
A Control Approach for Performance of
Big Data Systems

M. Berekmeri ∗,∗∗,∗∗∗∗,∗∗∗ D. Serrano ∗∗,∗∗∗∗,∗∗∗

S. Bouchenak ∗∗,∗∗∗∗,∗∗∗ N. Marchand ∗,∗∗∗∗,∗∗∗ B. Robu ∗,∗∗∗∗,∗∗∗

∗ GIPSA-lab, BP46 38402 Grenoble, France
email: {mihaly.berekmeri, nicolas.marchand, bogdan.robu}@gipsa-lab.fr

∗∗ Distributed Computer Systems Group, LIG, BP53 38402 Grenoble,
France

email: {damian.serrano, sara.bouchenak}@imag.fr
∗∗∗ CNRS, France

∗∗∗∗ Univ. Grenoble Alpes, F-38402 Grenoble, France

Abstract: We are at the dawn of a huge data explosion therefore companies have fast
growing amounts of data to process. For this purpose Google developed MapReduce, a parallel
programming paradigm which is slowly becoming the de facto tool for Big Data analytics.
Although to some extent its use is already wide-spread in the industry, ensuring performance
constraints for such a complex system poses great challenges and its management requires a
high level of expertise. This paper answers these challenges by providing the first autonomous
controller that ensures service time constraints of a concurrent MapReduce workload. We
develop the first dynamic model of a MapReduce cluster. Furthermore, PI feedback control is
developed and implemented to ensure service time constraints. A feedforward controller is added
to improve control response in the presence of disturbances, namely changes in the number of
clients. The approach is validated online on a real 40 node MapReduce cluster, running a data
intensive Business Intelligence workload. Our experiments demonstrate that the designed control
is successful in assuring service time constraints.

Keywords: disturbance rejection, linear control systems, control for computers, cloud
computing, Big Data

1. BACKGROUND AND CHALLENGES

As we enter in the era of Big Data (Big Data refers to a
collection of data sets so large and complex that it becomes
difficult to process using traditional database management
tools), the steep surge in the amount data produced brings
new challenges in data analysis and storage. Recently, there is a
growing interest in key application areas, such as real-time data
mining, that reveals a need for large scale data processing under
performance constraints. These applications may range from
real-time personalization of internet services, decision support
for rapid financial analysis to traffic controllers. The steep
increase in the amount of unstructured data available therefore
calls for a shift in perspective from the traditional database
approach to an efficient distributed computing platform de-
signed for handling petabytes of information. This imposes the
adaptation of internet service providers to implementations on
distributed computing platforms and one way to achieve this is
to adopt the popular programming model called MapReduce.
Its success lies in its usage simplicity, its scalability and fault-
tolerance. MapReduce is backed and intensively used by the
largest industry leaders such as Google, Yahoo, Facebook and
Amazon. As an illustration, Google executes more than 100.000
MapReduce jobs every day, Yahoo has more the 40.000 comput-
ers running MapReduce jobs and Facebook uses it to analyse

? This work has been supported by the LabEx PERSYVAL-Lab
5ANR-11-LABX-0025.

more then 15 petabytes of data. The MapReduce programming
paradigm was initially developed by Google in 2008 as a general
parallel computing algorithm that aims to automatically handle
data partitioning, consistency and replication, as well as task
distribution, scheduling, load balancing and fault tolerance (see
Dean and Ghemawat (2008) for further details).

In the same time, there is a growing interest of computer science
researchers in control theory to automatically handle configura-
tions of complex computing systems. Recent publications in the
field of continuous time control of computer systems show the
emergence of this new field for automatic control. For instance,
continuous time control was used to control database servers
(Malrait et al., 2009) using Lyapunov theory, web service sys-
tems (Poussot-Vassal et al., 2010) or HTTP servers (Hellerstein
et al., 2004) using a ”blackbox” approach. It must be underlined
that this field is also emerging in the field of discrete event
systems, see Rutten et al. (2013) for a survey.

