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Abstract: This paper presents a technique for designing rational nonlinear observers for rational
nonlinear systems with guaranteed cost performance. The approach is based on a Lyapunov
function that is quadratic in the estimation error and rational in the system states. The design
conditions are formulated as Linear Matrix Inequalities (LMIs). If the conditions are satisfied,
then the estimation error is guaranteed to asymptotically converge to zero for initial conditions
on an estimated region of attraction. An optimization procedure for enlarging the region of
attraction is also provided. An example is used to illustrate the results.

1. INTRODUCTION

The problem of estimating the states of a nonlinear system
is an important topic that has received a lot of attention
leading to several interesting nonlinear observer design
techniques. An interesting overview of the problem with
the state-of-the-art of observers for nonlinear systems can
be found in Kang et al. (2013). Despite some interesting
results reported in the literature, many important aspects
in the design of nonlinear observers need further research
to be improved. For instance, some of the existing design
techniques rely on transforming the nonlinear system into
a linear one by using a nonlinear output injection as in
Krener and Isidori (1983). However, the transformation
requires solving partial differential equations that are
difficult to be solved. Other techniques are based on
the decomposition of the nonlinear system into a linear
and a nonlinear part and high gain linear observers are
used to attenuate the effects of the nonlinear part in the
estimation error dynamics as in Khalil (1999) or even
using approximations based on Lipschitz conditions as in
Röbenack and Lynch (2007).

Techniques based on semidefinite programming were also
reported, as in Arcak and Kokotović (2001), Ichihara
(2007). Sector conditions are assumed in Arcak and Koko-
tović (2001) to cope with the nonlinear terms of the error
dynamics. Using quadratic Lyapunov functions Ichihara
(2007) proposes a nonlinear observer design method based
on Sum of Squares (SOS) techniques. The method applies
to the class of polynomial systems. In most engineering
applications where the sensor nonlinearities cannot be
neglected, polynomials are used to approximate the I/O
characteristics of the sensors, although the advantage of
using rational functions instead of polynomials has been
discussed in Germani and Manes (2008). The case where
the output is a rational function of the states is treated in
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Germani and Manes (2008), however the system is linear
with respect to the state.

This paper presents a technique for designing rational non-
linear observers for rational nonlinear systems. The system
output and the measurement vector can be represented as
rational functions of the system states. The approach is
based on the Lyapunov’s stability theory and the design
conditions are formulated as LMIs. The Lyapunov function
considered is quadratic in the estimation error and rational
in the system states. If the conditions are satisfied, then the
estimation error is guaranteed to asymptotically converge
to the origin, i.e. the observer states converge to the
system states, for initial conditions in an estimated region
of attraction. An optimization procedure for enlarging the
region of attraction is also provided. The idea is to find the
largest region of attraction satisfying a given guaranteed
cost performance requirement. The results in this paper
are extensions of the observer design technique in Dezuo
and Trofino (2014) to include a guaranteed cost perfor-
mance in the design.

The paper is organized as follows. The next section is
devoted to some preliminaries and definitions. The main
results on nonlinear observer design with guaranteed cost
performance and maximization of its region of attraction
are presented in the Section 3. In the Section 4 a numerical
example illustrates the method. Finally, some concluding
remarks end the paper.

Notation. Rn denotes the n-dimensional Euclidian space.
Rp×q is the set of p× q real matrices. Iq denotes the set of
integers {1, . . . , q}. M ′ denotes the transpose of M . ‖.‖
represents the 2-norm of vectors. Ir denotes the r × r
identity matrix. A p×q matrix of zeros is denoted by 0p×q.
The i− th row of a matrix M is represented by rowi(M).
The notation [.]col, [.]row, [.]diag denote matrices whose
elements, indicated inside the brackets, are arranged as a
column, row and diagonal arrays. [Mi]

i∈In
col is a compact

notation for [M1, . . . ,Mn]col. [Mi]
i∈In
row is a compact nota-
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tion for [M1, . . . ,Mn]row. [M ]Indiag is a compact notation

for [M, . . . ,M ]diag where M is repeated n times. M > 0
means that M is a symmetric positive definite matrix. The
symbol⊗ denotes the Kronecker product. For two sets U ,V
the notation U ⊂ V denotes U is a subset of V. For two
polytopes Π1 ⊂ Rn1 and Π2 ⊂ Rn2 the notation Π1 × Π2

represents a meta-polytope of dimension n1 +n2 obtained
by the cartesian product of Π1,Π2. ϑ(Π) represents the set
of all vertices of the polytope Π. Co{vi, i ∈ Iq} denotes the
convex hull obtained from the set of q vectors {v1, . . . , vq}.
λ(M), λ(M) denotes the maximum and minimum eigen-
values of a real symmetric matrix M .

