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Abstract: A neuro-adaptive augmented nonlinear dynamic inversion approach is proposed in
this paper for robust automatic landing of unmanned aerial vehicles. Following the philosophy of
indirect adaptive control, a set of linear in weight neural networks are used to rapidly learn the
unknown part of the system model online. This continuously updated model is simultaneously
used in a dynamic inversion framework that results in an adaptive controller which is quite
robust to the modeling inaccuracies (i.e. parametric uncertainties of the model) and external
wind shear disturbance. The training rule of neural networks is obtained from Lyapunov stability
theory, where a Sobolev norm based Lyapunov function is chosen. This leads to ‘directional
learning’, resulting in fast learning without exciting too much of transient oscillations. Robust
performance of this neuro-adaptive augmented nonlinear controller is successfully validated
through six degree-of-freedom simulation studies.

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) are useful for numer-
ous applications such as reconnaissance and surveillance,
battle damage assessment, traffic monitoring, crime pre-
vention, detection and containment of hazardous leakages
in industries, assessment and rehabilitation in case of nat-
ural calamities etc. Unfortunately, however, many UAVs
get either destroyed or severely damaged during landing.
Hence, for successful repeated deployment, it is obvious
that UAVs should have good automatic landing capability.

A landing phase trajectory typically consists of approach,
glideslope and flare [4]. Auto-landing demands careful de-
sign and closely tracking of a good desired landing path
in all the three segments. Linearized model of the aircraft
have been used in the literature for auto-landing using
separate longitudinal and lateral dynamics. However, lin-
ear system based approaches have a strong limitation that
they work within a small operating range. The philosophy
of ‘gain scheduling’ can be used to overcome this limitation
to a limited extent. However gain scheduling is a tedious
process and there is no guarantee that the interpolated
gains can assure stability of the closed loop system [5].
Nonlinear control design techniques have also been used
in the literature. Among various nonlinear techniques,
dynamic inversion technique has been proposed for au-
tomatic landing aircrafts and UAVs [2], [8], [4], [6].

Despite its reported success in simulation studies, it is well-
known that the dynamic inversion approach suffers from
the drawback of its sensitivity for modeling inaccuracies,
which is inherently present in aerospace vehicles owing
to aerodynamic force and moment modeling from wind
tunnel and flight testing. Hence, this issue parametric
uncertainty in the model needs to be addressed explicitly
with sufficient confidence. In addition, another factor that

influences the aircraft (especially UAV) is the issue of
‘wind shear’, which can lead to substantial deviation of
flight path because of the light weight of vehicle and its
low speed in landing phase. Presence of wind shear can
occur from variety of sources, such as atmospheric factors
like microbursts and geographical factors like wake effects
of building near landing sites [1].

An indirect adaptive control philosophy is used in this
paper to address above issues. In this approach, which is
largely inspired from the approach followed in [3], a set
of linear in weight neural networks are used to rapidly
learn the unknown components of the system model and
update the model online. This updated model is then
used in a dynamic inversion framework that results in
an adaptive controller which is quite robust to modeling
inaccuracies and external wind shear disturbance. Note
that the training rule of neural networks is obtained by
following Lyapunov theory, where a Sobolev norm based
Lyapunov function is chosen to learn both the unknown
function as well as the gradient vector of each of its
components. This leads to ‘directional learning’, resulting
in fast learning without exciting too much of transient os-
cillations. Two sets of neural networks are used, one in the
guidance loop using translational dynamics and another
in the control loop using rotational dynamics. The outer
loop generates the necessary body rates, whereas the inner
loop generates the necessary fin deflection. The overall
structure leads to a robust controller which is capable of
addressing the modelling inaccuracy and wind shear issues
simultaneously. Performance of this neuro-adaptive aug-
mented nonlinear dynamic inversion controller is success-
fully validated through six degree-of-freedom (Six-DOF)
simulation studies.
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2. AIRCRAFT MODEL

2.1 Dynamics without wind shear

Under the assumptions of airplane to be a rigid body and
earth to be flat, the set of Six-DOF equations of motion
are given by following differential equations.

