section 6 concludes with some ideas for future work.

2. BACKGROUND: OPTIMISTIC PLANNING FOR
MARKOV DECISION PROCESSES

Consider a system with nonlinear stochastic dynamics:

xk+1 ∼ f(xk, uk, ·) (1)

where the transition function f provides for each pair
of state x and action u the probability distribution
f(x, u, x′) over next states x′. A reward function is defined,
which measures the quality of state transitions: rk+1 =
ρ(xk, uk, xk+1).

We require discretized actions u ∈ U with M = |U |
their number, and bounded rewards r ∈ [0, 1] (note that
arbitrary bounds can be accommodated by scaling and
translation). We introduce the algorithm for the more
restrictive case where each transition has a finite number
N of outcomes with known probabilities. Such a problem is
a Markov decision process (MDP), hence the algorithm is
called OP-MDP. Note that action discretization reduces
performance, but the loss is often manageable, as we
illustrate later in the examples. Discrete actions may even
be preferred due to e.g. bandwidth constraints on the
communication between controller and actuator (De Persis
and Frasca, 2013).

Before stating the control objective, it will be useful
to introduce the solution concept of OP-MDP, called a
tree policy. This solution will be local to the current
system state, conventionally denoted x0. It must first be
explained that OP-MDP iteratively explores an infinite
tree that represents all possible stochastic evolutions of the
system starting from the current state. The root is this
current state, and each node has at most NM children,
corresponding to all possible states reachable by applying
all possible actions. Formally, denote a state node by s,
labeled by an actual state x. The infinite planning tree T∞,
of which Figure 1 only shows a few top nodes, is defined
recursively as follows. First, the root node s0 is labeled by
the current state x0, and then each node s is expanded by
adding, for any state x′ for which f(x, u, x′) > 0 for some
u, a new child node s′ labeled by x′. Note that Figure 1
explicitly includes also the action nodes in circles.

A tree policy h∞ is then an assignment of actions to a
subtree Th∞

of T∞, h∞ : Th∞
→ U , recursively taking into

account only the nodes reached under the action choices
made so far:

Th∞
= {s′ ∈ T∞|s′ = s0 or ∃s ∈ Th∞

, s′ ∈ C(s, h∞(s))}

where the actions are assigned as desired; C(s, u) denotes
the child nodes of s along action u. The branching factor
of Th∞

is (at most) N .

The optimal control objective is to find at state x0 a policy
h∞ maximizing the expected return:

x
1

1

x
0

x
2

1

u
2

0

f(x , ,x)
0 1

2

u

u

1

1

0

0
r(x , ,x)

0 1

2

f(x , ,x)
0 1

1

u

u

1

1

0

0
r(x , ,x)

0 1

1
u

1

0

d 0=

d = 2

d = 1

Fig. 1. Illustration of OP-MDP tree for N = M = 2.
The squares are state nodes labeled by states x,
and the actions u are explicitly included as circle
nodes. Transition arcs to next states are labeled by
probabilities f and rewards ρ. Superscripts index the
possible actions and state outcomes, while subscripts
are depths, which increase only with the state node
levels. The thick subtree highlights a tree policy.

V h∞(x0) = E

{
∞∑

k=0

γkrk+1

}

(2)

where the expectation is taken over all future trajectories
possible under h∞ (all paths in Th∞

). Finally, denote
the optimal value v∗ = V ∗(x0) := suph∞

V h∞(x0). This
formulation is nonstandard, since typically state feedback
control policies π(x) are sufficient to achieve the optimal
values. Nevertheless, the tree policy formulation helps to
understand the approach, and does not lose generality.