The aim of this paper is to propose a control based approach to
tune MapReduce. MapReduce is a way to implement internet
programs and to run them in a parallel way on many computers
in the cloud (called nodes). Although MapReduce hides most
of the complexity of parallelism from users 1 , deploying an ef-
ficient MapReduce implementation still requires a high level of
expertise. It is for instance the case when tuning MapReduce’s

1 By MapReduce users we mean companies wishing to use MapRe-
duce for their own applications, typically internet services providers.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 152

configuration as underlined in (White, 2012; Herodotou and
Babu, 2011) or to assure performance objectives as noted in
(Xie et al., 2012). By performance objective, we usually mean
the service time, that is the time needed for the program
running on the cloud to serve a client request. For a user to
run a MapReduce job at least three things need to be supplied
to the framework: the input data to be treated, a Map function,
and a Reduce function. From the control theory point of view,
the Map and Reduce functions can be only treated as black
box models since they are entirely application-specific, and we
assume no a priori knowledge of their behavior. Without some
profiling, no assumptions can be made regarding their runtime,
their resource usage or the amount of output data they produce.
On top of this, many factors (independent of the input data and
of the Map and Reduce functions) influence the performance
of MapReduce jobs: CPU, input/output and network skews
(Tian et al., 2009), hardware and software failures (Sangroya
et al., 2012), Hadoop’s (Hadoop is the most used open source
implementation of MapReduce) node homogeneity assumption
not holding up (Zaharia et al., 2008; Ren et al., 2012), and
bursty workloads (Chen et al., 2012). All these factors influ-
ence the MapReduce systems as perturbations. Concerning the
performance modelling of MapReduce jobs, the state of the art
methods use mostly job level profiling. Some authors use sta-
tistical models made of several performance invariants such as
the average, maximum and minimum runtimes of the different
MapReduce cycles (Verma et al., 2011). While others employ a
static linear model that captures the relationship between job
runtime, input data size and the number of map, reduce slots
allocated for the job (Tian and Chen, 2011). In both cases the
model parameters are found by running the job on a smaller
set of the input data and using linear regression methods to
determine the scaling factors for different configurations. A
detailed analytical performance model has also been devel-
oped for off-line resource optimization, see Lin et al. (2012).
Principle Component Analysis has also been employed to find
the MapReduce/Hadoop components that most influence the
performance of MapReduce jobs (Yang et al., 2012).
It is important to note that all the presented models
predict the steady state response of MapReduce jobs
and do not capture system dynamics. They also assume
that a single job is running at one time in a cluster,
which is far from being realistic. The performance model that
we propose addresses both of these issues: it deals with a
concurrent workload of multiple jobs and captures the systems
dynamic behaviour.

Furthermore, while MapReduce resource provisioning for en-
suring Service Level Agreement (SLA) 2 objectives is relatively
a fresh area of research, there are some notable endeavours.
Some approaches formulate the problem of finding the optimal
resource configuration, for deadline assurance for example, as
an off-line optimization problem, see Tian and Chen (2011) and
Zhang et al. (2012). However, we think that off-line solutions
are not robust enough in real life scenarios. Another solution
is given by ARIA, a scheduler capable of enforcing on-line
SLO deadlines. It is build upon a model based on the job
completion times of past runtimes. In the initial stage an off-line
optimal amount of resources are determined and then an on-line
correction mechanism for robustness is deployed. The control
input they choose is the number of slots given to a respective

2 SLA is as a part of a service contract where services are formally
defined.

job. This is a serious drawback since the control works only if
the cluster is sufficiently over-provisioned and there are still free
slots to allocate to the job. Another approach is SteamEngine
developed by Cardosa et al. (2011) which tries to avoid the
previous drawback and dynamically add and remove nodes to
an existing cluster.
However, in all the previous cases, it is assumed that
every job is running on an isolated virtual cluster and
therefore they don’t deal with concurrent job execu-
tions.
Taking all these challenges into consideration our contributions
are two fold: we developed the first dynamic model for
MapReduce systems and we built and implemented the first
on-line control framework capable of assuring service time
constraints for a concurrent MapReduce workload.