Translational dynamic equations

[
u̇
v̇
ẇ

]
=


rv − qw − g sin θ +

Xa +Xt

m

pw − ru+ g sinφ cos θ +
Ya
m

qu− pv + g cosφ cos θ +
Za
m

 (1)

Rotational dynamic equations[
ṗ
q̇
ṙ

]
=

 c1rq + c2pq + c3La + c4Na
c5pr + c6

(
r2 − p2

)
+ c7 (Ma +Mt)

c8pq − c2rq + c4La + c9Na

 (2)

Translational kinematic equations

ẋ

ẏ

ḣ


=



u cos θ cosψ
+v (sinφ sin θ cosψ − cosφ sinψ)
+w (cosφ sin θ cosψ + sinφ sinψ)

u cos θ sinψ
+v (sinφ sin θ sinψ + cosφ cosψ)
+w (cosφ sin θ sinψ − sinφ cosψ)
u sin θ − v sinφ cos θ − w cosφ cos θ

 (3)

Rotational kinematic equations φ̇θ̇
ψ̇

 =

[
p+ q sinφ tan θ + r cosφ tan θ

q cosφ− r sinφ
q sinφ sec θ + r cosφ sec θ

]
(4)

In above equations Xa, Ya, Za are the aerodynamic forces
and La, Ma, Na are the moments about the body axis. Xt

is the thrust force in body axis X direction and Mt is the
moment around the Y axis caused by thrust. Constants
c1, c2, . . . , c9 in above equations are function of inertial
properties of aircraft given as

c1
c2
c3
c4
c8
c9

 =
1

IxxIzz − I2
xz


Izz (Iyy − Izz)− I2

xz
Ixz (Ixx − Iyy + Izz)

Izz
Ixz

I2
xz + Ixx (Ixx − Iyy)

Ixx


[
c5
c6
c7

]
=

1

Iyy

[
(Izz − Ixx)

Ixz
1

]
Inertia properties of the 6 kg vehicle are given in Table
1. Nominal aerodynamic model and associated parameter
values can be found in [6].

Table 1. Moment of Inertias of AE-2

Ixx (kgm2) Iyy (kgm2) Izz (kgm2) Ixz (kgm2)

0.51 0.89 0.91 0.0015

2.2 Dynamics with wind shear

General nonlinear model of aircraft developed by Etkin is
derived assuming zero or constant wind. Performance and
control of aircraft in extreme wind variation pose serious
threat of losing aircraft control. Frost [1] incorporated
spatial and temporal variations of wind into Six-DOF
model.

ẋ

ẏ

ḣ


=



u cos θ cosψ
+v (sinφ sin θ cosψ − cosφ sinψ)

+w (cosφ sin θ cosψ + sinφ sinψ) +WxE

u cos θ sinψ
+v (sinφ sin θ sinψ + cosφ cosψ)

+w (cosφ sin θ sinψ − sinφ cosψ) +WyE

u sin θ − cos θ(v sinφ+ w cosφ)−WzE

(5)

Translational kinematic equations are modified by adding
the wind velocity vector [WxE , WyE , −WzE ] with respect
to inertial frame on right hand side. Wind velocity vector
[Wx,Wy,Wz] is with respect to body frame. There will
not be any change in rotational kinematic equations.
In rotational dynamic equations, moment terms depend
on wind vector and its gradient. Translational dynamic
equations are modified as:


u̇

v̇

ẇ

 =



r (v +Wy)− q (w +Wz)− Ẇx

−g sin θ +
Xa +Xt

m
p (w +Wz)− r (u+Wx)− Ẇy

+g sinφ cos θ +
Ya
m

q (u+Wx)− p (v +Wy)− Ẇz

+g cosφ cos θ +
Za
m


(6)

Transformation of wind vector and its derivative from
inertial frame to body frame is as shown below.[

Wx

Wy

Wz

]
= LBE

[
WxE

WyE

WzE

]
(7)

where

LBE =


cos θ cosψ cos θ sinψ − sin θ

(sinφ sin θ cosψ) (sinφ sin θ sinψ) sinφ cos θ
− (cosφ sinψ) + (cosφ cosψ)