Of course, OP-MDP can only work with finite trees and
policies; such finite policies are denoted simply by h, and
one of them is exemplified in Figure 1. They must be well-
defined, connected subtrees Th at the top of T∞, so that
any node is either fully expanded (with all nonzero proba-
bility children) or not at all. The leaves of Th are denoted
by Lh. We will treat policies h and their corresponding
trees Th interchangeably. Define three values:

ℓ(h) =
∑

s∈Lh

P(s)R(s)

b(h) =
∑

s∈Lh

P(s) [R(s) +
γd(s)

1 − γ
]

v(h) =
∑

s∈Lh

P(s) [R(s) + γd(s)V ∗(x(s))]

(3)

where R(s) is the discounted return accumulated along
the path from the root to s, P(s) is the probability of
reaching leaf s (the product of the individual transition
probabilities along the path), and d(s) gives the depth of
s. So, ℓ(h) is the expected partial return accumulated by
h and is a lower bound for the expected return of any
complete, infinite policy h∞ starting with h; b(h) is an
upper bound on these expected returns; and v(h) is the
expected return when continuing optimally below h. It is

important to note that b(h) = ℓ(h) +
∑

s∈Lh
P(s) γd(s)

1−γ
.

We denote the summation in this expression by δ(h), the

diameter 1 of h; and c(s) = P(s) γd(s)

1−γ
, the contribution of

node s to the diameter. The diameter can be intuitively
seen as the uncertainty on the value of h, while c(s) is the
contribution of the leaf to this uncertainty.

1 This is, indeed, a true diameter in an appropriately defined metric
over the space of policies.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1911

Using this development, OP-MDP is easy to understand:
it builds a subtree of T∞ by refining at each iteration an
optimistic policy h† that maximizes b (intuitively seen
as the most promising policy). A policy has multiple
leaf nodes; the algorithm expands one that has maximal
contribution to the diameter. The algorithm stops after
n node expansions, and at the end returns a policy h∗

maximizing ℓ (a safe choice). The first action u0 of this
policy is applied to the system, and the algorithm is re-
applied from the new state. OP-MDP is related to classical
AO* search and described in more detail in (Buşoniu and
Munos, 2012).

The algorithm is guaranteed to find a near-optimal action
u0, in the sense:

v∗ − v(u0) ≤ δ∗ (4)

where δ∗ is the smallest diameter of any policy that was
selected for expansion, and v is from (3). This difference
measures the loss in performance due to the first action
applied, and is meaningful for an algorithm such as OP-
MDP, which separately computes actions at each encoun-
tered state. For a given n, diameter δ∗ is smaller when
the subtree of T∞ that OP-MDP must expand has fewer
nodes, and Buşoniu and Munos (2012) characterize this
subtree’s size. Briefly, in the worst case the full tree with
branching factor NM must be expanded, which means
n = O(NMd) expansions are required to reach depth d,

and thus to obtain a diameter and near-optimality of γd

1−γ
.

In typical problems, the branching factor is smaller, and
δ∗ decreases faster.

In practice, upper and lower bounds are stored for nodes
rather than tree policies, in the form of B and L-values.
B-values are backed up along the tree:

B(s) = max
u

∑

s′∈C(s,u)

f(x, u, x′)[ρ(x, u, x′) + γB(s′)]

︸ ︷︷ ︸

=:T (B;s,u)

(5)

starting from 1
1−γ

at the leaves, where x = x(s) and x′ =

x(s′). The operator T (B; s, u), parameterized by function
B, has been introduced. The L-values are similarly found,
by applying (5) but this time using T (L; s, u) and starting
from 0 at the leaves. Optimistic policies (subtrees) h† are
constructed starting downwards from the root and always
following actions that lead to maximal values of T (B; s, u)
in (5), while near-optimal policies h∗ select actions with
maximal T (L; s, u).