2. PRELIMINARIES

Consider the nonlinear system

ẋ = f(x) = Ax+B π
0 = G(x)x+ F (x)π

{
y = Cy x+Dyπ
w = Cwπ

x(0) ∈ X

(1)
where x ∈ Rn denotes the state vector, with initial
condition x(0) and X is a given polytope. π : X 7→ Rp is a
vector of nonlinear functions that can be viewed as a basis
from which we can represent the set of nonlinear functions
of interest. The dependence of π on (x) will be omitted
to simplify the notation. A,B are coefficient matrices that
are used to express f(x) as a linear combination of (x, π).
G(x) : X 7→ Rp×n and F (x) : X 7→ Rp×p are affine
matrix functions of x. The vector y is the measurement
vector and w = w(y) is a vector that represents elements
of the basis function π that can be expressed as a function
of the measurements and thus w can be computed online.
Cy, Dy, Cw are coefficient matrices that are used to express
y, w in terms of x, π.

Now consider the nonlinear observer with the following
structure.

ż = Az +B φ+Hy(y −Cyz −Dyφ) +Hw(w −Cwφ) (2)

0 = G(z) z + F (z)φ (3)

where z ∈ Rn is the vector of states of the observer,Hy, Hw

are the observer gains to be designed and φ(.) has the
same structure as π(.). Therefore, G(.), F (.) in (3) have the
same structure as in (1). Define the linear and nonlinear
estimation errors

e = x− z , µe = π − φ (4)

and using (1), (2), (3) the error dynamics can be written as

ė = (A−HyCy)e+ (B −HwCw −HyDy)µe (5)

hJ = Cee+ Cµµe , x ∈ X , e ∈ E (6)

0 = G(x−e)x−G(x−e) e+F (x−e)π −F (x−e)µe (7)

where E is a given polytope defining the set of initial
errors to be considered in the estimation problem, hJ is
a performance output, in a sense to be specified later, and
Ce ∈ Rrh×n, Cµ ∈ Rrh×p are given matrices.

Assumptions (8)

(a) f(x) is a rational function well defined on X with
f(0) = 0 and the origin of (1) is locally asymptot-
ically stable. This assumption regards the class of
systems for which the system decomposition (1) can
be obtained, guarantee existence and uniqueness of

the solutions of the differential equation in a neigh-
borhood X of the equilibrium point 0 ∈ X and the
asymptotic stability of the system of (1) is a technical
requirement (see the proof of Theorem 1 in Section 3
for details).

(b) The matrix F (x) is invertible for all values of x ∈ X .
Under this regularity assumption the decomposition
(1) of f(x) in terms of the basis function π is well
posed as f(x) = (A−BF (x)−1G(x))x is well defined
∀(x) ∈ X .

(c) The matrix F (z) is invertible for all values of z =
x − e, ∀(e, x) ∈ E × X . Under this condition the
decomposition (2)-(3) in terms of φ is well posed.

Remark 1. As the initial condition z(0) = 0 is usually
chosen for the observer, in this case we have e(0) = x(0),
and it seems natural to consider the polytope E equals to
the polytope X . 2

We end this section with the following definition.

Definition 1. (Annihilator). Given a vector function f(.) :
Rq 7→ Rs and a positive integer r, a matrix function
ℵf (.) : Rq 7→ Rr×s will be called an annihilator of f(.)
if ℵf (z) f(z) = 0 , ∀ z ∈ Rq. If ℵf (.) is a linear function it
will be referred to as linear annihilator. 2

Observe that the matrix representation of a linear annihi-
lator is not unique. Suppose that f(z) = z = [z1 . . . zq]

′ ∈
Rq. Taking into account all possible pairs zi, zj for i 6= j
without repetition, i.e. ∀i, j ∈ Iq with j > i, we get a linear
annihilator given by the formula

ℵz(z) =

 φ1(z) Y1(z)
...

...
φ(q−1)(z) Y(q−1)(z)

 (9)

Yi(z) = −zi I(q−i), i ≥ 1 , φ1(z) = [ z2 . . . zq ]
′

φi(z) =

 0(q−i)×(i−1)

z(i+1)

...
zq

 , i ≥ 2.

In this paper annihilators are used jointly with the
Finsler’s Lemma to reduce the conservativeness of state de-
pendent LMIs. See for instance Trofino and Dezuo (2013),
Oliveira and Skelton (2001) for details.