(cosφ sin θ cosψ) (cosφ sin θ sinψ) cosφ cos θ
+ (sinφ sinψ) − (sinφ cosψ)

 (8)


Ẇx

Ẇy

Ẇz

 =



(
∂Wx

∂x

)
B

(u+Wx) +

(
∂Wx

∂y

)
B

(v +Wy)

+

(
∂Wx

∂z

)
B

(w +Wz) +

(
∂Wx

∂t

)
B(

∂Wy

∂x

)
B

(u+Wx) +

(
∂Wy

∂y

)
B

(v +Wy)

+

(
∂Wy

∂z

)
B

(u+Wx) +

(
∂Wy

∂t

)
B(

∂Wz

∂x

)
B

(u+Wx) +

(
∂Wz

∂y

)
B

(v +Wy)

+

(
∂Wz

∂z

)
B

(w +Wz) +

(
∂Wz

∂t

)
B



(9)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

12203



∇BW = LTBE∇EWLBE (10)

where

∇W =



∂Wx

∂x

∂Wy

∂x

∂Wz

∂x

∂Wx

∂y

∂Wy

∂y

∂Wz

∂y

∂Wx

∂z

∂Wy

∂z

∂Wz

∂z


3. NEURO ADAPTIVE CONTROL

3.1 Neural networks

Neural networks are used in system identification as they
can be easily trained for curve fitting by a given set of data
points defined by input signal and a desired response. With
the criterion for best fit, Radial Basis Functions(RBF) can
be viewed as universal approximators for most of nonlinear
classes. The input output mapping performed by RBF is

y =

m∑
i=1

wiφi(x) (11)

The term φi is the ith radial basis function which repre-
sents nonlinear transformation and the weights wi maps
linear transformation. Gaussian function is selected as
radial basis function which is shown below

φi(x) = e
−(x−xi)

2

σ2
i , i = 1, 2, . . . ,m (12)

where xi is the center, σi is the width of ith radial basis
function.

3.2 Nonlinear Dynamic Inversion

Consider a nonlinear dynamical system which is affine in
control and given by

Ẋ = f(X) + g(X)U, X(0) = X0 (13)

Y = h(X) (14)

where X ∈ Rn, U ∈ Rm, Y ∈ Rp are the state, control and
output vectors of nominal system respectively. We assume
the system is point wise controllable. The objective is to
design a control U so that Y −→ Y ∗ as t −→∞, where Y ∗

is the commanded signal for the Y to track. We assume
Y ∗ is bounded, smooth and slowly varying.

To achieve the above objective using the chain rule of
derivative the expression for Y can be written as

Ẏ = fY (X) + gY (X)U (15)

where fY =
[
∂h
∂X

]
f(X) and gY =

[
∂h
∂X

]
g(X). Next,

defining E = (Y − Y ∗), the controller is synthesized such

that a stable linear error dynamics is satisfied Ė+KE = 0,
where K is chosen to be positive definite matrix.

U = [gY (X)]−1[−fY (X)−K(Y − Y ∗) + Ẏ ∗] (16)

In order to overcome the potential performance degrada-
tions of a dynamic inversion controller due to imperfect
inversion or non-accurate aerodynamics, the control loop
is augmented with adaptive elements. Online neural net-
works are used to augment the dynamic inversion

3.3 Neuro adaptive control

Consider a nonlinear plant with known dynamics and
parameters as

Ẋd = f(Xd, Ud), where Xd ∈ Rn (17)

Ud ∈ Rm(m ≤ n) (18)

for which a nominal baseline control, Ud is designed
for desired tracking of states. Under uncertainty and
parameter variation, adaptive control has been widely used
for nonlinear systems with modeling uncertainties. If the
structure of uncertainty is not known neural networks can
be used as adaptive element by its universal approximation
property.