3. SIGMA-OP FOR CONTINUOUS DISTRIBUTIONS

Our goal in this paper is to extend OP-MDP to continuous
distributions over next states x′. Formally, denote the
probability density function of x′ after taking u in x by
f̃(x, u, x′). The reward function is unchanged, ρ(x, u, x′).
The extension of tree policies h∞ is complicated, so
consider instead state feedbacks π : X → U , which as
stated above can represent optimal solutions. The value
function is Wπ(x0) = E

{∑∞
k=0 γkrk+1

}
where actions are

taken with π, and the goal is to achieve the optimum
W ∗(x0) = supπ Wπ(x0). The ideal backups would then
involve expectations over continuous variables:

B(x) = max
u

Ex′∼f̃(x,u,·) {ρ(x, u, x′) + γB(x′)}
︸ ︷︷ ︸

=:T̃ (B;x,u)

(6)

where we slightly abuse the notation by directly using
states x instead of state nodes s. At the end of this section
we will explain how a well-defined tree, with nodes s, is
obtained. Note that operator T̃ is a generalization of T .

Our main idea is simple: exploit the unscented transform
to approximate these expectations, by discretizing the
random variable x′ into a set of sigma points (Ristic et al.,
2004, Ch. 2). Denote by µ(x, u) and σ(x, u) the mean and
covariance of x′; note they can change with the origin (x, u)
of the state transition. The means and covariances must
be known (true for many forms of f̃), or otherwise their
estimation must be computationally cheap. The sigma
points are then:

Xi(x, u) =µ(x, u)+

0, i = 0

[
√

(m + κ)σ(x, u)]i, i = 1, . . . ,m

−[
√

(m + κ)σ(x, u)]i, i = m + 1, . . . , 2m

and their weights:

α0(x, u) =
κ

m + κ
, αi(x, u) =

1

2(m + κ)
, i = 1, . . . , 2m

where κ is a tuning parameter and [·]i denotes the ith row
of the argument matrix.

Then, the expected value in (6) is approximated by a
weighted summation:

T̃ (B;x, u) ≈
2m∑

i=0

αi(x, u)[ρ(x, u,Xi(x, u)) + γB(Xi(x, u))]

= T (B;x, u)

which is accurate up to the second order of the Taylor
expansion of the function inside the expectation (Ristic
et al., 2004). By interpreting the weights αi as probabilities
(which is possible as long as κ is chosen positive), the
summation is entirely similar to that in (5), which is
why we directly reused the operator T . The approximate
algorithm expands a node by only creating children for
the sigma points (N = 2m + 1 children for each state-
action pair), and then applies the discretized operator T
to backup B and L values.

To make this formally complete, define a discretized, ap-
proximate version of the original continuous-distribution
problem, by taking f(x, u, x′) = αi(x, u) when x′ =
Xi(x, u), and 0 otherwise. The reward function ρ is kept
unchanged. OP-MDP is then simply applied to this dis-
cretized problem, to find an approximately optimal action
u0 which is applied to the real, original system. We call
the overall approach sigma-OP (short for “OP with sigma-
point discretization”).

4. ANALYSIS AND DISCUSSION

Since the discretized problem is a valid MDP, the guaran-
tees of OP-MDP directly hold for this discretized problem.
The near-optimality bound (4) is essential: v∗−v(u0) ≤ δ∗,
where all the notations of Section 2 are kept for the dis-
cretized problem. The goal is, however, to bound the sub-
optimality in the original problem. We therefore analyze

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1912

the corresponding quantity w∗ −w(u0) under the original
value function, i.e. with w∗ := W ∗(x0) and w(u0) :=

T̃ (W ∗;x0, u0). Note that, similarly, v(u0) = T (V ∗;x0;u0)
by definition (3).

Define an approximate value iteration algorithm:

Vt+1(x) = max
u

T (Vt;x, u) (7)

with V0 arbitrarily initialized. These updates are closely
related to sigma-OP: when V0 = 1

1−γ
(or 0) they corre-

spond to B-value (or L-value) updates on the infinite tree
T∞.

Assumption 1. There exists an ε ≥ 0 and a bounded
initial value function V0 so that, for any Vt and any x, u,
sigma-point approximation makes an error of at most ε:
|T̃ (Vt;x, u)−T (Vt;x, u)| ≤ ε, and the same is true for W ∗:

|T̃ (W ∗;x, u) − T (W ∗;x, u)| ≤ ε.