3. MAIN RESULTS

In this paper we are concerned with the problem of ex-
pressing the Lyapunov stability conditions of the origin of
the error system (5) as an LMI problem. More precisely,
we are interested in using LMIs to determine a suitable
Lyapunov function v(e, x) that satisfies the following con-
ditions ∀(e, x) ∈ E ×X .

φ3(e, x) ≤ v(e, x) ≤ φ1(e, x)

v̇(e, x) ≤ −φ2(e, x)
(10)

where φ1(.), φ2(.), φ3(.) are continuous positive definite
functions on E×X and v̇(e, x) denotes the time derivative
of v(e, x). The above conditions imply from (Khalil, 1996,
p. 152) the local uniform asymptotic stability of the
equilibrium point (0, 0) ∈ E ×X .

In addition to the stability requirements, we are also
interested in designing observers with guaranteed cost with
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respect to the performance output hJ in (6). For a given
constant γ , the problem of concern is to find the largest
positively invariant set R such that

max
(e(0),x(0))∈R

∫ ∞
0

hJ(t)′hJ(t)dt < γ−1 (11)

where R is defined as

R = {(e, x) : v(e, x) ≤ 1} (12)

Remark 2. Under the hypothesis that the origin of the
system is locally asymptotically stable, for any given γ
there always exist a small enough neighborhood R of the
origin leading the above criterion (11) to be satisfied. The
problem of concern is then to find the largest possible
neighborhood R for which (11) is satisfied for a given γ. 2

Consider the Lyapunov function candidate

v(e, x) = vq(e) + vp(x) (13)

where

vq(e) := e′Qe (14)

vp(x) := x′P(x)x = π′bPπb , P ∈ P , πb :=

[
x
π

]
(15)

P(x) =

[
In

−F (x)−1G(x)

]′
P

[
In

−F (x)−1G(x)

]
(16)

P :={P ∈ R(n+p)×(n+p) : P=P ′ and π′bPπb=0 for x=0}
where P denotes a structure constraint on P such that
P ∈ P implies vp(0) = 0. The main result of the paper,
summarized by the next theorem, proposes LMI conditions
for the positiveness and decay of v(e, x), ∀(e, x) ∈ E × X ,
and for the inclusion R ⊂ E ×X . Some auxiliary notation
is presented in the sequel to simplify the presentation.

1) Consider the following LMIs for positivity of v(e, x).

Q > 0 (17)

P + LbCb(x) + Cb(x)′L′b + Γb(x) > 0, ∀x ∈ ϑ(X ) (18)

where Γb(x) = Mbℵπb
(x) + ℵπb

(x)′M ′b and

Cb(x) = [G(x) F (x)] , Cb(x)πb = 0, ℵπb
(x)πb = 0 (19)

and ℵπb
(x) ∈ Rsb×(n+p) is an annihilator of the vector πb

defined as in Remark 3.1 of Trofino and Dezuo (2013).
Lb,Mb are free scaling matrices to be determined with
the dimensions of Cb(x)′,ℵπb

(x)′, respectively. Due to
space limitation, the procedure presented in Remark 3.1
of Trofino and Dezuo (2013) is omitted here. However, we
exemplify the structure of the annihilators for the system
given in the example in Section 4.

2) Consider the following LMI for decay of v(e, x).

Ψ+Ψ′+γH ′H+LdCξa(e, x)+Cξa(e, x)′L′d+Γd(e, x) < 0,

∀(e, x) ∈ ϑ(E ×X ) (20)

where Γd(e, x) = Mdℵξa(e, x) + ℵξa(e, x)′M ′d, Ld,Md are
scaling matrices to be determined with dimensions of
Cξa(e, x)′,ℵξa(e, x)′, respectively, and

Ψ=

[
QA−KyCy QB −KwCw −KyDy 0n×na

0na×n 0na×p Pa

]
(21)

Pa :=

[
PAa

0(p+n2+np)×na

]
,

H := [Ce Cµ 0rh×na ]

na = n+ 2p+ n2 + np

Aa :=

[
A B 0n×p 0n×(n2+np)

0p×n 0p×p Ip 0p×(n2+np)

]

Cξa(e, x) =

[
Cξ(e, x) 0p×(p+n2+np)

0(2p+n2+np)×(n+p) Ca(x)

]
ℵξa(e, x) =

[
ℵξ(e, x) 0(se+sf+2n)×(p+n2+np)

0sa×(n+p) ℵπa
(x)

]
Cξ(e, x)=[−G(x− e) −F (x− e) G(x− e) F (x− e)]

ℵξ(e, x) =

[ℵe(e) 0se×p 0se×n 0se×p
0sf×n −ℵφ(x− e) 0sf×n ℵφ(x− e)
In ⊗ x 02n×p −e⊗ In 02n×p

] (22)

where ℵe ∈ Rse×n is a linear annihilator given by (9),
ℵφ(.) ∈ Rsf×n is an annihilator of φ with the same
structure as ℵπ(.), obtained according to the Remark 3.1
of Trofino and Dezuo (2013).