Consider an actual plant with unmodeled dynamics as
given below

Ẋ = f(X) + g(X)U + d(X), X(0) = X0 (19)

Here d(X) ∈ <n is the unmodeled dynamics. Neuro
adaptive controller augments the nominal controller with
an adaptive element updated based on Lyapunov theory.
Let a virtual plant is created with state Xa and whose
dynamics is given as

Ẋa = f(X) + g(X)U + d̂(X) +Kτ (X −Xa) (20)

The d̂(X) is an approximation of the actual function d(X)
and Kτ is a Hurwitz matrix which contains the desired
time constants with which we want the virtual plant to
track the actual plant. This ensures the actual state to
follow nominal state through X −→ Xa −→ Xd as t→∞.
We shall define the error as E = X −Xa and

Ė = d(X)− d̂(X)−KτE (21)

For the purpose of analysis and identification the error is
decomposed into individual channels as ei = xi − xai . The
ith channel error dynamics is given as

ėi = di(X)− d̂i(X)− kτiei, i = 1, 2, . . . , n (22)

The actual implementation requires an approximator that
approximates the unmodeled dynamics di(X) in the ith

channel. For this purpose we choose a single layer neural
network with nonlinear basis functions. The architecture
is

d̂i(X) = Ŵi
T

Φi(X), Wi ∈ <p (23)

where, Ŵi are the weights and Φi(X) are the basis. Next,
we shall consider that there exists an ideal approximator
for the unknown function which approximates di(X) with
an ideal approximation error εi for the chosen basis Φi(X).

di(X) = Wi
TΦi(X) + εi (24)

The weights Wi are the ideal weights which are unknown.
The error dynamics in (22) can be written as
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ėi =Wi
TΦi(X) + εi − Ŵi

T
Φi(X)− kτiei (25)

The error in weights of the ith approximating network is
defined as W̃i = Wi − Ŵi and

˙̃Wi =− ˙̂
Wi, Wi = constant (26)

As part of the online adaptation the weights of the
approximating networks Ŵi should approach the ideal
weights Wi asymptotically, i.e., W̃i → 0 as t → ∞ A
Lyapunov approach is discussed in the next section for
updating Ŵi online.

3.4 Lyapunov Analysis and Weight Update Rule

In the current analysis there are three quantities whose
asymptotic stability has to be guaranteed

(1) ei, the ith channel error

(2) W̃i, the error in ith network weights

(3)
[
∂di(X)
∂X − ∂d̂i(X)

∂X

]
, the error in ith unknown function

partial derivative

The positive definite Lyapunov function candidate is

Vi(ei, W̃i) = βi
e2i
2

+
W̃T

i W̃i

2γi
+

[
∂di(X)

∂X
−
∂d̂i(X)

∂X

]T
×

Θi

2

[
∂di(X)

∂X
−
∂d̂i(X)

∂X

]
(27)

where βi, γi Θi are positive definite quantities. The partial

derivative of di(X) and d̂i(X) are replaced to get

Vi(ei, W̃i) = βi
e2i
2

+
W̃i

T W̃i

2γi
+ W̃i

T

[
∂Φi

∂X

]
Θi

2

[
∂Φi

∂X

]T
W̃i (28)

The dimensions of various quantities are

W̃i ∈ <p , Φi(X) ∈ <p ,
∂Φi(X)

∂X
∈ <p×n , Θi ∈ <n×n , Vi ∈ <

The Lie derivative of the Lyapunov function candidate is
given by,

V̇i = βieiėi −
W̃T
i

˙̂
Wi

γi
− W̃i

[
∂Φi
∂X

]
Θi

[
∂Φi
∂X

]T
˙̂
Wi (29)

Substituting the error dynamics from (25) in above equa-
tion, we get

V̇i = W̃T
i

{
βieiΦi(X)−

˙̃Wi

γi
−
[
∂Φi
∂X

]
Θi

[
∂Φi
∂X

]T
˙̂
Wi

}
+βieiεi − βikτie2

i (30)

Equating the coefficient of W̃T
i to zero lead to the weight

update rule in continuous time.