Since the unscented transform guarantees accuracy up
to the second order, this assumption essentially requires
the terms under the expectations (rewards and value
functions) to be well-behaved. For example, if the rewards
(and therefore the value functions) are quadratic in x′,
then ε = 0. Under Assumption 1, the following main result
holds.

Theorem 1. The action returned by sigma-OP is near-
optimal: w∗ − w(u0) ≤ δ∗ + 2 ε

1−γ
.

Proof. The assumption implies that for any t and x:

|Vt+1(x) − max
u

T̃ (Vt;x, u)| ≤ ε

where the second term is the update exact value iteration
would apply to Vt. In addition, since (7) is just value
iteration on the discretized MDP, it converges to V ∗. Given
these conditions and the boundedness of W ∗ (resulting
from the boundedness of the rewards), standard results
in approximate dynamic programming (Bertsekas and
Tsitsiklis, 1996, Sec. 6.5.3) guarantee that: 2

|W ∗(x) − V ∗(x)| ≤
ε

1 − γ
, ∀x (8)

Now:
v(u0) = T (V ∗;x0, u0)

= T (W ∗;x0, u0) + γ

2m∑

i=0

αi[V
∗(Xi) − W ∗(Xi)]

= w(u0) + T (W ∗;x0, u0) − T̃ (W ∗;x0, u0)

+ γ

2m∑

i=0

αi[V
∗(Xi) − W ∗(Xi)]

by the definition of v(u0) and w(u0), where for readability
we skipped the argument (x, u) of αi and Xi. The first
difference in the last formula is bounded in magnitude by
ε by Assumption 1, and the second by γ ε

1−γ
due to (8).

Therefore, |v(u0) − w(u0)| ≤ ε + γ ε
1−γ

= ε
1−γ

.

Combining this with |W ∗(x0) − V ∗(x0)| ≤
ε

1−γ
from (8),

and with (4), v∗ − v(u0) ≤ δ∗, the final result follows. �

The theorem says that sigma-OP will make, in addition
to the error δ∗ made by OP in the discretized problem,
2 In fact, sigma-point discretization leads to a classical type of value
function approximator called an averager.

(up to) a constant error 2ε
1−γ

due to the sigma point

approximation. Connecting this to the analysis of OP-
MDP, in the worst case where the full tree must be

expanded in the order of depth, we have δ∗ = γd

1−γ
where

n = NMd−1
NM−1 expansions are required to reach depth d, so

that w∗−w(u0) ≤ (γ
log n

log NM +2ε) 1
1−γ

. In typical problems,

only a smaller subtree must be expanded, so the δ∗ part
of the bound decreases faster with n.

Note that the OP-MDP analysis closely characterizes the
size of this subtree and the dependence of δ∗ on n, but
only asymptotically, for δ∗ around 0 (n → ∞). This is not
appropriate in sigma-OP, because the constant error 2 ε

1−γ

dominates asymptotically; instead, in future work it will
be useful to investigate the behavior of the tree for δ∗ on
the order of nonzero constant ε

1−γ
.

In any case, the analysis indicates that computation should
not be invested to shrink the diameter beyond a constant
value, since as n grows the performance will plateau
around this constant anyway. This constant is on the order
of the error made by sigma-point approximation.

5. SIMULATION RESULTS

In our experiments we compare sigma-OP with three al-
ternative planning algorithms. The first uses the same tree
structure as sigma-OP, but expands nodes uniformly, in
the order of depth. It is still a correct algorithm (it attains
a near-optimal solution given enough computation), but it
shrinks diameters slower: it always behaves as sigma-OP
would in the worst case. Uniform planning is used as a
baseline to confirm that optimistic expansion makes sense
despite approximation errors.