Ca(x) :=

 G(x) F (x) 0p×p 0p×n2 0p×np
W1(x) W2(x) F (x) 0p×n2 F̄a
W3(x) W4(x) 0n2×p In2 0n2×np
0np×n 0np×p 0np×p −Gb(x) Fb(x)


W1(x) = Ḡa(x)A+G(x)A
W2(x) = Ḡa(x)B +G(x)B

W3(x) = Eb(x)A
W4(x) = Eb(x)B

(23)

where the matrices F (x), G(x), which are affine functions
of x, are decomposed as

G(x) = G0 + Ḡ(x) , Ḡ(x) :=
∑n

i=1
Ḡixi

F (x) = F0 + F̄ (x) , F̄ (x) :=
∑n

i=1
F̄ixi

(24)

where xi are the entries of x and G0, Ḡi, F0, F̄i are constant
matrices of structure that issue from the affine decompo-
sitions of G(x), F (x).

Eb(x) := [xEi]
i∈In
col , Ei := rowi(In), Ḡa(x) :=

n∑
i=1

ḠixEi

Fb(x) := [F (x)]Indiag, Gb(x) := [G(x)]Indiag, F̄a := [F̄i]
i∈In
row

ℵπa(x) ∈ Rsa×(n+2p+n2+np) is an annihilator given by

ℵπa
(x) :=

 ℵπb
(x) 0sb×p 0sb×n2 0sb×np

Wa ℵπb
(x)J1 H̄b H̄a

0sen×(n+p) 0sen×p ℵµ(x) 0sen×np
0sfn×(n+p) 0sfn×p 0sfn×n2 ℵη(x)


Wa = [ℵπb

(x)J0A ℵπb
(x)J0B] (25)

where with affine decomposition

ℵπb
(x) = H0 + H̄(x) , H̄(x) :=

∑n

i=1
H̄ixi (26)

where H0, H̄i ∈ Rsb×(n+p) are fixed matrices of structure
that issue from the affine decomposition of ℵπb

(x) and

J0 :=

[
In

0p×n

]
, J1 :=

[
0n×p
Ip

]
,
H̄a := [H̄iJ1]i∈Inrow

H̄b := −[H̄iJ0]i∈Inrow

(27)

ℵµ(x) := [ℵx(x)]Indiag , ℵη(x) := [ℵπ(x)]Indiag (28)

where ℵx(x) is a linear annihilator of x given by (9) and
ℵπ(x) is an annihilator of π obtained according to the
Remark 3.1 of Trofino and Dezuo (2013).

3) Consider that E×X is a polytope that can be described
as the convex hull of its vertices, or equivalently, as the
intersection of half-spaces as indicated below.

E ×X = Co{vi, ∀i ∈ Ih}

= {(e, x) : a′k xa ≤ 1 , ∀k ∈ Ig} , xa =

[
e
x

]
(29)

where h is the number of vertices vi ∈ R2n of the polytope
E ×X and ak ∈ R2n are given vectors associated with the
g facets Fk defined below.
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Fk =
{

(e, x) ∈ E ×X : a′k xa = 1
}
, k ∈ Ig (30)

and then consider the following LMI for the estimation of
the region of attraction.

Q′k(Pck(x) + Γck(e, x))Qk > 0 ∀(e, x) ∈ ϑ(Fk) , ∀k ∈ Ig
(31)

with the notation
Ck =

[
a′kC0 −1

]
, C0 = [ I2n 02n×p ]

Pck(x) =
[
Q,P + LbkCb(x) + Cb(x)′L′bk ,−1

]
diag

Γck(e, x) =
[
0n×n,Mbkℵπb

(x) + ℵπb
(x)′M ′bk , 0

]
diag

+Nck [C0 −xa ] + [C0 −xa ]
′
N ′ck

(32)

where Qk is a basis for the null space of Ck and Mbk ∈
R(n+p)×sb , Nck ∈ R(2n+p+1)×2n, Lbk ∈ R(n+p)×p, for k ∈ Ig
are matrices to be determined.