2. OVERVIEW OF BIG DATA

2.1 MapReduce Systems

MapReduce is a programming paradigm developed for parallel,
distributed computations over large amounts of data. The ini-
tial implementation of MapReduce is based on a master-slave
architecture. The master contains a central controller which is
in charge of task scheduling, monitoring and resource manage-
ment. The slave nodes take care of starting and monitoring
local mapper and reducer processes.
One of its greatest advantages is that, when developing a
MapReduce application, the developer has to implement only
two functions: the Map function and the Reduce function.
Therefore, the programmers focus can be on the task at hand
and not on the messy overhead associated with most of the
other parallel processing algorithms, such as is the case with
the Message Parsing Interface protocol for example.
After these two functions have been defined we supply to the
framework our input data. The data is then converted into a set
of (key,value) pairs. The Map functions take the input sets of
(key,value) pairs and output an intermediate set of (key,value)
pairs. The MapReduce framework then automatically groups
and sorts all the values associated with the same keys and for-
wards the result to the Reduce functions. The Reduce functions
process the forwarded values and give as output a reduced set
of values which represent the answer to the job request.
The most used open source implementation of the MapRe-
duce programming model is Hadoop. It is composed of the
Hadoop kernel, the Hadoop Distributed Filesystem (HDFS)
and the MapReduce engine. Hadoop’s HDFS and MapReduce
components are originally derived from Google’s MapReduce
and Google’s File System initial papers (Dean and Ghemawat,
2008). HDFS provides the reliable distributed storage for our
data and the MapReduce engine gives the framework with
which we can efficiently analyse this data, see White (2012).

2.2 Experimental MapReduce Endvironment

The MapReduce Benchmark Suite (MRBS) developed by San-
groya et al. (2012) is a performance and dependability bench-
mark suite for MapReduce systems. MRBS can emulate sev-
eral types of workloads and inject different fault types into a
MapReduce system. The workloads emulated by MRBS were
selected to represent a range of loads, from the compute-
intensive to the data-intensive (e.g. business intelligence - BI)
workload. One of the strong suites of MRBS is to emulate client
requests. One request may consist of one or more MapReduce

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

153

jobs. These jobs are the examples of what may be a typical
client request within a real deployment of a MapReduce system.
Grid5000 is a French nation-wide cluster infrastructure made
up of a 5000 CPUs, developed to aid parallel computing re-
search. It provides a scientific tool for running large scale
distributed experiments, see Cappello et al. (2005).
All the experiments in this paper were conducted on-line, in
Grid5000, on a single cluster of 40 nodes. The clusters config-
uration can be seen in in Table 1.

Cluster CPU Memory Storage Network

40 nodes
Grid5000

4 cores/CPU
Intel 2.53GHz

15GB 298GB Infiniband
20G

Table 1. Hardware configuration

For our experiments we use the open source MapReduce im-
plementation framework Apache Hadoop v1.1.2 and the high
level MRBS benchmarking suite. A data intensive BI workload
is selected as our workload. The BI benchmark consists of a
decision support system for a wholesale supplier. Each client
request emulates a typical business oriented query run over a
large amount of data (10GB in our case).
A simplified version of our experimental setup can be seen in
Figure 1.

Fig. 1. The experimental setup.

The control is implemented in Matlab and all the measurements
are made online, in real time. We measure from the cluster the
service time and the number of clients and we use the number
of nodes in the cluster to ensure the service time deadlines,
regardless the changes in the number of the clients (from now
on we use the ’#’ symbol to denote the number of the variable).
All our actuators and sensors are implemented in Linux Bash
scripts.

3. MAPREDUCE PERFORMANCE MODEL

3.1 Challenges

To begin with we would like to provide some insights into
the modeling challenges of such a system. On of the major
challenges is MapReduce’s complex architecture, high system
complexity, thus there is a great difficulty in building a
detailed mathematical model. Such model would be for example
a time-variant, non-linear hybrid model of very large dimension,
of which practical value is questionable. Moreover, since it is
very difficult to incorporate the effect of contention points -
network, IO, CPU - into a model, several strong assumptions
need to be made (like a single job is running at a time in the
cluster) which do not hold up in real clusters. On top of these we
have to mention the fact that the performance of MapReduce
systems varies from one distribution to the other and even un-
der the same distribution because of continuous development.
This further complicates building a general model. Furthermore
the state of the art models for MapReduce systems usually
capture only the steady state response of the system, therefore
they are very hard to exploit. One of the main reasons for the
lack of dynamic models is the previously mentioned high
system complexity.

3.2 Modeling insights

In this section we address some of the challenges described
previously.

Managing system complexity We observe that although the
system is non-linear we can linearise around an operating point
defined by a baseline number of nodes and clients. After the
client decides on the number of nodes he desires to have serving
request (usually based on monetary constraints) our algorithm
gradually increases the number of clients it accepts, until the
throughput of the cluster is maximized (this is highly important
for both environmental and monetary reasons). This point of
full utilization will be the set-point for linearisation.