The second alternative is OP for deterministic systems
(OPD) (Hren and Munos, 2008), which we applied to
the nominal, deterministic model, while the actions re-
turned were heuristically executed in the true stochastic
system. OPD can be viewed as “certainty-equivalence”
planning. Finally, we choose a state-of-the-art method
called HOLOP (Weinstein and Littman, 2012). HOLOP
has different characteristics than sigma-OP: it seeks solu-
tions represented as action sequences, which in contrast to
closed-loop policies, cannot represent optimal controls in
the stochastic case. HOLOP works for continuous actions,
while the other three methods require discretized actions.
So in effect HOLOP and sigma-OP are solving differ-
ent optimal control problems, but they can both be ap-
plied as approximations to continuous-action continuous-
distribution stochastic systems, as we will do below.

5.1 DC motor stabilization

The first problem concerns a DC motor with state vari-
ables: shaft angle x1 ∈ [−π, π] rad, angular velocity
x2 ∈ [−16π, 16π] rad/s, and action variable: voltage u ∈
[−10, 10] V. The dynamics are linear:

xk+1 = Axk +Buk +zk, A ≈

[
1 0.0095
0 0.9100

]

, B ≈

[
0.0084
1.6618

]

where z is zero-mean Gaussian distributed with covari-
ance σ = 0.1 · diag(1, 1), leading to a stochastic compo-
nent of considerable amplitude. The two states are kept

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1913

within their bounds by saturation, also when discretiz-
ing into sigma points, and the actions are discretized in
{−10, 0, 10}V, so M = 3. The goal is stabilization at zero,
and is described by the reward function:

rk+1 = −xT
k Qxk−uT

k Ruk, Q = diag(1, 0), R = 0.001 (9)

with discount factor γ = 0.95. Using the known variable
bounds, the reward is scaled and translated into [0, 1].
The DC motor is chosen because its nominal dynamics
are simple, so we can focus on the effects of noise.

The four planning algorithms were applied in receding
horizon, from the initial state [−π, 0]T and for a duration
of 1 s (100 steps, due to a sampling time of 0.01 s). For
each algorithm and parameter setting, 25 independent
runs were performed. In sigma-OP and uniform planning,
the number of sigma points was N = 5 (m = 2), and
κ was set to 0.001. The algorithms were tested for a
range of computational budgets expressed as numbers
of transitions simulated during planning at each step:
nt = 150, 300, 600, 1200, 2400, 4800. Since for sigma-OP
and uniform planning budgets n are given in terms of
node expansions, and each expansion takes NM = 15
transitions, n is taken ⌈n′/15⌉ where ⌈·⌉ denotes ceiling.
HOLOP is additionally parameterized by the horizon K
over which it searches for action sequences, and for each nt

we tried values 5, 10, 25, 75, 100 for K; the experiment with
the best upper confidence bound on the return is reported
(in this problem, K = 5 was always the best). Since
the problem is linear and quadratic, by disregarding the
state and action constraints a continuous-action optimal
solution is analytically computed as in (Bertsekas, 2007,
Sec. 3.2), and its optimal value is included on the graphs.

1000 2000 3000 4000
13

14

15

16

17

nt

re
tu

rn

sigma−OP, mean return

HOLOP, mean return

1000 2000 3000 4000

4

6

8

10

12

14

16

nt

re
tu

rn

OPD, mean return

uniform, mean return

Fig. 2. Return for the DC motor. Mean performances are
shown, with their 95% confidence intervals as a shaded
region. The horizontal solid line shows the analytically
computed optimal value. For readability, results are
shown in two graphs with different vertical scale.

The results are shown in Figure 2, where performance
is measured by the discounted return obtained in the
experiment. For larger budgets sigma-OP is better than
HOLOP. Certainty-equivalence OPD on the other hand

performs as well as sigma-OP. Note however that using
it means the analytical guarantees of Theorem 1 are
sacrificed, since OPD is only a heuristic in the stochastic
problem. Uniform planning has unreliable performance,
sometimes reaching good values but then becoming worse
again for larger budgets. This indicates a good algorithm
must search optimistically. Since it is a correct algorithm,
uniform planning would eventually stabilize to a good
performance for very large budgets. Because actions are
discretized, no algorithm reaches the continuous-action
optimal value.