Theorem 1. Consider the nonlinear system (1) with As-
sumptions (8-a,b). Consider the nonlinear observer (2)-(3)
with Assumption (8-c). Let γ be a given scalar specifying
the desired level of performance in (11). Suppose that
the LMIs (17),(18),(20),(31) are satisfied and define the
observer gains as

Hy = Q−1Ky , Hw = Q−1Kw (33)

Then the convergence properties

lim
t→∞

[
z(t)

φ(z(t))

]
=

[
x(t)

π(x(t))

]
(34)

and the cost function (11) are satisfied. Moreover v(e, x)
in (13) is a Lyapunov function for the error system (5). 2

Proof: The first part of the proof consists of showing that
v(e, x) with the structure (13)-(15) is a Lyapunov function
that satisfies the stability conditions (10) ∀(e, x) ∈ E ×
X . Thus the uniform asymptotic stability follows from
(Khalil, 1996, p. 152). The second part of the proof consists
of showing that R is an estimated region of attraction
for (5) and that the performance criterion (11) is satisfied
∀(e(0), x(0)) ∈ R.

Note that (17) is a sufficient condition for vq(e) > 0, ∀e 6=
0 ∈ E , and multiplying (18) by πb to the right and its
transpose to the left, and keeping in mind that Cbπb = 0,
π′bΓbπb = 0, we get vp(x) > 0, ∀x 6= 0 ∈ X . Therefore,
considering the decomposition of the Lyapunov function
in (13), we conclude that v(e, x) > 0 is satisfied ∀(e, x) 6=
(0, 0) ∈ E ×X .

The time derivative of v(e, x) is given by

v̇(e, x) = v̇q(e) + v̇p(x) (35)

where, with (5), we have

v̇q(e) = 2e′Qė = 2e′Q(A−HyCy)e+ 2e′Q(B −HwCw)µe
(36)

and the time derivative of vp(x) leads to

v̇p(x) = 2

[
x
π

]′
P

[
Ax+Bπ

π̇

]
(37)

which can be rewritten as

v̇p(x) = π′a(Pa + P ′a)πa , πa = [πb, π̇, µ, η]col (38)

µ = [µi]
i∈In
col , η = [ηi]

i∈In
col , µi = −xẋi , ηi := π ẋi (39)

Observe that n, p are the dimensions of x, π respectively.
Moreover, the time derivative of vp(x) has increased com-
plexity and we need extra change of variables, namely
π̇, µ, η, to render the expressions affine in x. By arranging

in a single expression all the relations among the vectors
x, π, π̇, µ, η we get Ca(x)πa = 0 with Ca(x) from (23). Also,
observe that ℵπb

(x)πb = 0 and, according to (Trofino and
Dezuo, 2013, p.14), ℵπaπa = 0. See (Trofino and Dezuo,
2013, p.13) for the detailed construction of the matrices
Ca(x) and ℵπa , omitted here due to space limitation.
Consider the vector ξ := [e, µe, x, π]col. Note that using
the notation (22) we can rewrite (7) as Cξ(e, x)ξ = 0. Also
note that ℵe(e)e = 0, ℵφ(z)φ = ℵφ(x−e)(π−µe) = 0, and
(In ⊗ x)e− (e⊗ In)x = 0. Therefore ℵξ(e, x)ξ = 0.

Now, with (36), (38), (21) and using the changes of variable

Ky = QHy , Kw = QHw (40)

we can rewrite (35) as

v̇(e, x) = ξ′a (Ψ + Ψ′) ξa , ξa = [e, µe, πa]col (41)

To show that the performance criterion (11) is satisfied,
consider the auxiliary condition

v̇(e, x) + γh′JhJ < 0 (42)

Noticing that hJ = Hξa, we can rewrite (42), with v̇(e, x)
from (41), as

v̇(e, x) = ξ′a (Ψ + Ψ′ + γH ′H) ξa < 0 (43)

As Cξ(e, x)ξ = 0, ℵξ(e, x)ξ = 0, Ca(x)πa = 0, ℵπa(x)πa =
0, we have that Cξa(e, x)ξa = 0, ξ′aΓd(e, x)ξa = 0.
Therefore, from (43) and the Finsler’s Lemma we get (20)
as a sufficient LMI condition for the negativeness of v̇(e, x).