˙̂
Wi = βiei

(
Ip
γi

+

[
∂Φi
∂X

]
Θi

[
∂Φi
∂X

]T)−1

Φi(X) (31)

The matrix
[
∂Φi
∂X

]
Θi

[
∂Φi
∂X

]T
is singular for n < p. But the

matrix is always positive definite, so adding
Ip
γi

will make

the matrix nonsingular ∀(n, p) ∈ N . The left over terms

in the V̇i equation are

V̇i = βieiεi − kτiβie2
i (32)

The condition for which above equation becomes negative
definite is kτi > εi

ei
. Because kτi is the time constant

of the ith channel, it is always positive. Therefore, we
consider the absolute value on both sides of the inequality

leading to a condition as |ei| > |εi|
kτi

, which means that if

the absolute error in the ith channel exceeds the value
in RHS then the Lyapunov function becomes negative
definite and positive definite otherwise. Therefore, if the
network weights are updated based of the rule given in
(31), then the identification happens as long as absolute
error is greater than certain value. By increasing kτi error
bound can be theoretically reduced.

4. ADAPTIVE AUTO-LANDING OF UAV

Fig. 1. Auto-landing guidance and control architecture

Nominal guidance together with dynamic inversion con-
troller [7] is the reference model for neuro adaptive con-
trol. Fig: 1 shows the auto-landing architecture that is
employed for AE-2. From Fig: 1, two neuro adaptive
controllers are used, one in guidance loop and another
in control. Neuro adaptive 1 adapts the unknown wind
model with nominal guidance as reference model. This is
detailed in adaptive guidance section and the simulation
results for unknown wind shear provided good tracking of
uncertain wind characteristics. Then the uncertainties that
pops out in rotational dynamic equations are adapted by
using the second neuro adaptive control. Combining these
two stages of adaptation, UAV tracks the nominal desired
path that is generated based on dynamic inversion as in the
reference model. For training both the networks Sobolev
norm based Lyapunov function are chosen. This resulted
in fast learning without exciting too much of transient
oscillations and also reduced the need for larger gains for
fast learning. Moreover two networks as it used here can
result loss of learning due to high gains. Besides these,
UAV landing require quick adaptation for disturbances
with less undesired transients. For this high gains are not
apt choice as it may result for control saturation at crucial
stage of landing.
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4.1 Nominal guidance and control

Guidance These phases of landing is achieved by heading
control for aligning the aircraft along the runway, altitude
control to get desired glide slope angle and sink rate and
having a coordinate turn constraint.

The desired sideward distance is achieved by having first
order error dynamics in y and by proper substitution an
expression for desired ψ is obtained as

ψ∗ = sin−1

 ẏ∗ − ky(y − y∗)√
a2
y + b2y

− tan−1

(
by
ay

)
(33)

where,

ay , ucosθ + vsinφsinθ + wcosφsinθ, by , vcosφ− wsinφ

Similarly by altitude control we can get an expression for
desired pitch angle as,

θ∗ = sin−1

(
ḣ∗ − kh(h− h∗)√

a2
h + b2h

)
− tan−1

(
bh
ah

)
(34)

where,

ah , u, bh , vsinφ+ wcosφ

Coordinated turn constraint is required to make side slip
angle zero. By using first order error in β and appropriate
substitution we get an expression for desired roll angle.

φ∗ = sin−1

(
ru− pw − Ya + V̇t sinβ − kbβVt cosβ

g cos θ

)
(35)

Nominal Control

Outer loop Based on first order error dynamics in outer
loop, desired rotation rates are achieved that are to be fed
to inner loop

[
p∗

q∗

r∗

]
=

 φ̇∗ − kφ(φ− φ∗)− (qsinφ+ rcosφ)tanθ

secφ(θ̇∗ − kθ(θ − θ∗) + r sinφ)

secφcosθ(ψ̇∗ − kψ(ψ − ψ∗))− qtanφ

(36)

Inner Loop Control Here aerodynamic controls are cal-
culated by enforcing first order error dynamics in body
rates. Proper substitution of equation in ṗ, q̇, ṙ, we get as

fr + grU = br (37)

and the desired control from above equation is given by

U = g−1
r (br − fr) (38)

where, U = [δa δe δr]T and other terms are defined as
follows

fr ,

 c1rq + c2pq + c3Lax + c4Nax
c5pr + c6(r2 − p2) + c7(Max −Mt)
c8pq − c2rq + c4Lax + c9Nax


gr ,

[
c3Lau 0 c4Nau

0 c7Mau 0
c4Lau 0 c9Nau

]
br ,

 ṗ∗ − kp(p− p∗)q̇∗ − kq(q − q∗)
ṙ∗ − kr(r − r∗)