5.2 Inverted pendulum swing-up

The second problem involves swinging up and stabiliz-
ing an underactuated inverted pendulum. Due to limited
power, from certain states (e.g., pointing down) the pen-
dulum needs to be swung back and forth to gather energy,
prior to being pushed up and stabilized. While being a
standard control benchmark, the swing-up problem sup-
plies an interesting challenge to planning algorithms: the
swing-ups must be planned over a longer horizon, and
solutions that seem good over a short horizon will not
work. The first state x1 = α is the angle and wraps
around in the interval [−π, π) rad; the second state is the
angular velocity x2 = α̇ ∈ [−15π, 15π] rad/s. The action
u ∈ [−3, 3] V is the motor voltage, and was discretized
into {−3, 0, 3}V. A quadratic reward function of the form
(9) was used, with Q = diag(1, 0) and R = 0.3, and
was normalized into [0, 1]. The noise is again zero-mean
Gaussian, now with covariance σ = 0.015 · diag(1, 1).

2000 4000 6000 8000 10000 12000 14000
7

8

9

10

11

12

13

14

nt

re
tu

rn

sigma−OP, mean return

HOLOP, mean return

OPD, mean return

uniform, mean return

Fig. 3. Return for the inverted pendulum.

The simulation time was chosen to be 5 s with a sampling
time of 0.05 s (100 steps), and the initial state was x0 =
[−π, 0]T (pointing down). The same values as for the DC
motor were set for the sigma points parameters, while
the budgets were nt = 500, 1000, 5000, 10000, 15000 (and
n = ⌈n′/15⌉). Figure 3 reports the results of a batch of
35 experiments. For the K parameter in HOLOP, values
5, 10, 15, 20, 25, 30, 40, 50, 75, 100 were attempted, and the
best results corresponding to the values of nt above are
obtained for, respectively, K = 10, 5, 10, 15, 10.

Sigma-OP remains overall better than HOLOP, although
for nt = 500 and 15000 their performances are not
statistically different. OPD this time works better than
all other algorithms, confirming that it may be a good
choice in practice despite the lack of guarantees. Uniform
planning is still unreliable.

Figure 4 shows a controlled trajectory with sigma-OP, for
n = 667. Chattering is observed due to controlling to

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1914

an unstable equilibrium using only discrete actions, and
also because sometimes the random transitions move the
system away from the equilibrium and it must be brought
back. At certain points even a new swing may be necessary.

0 1 2 3 4 5
−5

0

5

α
 [

ra
d

]

0 1 2 3 4 5
−50

0

50

α
’
[r

a
d

/s
]

0 1 2 3 4 5
−5

0

5

u
 [

V
]

0 1 2 3 4 5
0

0.5

1

r
[−

]

t [s]

Fig. 4. A controlled trajectory.

Regarding computation, it is dominated by the number
of simulations, which is set the same for all algorithms.
However, small differences arise due to their different
internal workings. In our Matlab implementation, HOLOP
is more expensive, while the other algorithms are cheaper
and their relationships change with the problem.

6. CONCLUSION

An optimistic planning method was introduced to solve
general nonlinear, stochastic optimal control problems
with discrete actions and continuous transition distribu-
tions. The method was analyzed and shown to return near-
optimal solutions. It successfully solved a linear problem
and a nonlinear one. A heuristic certainty-equivalence
approach that plans using the deterministic model also
performed very well empirically.

Sigma points are just one way to discretize the transition
distribution, and other methods could be applied. E.g. one
limitation of sigma points is that most of them have equal
probabilities, which can lead to a large branching factor in
the OP tree (Buşoniu and Munos, 2012). An alternative
is to use a particle-filter discretization, for which the
probabilities are less symmetrical, similarly to Silver and
Veness (2010). The branching factor may then be too large
due to the number of particles, and different tree expansion
strategies may be necessary. It would also be interesting
to see whether the certainty-equivalence approach remains
competitive for multimodal distributions.