In summary, suppose the conditions of the Theorem 1
are satisfied. Then by convexity they are also satisfied
∀(e, x) ∈ E ×X . Define the positive constants

ε1 = max
x∈X

λ(S) , ε3 = min
x∈X

λ(S) , ε2 = max
x∈X

λ(M ′M)

S := [Q, P + LbCb(x) + Cb(x)′L′b + Γb(x)]diag (44)

M := F (x)−1G(x)

Observe from Assumption (8-b) that F (x)−1 is well de-
fined ∀x ∈ X and thus ε2 is a finite positive constant. As
Q > 0 and P + LbCb + C ′bL

′
b + Γb > 0, let us multiply

S by ξb = [e, x, π]col to the right and by its transpose to
the left. Keeping in mind that Cbπb = 0, π′bΓbπb = 0 and
π′bPπb = x′P(x)x as π = −F (x)−1G(x)x, we get

ε3‖ξb‖2 ≤ v(e, x) ≤ ε1‖ξb‖2 ∀(e, x) ∈ E ×X (45)

On the other hand,

‖e‖2+‖x‖2 ≤ ‖ξb‖2 ≤ ‖e‖2+(ε2+1)‖x‖2, ∀(e, x) ∈ E×X
Thus v(e, x) satisfies the bounds in (10) ∀(e, x) ∈ E × X
with φ3 = ε3 (‖e‖2 + ‖x‖2) , φ1 = ε1 (‖e‖2 + (ε2 + 1)‖x‖2).
Similar arguments are used to show the bounds on v̇(e, x).
Define the positive constant ε4 as

ε4 = min
e∈E,x∈X

λ(−N(e, x)) (46)

N(e, x) :=

Ψ + Ψ′ + γH ′H + LdCξa(e, x) + Cξa(e, x)′L′d + Γd(e, x)

Recall that Cξaξa = 0 and ξ′aΓdξa = 0. Thus from (43),
(20), (46) we get

v̇(e, x) = ξ′aNξa ≤ −ε4‖ξa‖2 (47)

As ‖ξa‖2 = ‖e‖2+‖µe‖2+‖x‖2+‖π‖2+‖π̇‖2+‖µ‖2+‖η‖2
we conclude ‖ξa‖2 > ‖e‖2 + ‖x‖2 whenever ‖e‖ 6= 0 and
‖x‖ 6= 0, which in turn implies

v̇(e, x) < −ε4(‖e‖2 + ‖x‖2) (48)

and we conclude v̇(e, x) satisfies the bounds in (10)
∀(e, x) ∈ E × X with φ2 = ε4 (‖e‖2 + ‖x‖2), which com-
pletes the proof for local stability of the error dynamics.
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Moreover, condition (20) requires the dynamics of the
system (1) to be stable as well in order to be satisfied,
hence the Assumption (8-a).

For the second part of the proof, notice in (12) that the
surface of R is the unitary level set of v(e, x). Thus, the
condition that guarantee R ⊂ E ×X is

v(e, x) > 1 , ∀(e, x) ∈ Fk , ∀k ∈ Ig (49)

Considering πc = [e, πb, 1]col and using the notation (32)
we can rewrite (49) as

π′c(Pck(x) + Γck(e, x))πc > 0 ∀πc : Ckπc = 0, ∀k ∈ Ig
(50)

Observe ℵπb
(x)πb = 0 and C0 [e′ π′b]

′
= xa which in turn

implies π′cΓck(e, x)πc = 0, ∀e, x, k. Using the Finsler’s
Lemma we get the LMI condition (31). If (31) is satisfied,
then R ⊂ E × X . Moreover, if the conditions (17), (18),
(20) are satisfied, then R is positively invariant and (34)
is satisfied ∀(e(0), x(0)) ∈ R. In order to show that (42)
implies the criterion (11) we use standard arguments.
Integration of (42) from 0 to T > 0 leads to

v(e(T ), x(T ))− v(e(0), x(0)) + γ

∫ T

0

h′JhJ dt < 0 (51)

As the system (5),(7) is stable in closed-loop ∀(e(0), x(0)) ∈
R, we conclude that limT→∞(e(T ), x(T )) = 0 and thus
limT→∞ v(e(T ), x(T )) = 0. Therefore, (51) implies that∫ ∞

0

h′JhJ dt < v(e(0), x(0))γ−1 (52)

As v(e(0), x(0)) < 1, ∀(e(0), x(0)) ∈ R, we have
v(e(0), x(0))γ−1 < γ−1. Therefore, we conclude from (52)
that the criterion (11) is satisfied ∀(e(0), x(0)) ∈ R. 2