Velocity control The forward velocity can be controlled
by varying the thrust through throttle control given by

σt = g−1
u (bu − rv + qw + gsinθ −Xa/m) (39)

where,

gu ,
Tmax
m

, bu , u̇∗ − ku(u− u∗)

4.2 Adaptive guidance

Nominal guidance for auto-landing through all three
phases provides required attitude and forward veloc-
ity. These equations use translational kinematic equation
which have wind terms. Hence actual plant differs nominal
plant for which adaptive modeling is done using neural
networks. This section details adaptive guidance which is
represented as neuro adaptive 1 in Fig. 1.

The desired sideward distance is achieved by controlling
desired ψ for which an expression is obtained as

ψ∗ = sin−1

 ẏnom − ky(y − ynom)− d̂y√
a2
y + b2y

− tan−1

(
by
ay

)
(40)

Similarly for altitude control we can get an expression for
desired pitch angle.

θ∗ = sin−1

(
ḣnom − kh(h− hnom)− d̂h√

a2
h + b2h

)
+ tan−1

(
bh
ah

)
(41)

Coordinated turn constraint is required to make side slip
angle zero. By using first order error in β and appropriate
substitution we get an expression for desired roll angle.

φ∗ = sin−1

aβ +
(
β̇nom − kb(β − βnom)− d̂β

)
Vt cosβ

g cos θ


(42)

where,

aβ = ru− pw − Ya + V̇t sinβ

d̂y, d̂h and d̂β are adaptive elements which are modeled
using neural networks

4.3 Adaptive Control

Inner loop has the second neuro adaptive control which
calculates required control deflections as

fr + grU + D̂ = br (43)

and the desired control from above equation is given by

U = g−1
r (br − fr − D̂) (44)

where, U = [δa δe δr]T and adaptive terms are defined
as follows

D̂ =
[
d̂p d̂q d̂r

]T
For neuro adaptive based velocity control, we get

u̇ = u̇∗ + ku(u− u∗)− d̂u (45)

Substituting u̇ in equation we get the control solution as

σt = g−1
u (bu − rv + qw + gsinθ −Xa/m− d̂u) (46)
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Fig. 2. Path of UAV in x− y plane
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Fig. 3. Path of UAV in x− h plane
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Fig. 4. Uncertainty due to parameter variation

5. SIMULATIONS

To check the adaptive architecture used for auto-landing,
a simulation is shown with parameter uncertainty of about
50% along with wind shear disturbance. Uncertainty due
to parameter variation in rotational dynamic equations is
shown in Fig: 4 that match unknown parameter uncer-
tainty during landing. Uncertainty due to wind in trans-
lational kinematic equations is shown in Fig: 5 which
shows perfect tracking of unmodeled wind shear. Complete
sequence of landing in all three phases follows desired path.

6. CONCLUSIONS

A neuro-adaptive augmented nonlinear dynamic inversion
approach is proposed in this paper for robust automatic
landing of UAVs. A set of neural networks are used to
learn the unknown components of the system model and
update the model online. This updated model is then
used in a dynamic inversion framework leading to an
adaptive controller which is quite robust to the modeling
inaccuracies and external wind shear disturbance. Note
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Fig. 5. Uncertainty due to wind shear disturbance

that the training rule of the neural networks is obtained
by following the Lyapunov theory with a Sobolev norm
based Lyapunov function, which leads to fast learning
without exciting much of transient oscillations. The de-
sired trajectory for landing has been made independent of
time by scheduling the trajectory as a function of forward
distance from runway. The problem of transition between
the glide slope and flare is addressed by ensuring conti-
nuity and smoothness at transition. Performance of this
neuro-adaptive augmented nonlinear controller has been
successfully validated through six-DOF simulation studies.
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