REFERENCES

Bertsekas, D.P. (2007). Dynamic Programming and Op-
timal Control, Vol. II, 2nd Ed. Athena Scientific, Bel-
mont, MA.

Bertsekas, D.P. and Tsitsiklis, J.N. (1996). Neuro-
Dynamic Programming. Athena Scientific.

Bubeck, S. and Munos, R. (2010). Open loop optimistic
planning. In Proceedings 23rd Annual Conference on
Learning Theory (COLT-10), 477–489. Haifa, Israel.

Buşoniu, L. and Munos, R. (2012). Optimistic planning
for Markov decision processes. In Proceedings 15th
International Conference on Artificial Intelligence and
Statistics (AISTATS-12), volume 22 of JMLR Work-
shop and Conference Proceedings, 182–189. La Palma,
Canary Islands, Spain.

Buşoniu, L., Munos, R., and Babuška, R. (2012). A review
of optimistic planning in Markov decision processes. In
F. Lewis and D. Liu (eds.), Reinforcement Learning and
Adaptive Dynamic Programming for Feedback Control.
Wiley.

Camacho, E.F. and Bordons, C. (2004). Model Predictive
Control. Springer-Verlag.

De Persis, C. and Frasca, P. (2013). Robust self-triggered
coordination with ternary controllers. IEEE Transac-
tions on Automatic Control, 58(12), 3024–3038.

Grimm, G., Messina, M., Tuna, S., and Teel, A. (2005).
Model predictive control: For want of a local control
lyapunov function, all is not lost. IEEE Transactions
on Automatic Control, 50(5), 546–558.

Grüne, L. and Pannek, J. (2011). Nonlinear Model Pre-
dictive Control: Theory and Algorithms. Springer.

Hren, J.F. and Munos, R. (2008). Optimistic planning of
deterministic systems. In S. Girgin, M. Loth, R. Munos,
P. Preux, and D. Ryabko (eds.), Recent Advances in
Reinforcement Learning, volume 5323 of Lecture Notes
in Computer Science, 151–164. Springer.

Julier, S. and Uhlmann, J. (1997). A new extension of
the kalman filter to nonlinear systems. In Proceedings
11th International Symposium on Aerospace/Defense
Sensing, Simulations and Controls (AeroSense-97).

Munos, R. (2014). The optimistic principle applied to
games, optimization and planning: Towards foundations
of Monte-Carlo tree search. Foundations and Trends in
Machine Learning, 7(1), 1–130.

Ristic, B., Arulampalam, S., and Gordon, N. (2004).
Beyond the Kalman Filter: Particle Filters for Tracking
Applications. Artech House.

Ross, S., Pineau, J., Paquet, S., and Chaib-draa, B. (2008).
Online planning algorithms for POMDPs. Journal of
Artificial Intelligence Research (JAIR), 32, 663–704.

Silver, D. and Veness, J. (2010). Monte-Carlo planning
in large POMDPs. In J.D. Lafferty, C.K.I. Williams,
J. Shawe-Taylor, R.S. Zemel, and A. Culotta (eds.),
Advances in Neural Information Processing Systems 23,
2164–2172. MIT Press.

Smith, T. and Simmons, R.G. (2004). Heuristic search
value iteration for POMDPs. In Proceedings 20th Con-
ference in Uncertainty in Artificial Intelligence, 520–
527. Banff, Canada.

Weinstein, A. and Littman, M.L. (2012). Bandit-based
planning and learning in continuous-action Markov de-
cision processes. In Proceedings 22nd International
Conference on Automated Planning and Scheduling
(ICAPS-12). São Paulo, Brazil.

Weinstein, A. and Littman, M.L. (2013). Open-loop plan-
ning in large-scale stochastic domains. In Proceedings
27th AAAI Conference on Artificial Intelligence (AAAI-
13), 1436–1442. Bellevue, Washington, US.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1915