3.1 Enlarging the region of attraction

Once R ⊂ E × X from (31), to enlarge the estimate
we need to approach, as much as possible, the unitary
level set of v(e, x) from the facets of the polytope. As
v(e, x) > 1 on the facets, the problem of concern is to
minimize the largest level set of v(e, x) on each facet, i.e.
minimizing τk such that v(e, x) < τk, ∀(e, x) ∈ Fk, for all
k ∈ Ig. Proceeding as in (49), (50), (31) we can rewrite
v(e, x) < τk, ∀(e, x) ∈ Fk as

Q′k(P̃ck(x) + Γ̃ck(e, x))Qk > 0 ∀(e, x) ∈ ϑ(Fk) , ∀k ∈ Ig
(53)

where

P̃ck(x) =
[
−Q,−P + L̃bkCb(x) + Cb(x)′L̃′bk , τk

]
diag

Γ̃ck(e, x) =
[
0n×n, M̃bkℵπb

(x) + ℵπb
(x)′M̃ ′bk , 0

]
diag

+Ñck [C0 −xa ] + [C0 −xa ]
′
Ñ ′ck

where M̃bk ∈ R(n+p)×sb , Ñck ∈ R(2n+p+1)×2n, L̃bk ∈
R(n+p)×p, for k ∈ Ig are matrices to be determined as
in (31). Taking into account all facets of the polytope, the
optimization problem can be formulated as minimizing the
average value of τk as indicated below.

minimize

τk, Pck ,Γck , P̃ck , Γ̃ck

1

g

g∑
k=1

τk

subject to (17), (18), (20), (31), (53)

(54)

Remark 3. Observe there is, in general, a trade off between
the size of the estimated region of attraction R and the

level of performance γ−1 in (11) we can achieve. In general,
larger values of γ result in smaller sizes of the region of
attraction R. This natural trade off is illustrated in the
numerical example in Section 4. 2

4. NUMERICAL EXAMPLE

In the example that follows we have used SeDuMi with
Yalmip interface from Löfberg (2004) to solve the LMIs
and Simulink to obtain the state trajectories.

Example 1. Consider the rational system

ẋ1 = x2 + 0.5ζ(x)
ẋ2 = −x1 − x2 + 0.5x21

, ζ(x) = x1

x2
2+1

, x =

[
x1
x2

]
(55)

with the initial condition x(0) = [0 0.07]
′
, y = x2 is

the measurement output and h = x1 is the performance
variable. Define the nonlinear function

π(x) =
[
x21 x1x2 x

2
2

x1

x2
2+1

x2

x2
2+1

x2
1

x2
2+1

x1x2

x2
2+1

x2
2

x2
2+1

]′
(56)

and observe the following relations among the entries πi
of π:

π1 = x21 , π2 = x1x2 , π3 = x22
π4 + x2π7 − x1 = 0 , π5 + x2π8 − x2 = 0 (57)

π6 = x1π4 , π7 = x2π4 , π8 = x2π5
Note that π4 = ζ(x). The relation π4 + x2π7 − x1 = 0 is
obtained from the expression of the rational function π4
rewritten as π4(x22 + 1) = x1 and the change of variable
π7 = x2π4. The relation π5 + x2π8 − x2 = 0 is obtained in
a similar way. Using the above relations and noticing that
π3, π5, π8 are available by measuring x2, we get the system
representation (1) with the following matrices:

A =

[
0 1
−1 −1

]
, B =

[
0 0 0 0.5 0 0 0 0

0.5 0 0 0 0 0 0 0

]
Cy = [ 0 1 ] ,

Dy = 01×p ,
Cw =

[
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

]

G(x) =

[
β1(x)
I2

03×2

]
, F (x) =

[ −I3 03×2 03×3
02×3 −I2 β2(x)
03×3 β1(x) −I3

] (58)

where

β1(x) =

[
x1I2

row2(I2)x2

]
, β2(x) = [ 02×1 −x2I2 ]

and the following annihilators

ℵπb
=

 ℵπd
0

0 ℵζ
Ξ 0
0 Ξ


Ξ = [x2 0 0 −1 0]

ℵπd
= ℵζ = [ℵx,ℵπ2 ]diag

ℵπ = [ℵπ2
,ℵζ ]diag

ℵπ2
=

[
x2 −x1 0
0 x2 −x1

]
Through rows and columns manipulations it is possible to
check that det(F (x)) = x22 + 1 and thus the Assumption
(8-b) on F (x) invertibility holds globally. The same is true
for F (x − e) and Assumption (8-c). Observe x22 + 1 is
the denominator of the rational function in (55), (56).
Consider the observer structure given in (2)-(3), with
z(0) = 0 and the nonlinear function

φ(z) =
[
z21 z1z2 z

2
2

z1
z22+1

z2
z22+1

z21
z22+1

z1z2
z22+1

z22
z22+1

]′
and noticing that φ(.) has the same structure as π(.)
in (56), the matrices G(z), F (z) have the same structure
given in (58) with x replaced by z.
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The polytope considered for x is a hypercube of the form
X = {x : ‖xi‖ ≤ α, i ∈ In} with α = 0.5, and E = X
according to Remark 1. See Remark 5.2 of Trofino and
Dezuo (2013) for an algorithm to improve the choice of
the vertices of X . Solving the optimization problem (54)
for the above polytope and fixing the level of performance
in (11) with the choice γ = 10, a feasible solution is found,
leading to the observer gains

Hy =

[
−43.656
27.312

]
, Hw =

[
−0.430 −5.581 8.442
−1.396 3.174 −3.833

]
The trajectories of the states of the system and of the
observer are shown in Fig. 1(a) and 1(b) for x1, z1 and
x2, z2, respectively, for the given initial condition x(0) and
z(0) = 0. Note that z converges to x, as expected. Fig. 1(e)
shows the estimated region of attraction R0 for the case
of z(0) = 0, therefore e(0) = x(0). Note that R0 ⊂ Rn,
R ⊂ R2n and that R0 ⊂ R because R0 represents the set
of initial conditions for a particular case of z(0). Fig. 1
also shows the trajectories of z and the estimated region
of attraction R0 for γ = 0 (case without guaranteed cost
performance). Comparing the results, note the trade off
between the level of guaranteed cost and size of the region
of attraction. The larger the estimate of the region of
attraction the slower may become the observer response
for initial conditions near the boundary of the estimate. 2
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Fig. 1. Trajectories: (a) x1, z1, (b) x2, z2. (c) Estimated
regions of attraction R0 for initial conditions consid-
ering z(0) = 0.

5. CONCLUDING REMARKS

This paper proposes LMI conditions for designing rational
nonlinear observers for rational nonlinear systems with
guaranteed cost performance. The measurement output
can be expressed as a rational function of the states. The
results guarantee convergence of the estimation error to
zero for initial conditions inside of an estimated region of
attraction. An example is used to illustrate the approach.
The estimate of the region of attraction is based on a
quadratic function of the error and a rational function of
the system states. For this reason the proposed method
requires the local asymptotic stability of the system whose
states are to be estimated. The use of a quadratic Lya-
punov function for the error dynamics introduces a cer-
tain conservatism in estimating the region of attraction.
Although, the use of a rational Lyapunov function of the
error seems to be possible, some technical difficulties arises

and we are currently investigating this point. It is worth
to emphasize that the optimization procedure presented
in Section 3.1, is based on Trofino and Dezuo (2013) and
is very effective for the characterization of regions of at-
traction (see Trofino and Dezuo (2013) for details). Other
points of current research are the use of H∞ performance
requirement to the observer design and the inclusion of
uncertain parameters in the system.
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M. Arcak and P. Kokotović. Nonlinear observers: a circle
criterion design and robustness analysis. Automatica, 37
(12):1923–1930, 2001.

T. Dezuo and A. Trofino. LMI conditions for designing
rational nonlinear observers. Accepted for publication
in the 2014 ACC, 2014.

A. Germani and C. Manes. State observers for systems
with sensors modeled by polynomials and rational func-
tions. In Proc. of the 16th Mediterranean Conference
on Control and Automation, pages 1387–1392, Ajaccio,
France, 2008.

H. Ichihara. Observer design for polynomial systems using
convex optimization. In Proc. of the 46th IEEE Conf.
on Dec. and Control, pages 5347–5352, New Orleans,
USA, 2007.

W. Kang, A.J. Krener, M. Xiao, and L. Xu. A survey
of observers for nonlinear dynamical systems. In Data
Assimilation for Atmospheric, Oceanic and Hydrologic
Applications, vol. 2, pages 1–25. Springer-Verlag, Berlin,
Germany, 2013.

H.K. Khalil. Nonlinear Systems. Prentice Hall, 1996.
H.K. Khalil. High-Gain Observers in Nonlinear Feedback

Control. In New Directions in Nonlinear Observer De-
sign (Lecture Notes in Control and Information Sci-
ences, vol. 244), pages 249–268. Springer-Verlag, Lon-
don, UK, 1999.

A.J. Krener and A. Isidori. Linearization by output
injection and nonlinear observers. Syst. & Control
Letts., 3(1):47–52, 1983.
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