Capturing system dynamics One of the important chal-
lenges in current MapReduce deployments is assuring certain
service time thresholds for jobs. Therefore, our control objective
is selected as keeping the average service time below a given
threshold for jobs that finished in a the last time window. This
time window is introduced to assign a measurable dynamics
to the system. The definition of the time window length is
not straight forward as the bigger the window the more you
loose the dynamics while the smaller it is the bigger the noise
in the measurements. The optimal choice for the window size
is beyond the scope of this article and for now we chose the
window size to be at least twice the average job runtime.

The choice of control inputs out of Hadoop’s many parameters
(more than 170) is also not straightforward. As we set out
for our model to be implementation agnostic, we take into
consideration only those parameters that have a high influence
regardless of the MapReduce version used. Two such factors
that have been identified having among the highest influence
are the number of Mappers and the number of Reducers
available to the system, see Yang et al. (2012). As these
parameters are fixed per node level we chose the number of
nodes to be our control input since it effects both.

3.3 Proposed model structure

The high complexity of a MapReduce system and the con-
tinuous changes in its behavior, because of software upgrades
and improvements, prompted us to avoid the use of white-box
modeling and to opt for a technique which is agnostic to these.
This leads us to a grey-box or black-box modeling technique.
The line between these two techniques is not well defined, but
we consider our model a grey-box model since the structure of
the model was defined based on our observations of linearity
regions in system functioning.
We propose a dynamic model that predicts MapReduce cluster
performance, in our case average service time, based on the
number of nodes and the number of clients. To the best of our
knowledge this is the first dynamic performance model
for MapReduce systems.

The structure of our model can be seen in Figure 2. Our
control input u(k) is the number of nodes in the cluster while
the changes in clients d(k) is considered as a measurable
disturbance. Our output y(k) is the average service time of
a job in the kth time interval. As in the operating region our
system is linear we can apply the principle of superposition to
calculate the output:

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

154

y(k) = ZC(z)d(k) + ZN (z)u(k) (1)

where ZN is the discrete time model between service time and
the number of nodes and ZC is the discrete time model between
service time and the number of clients.

ZN

ZC

+
+

u(k) y(k)

d(k)

ZMR

Nodes Model

Clients Model

MapReduce model

Service Time

#Clients

#Nodes

Fig. 2. MapReduce control theoretical model.

3.4 Model Identification

Both of the models were identified using step response iden-
tification. The observed linearity in the operating region, the
lack of overshoot and exponential decay all indicate that the
response could be modeled, at least in a first approach, with
a first-order linear difference model with deadtime. The pa-
rameters of our model are identified using prediction error
estimation method. This method has the advantage that it
puts an emphasis on the model accuracy in predicting the next
observation rather then on its difference from a corresponding
statistical model, as it is the case for least square and maximum
likelihood identification methods. Furthermore this method has
been shown to provide optimal results (minimal covariance
matrix) in the case when the chosen model structure reflects
well the true system, see Ljung (2002). As our system has large
time constants (>300s) we determine that a sampling period of
30 seconds is sufficient. The models are identified as continuous
time models and we use the Tustin bilinear transformation to
discretize them.

System identification without disturbance The identified
model for the node changes can be seen in Figure 3. A 50% step

0 5 10 15 20 25 30 35 40
140

150

160

170

180

Se
rv

ic
e

tim
e

(s
)

Step response

Real system
Identified system

0 5 10 15 20 25 30 35 40
10

15

20

25

#N
od

es

Time (min)

Fig. 3. Identification of the undisturbed system. It predicts
the effect of nodes changes on job runtime.

in the number of nodes is used to identify the model between
the service time and the number of nodes. The model captures
well system dynamics with a fit level of 89%. Equation (2)
presents the identified discrete time transfer function of the
system without disturbances.

ZN (z) = z−5−0.17951(z + 1)

z − 0.919
(2)

0 5 10 15 20 25 30 35
160

180

200

220

240

Se
rv

ic
e

tim
e

(s
)

Step response

Real system
Identified system

0 5 10 15 20 25 30 35
0

5

10

15

20

#C
lie

nt
s

Time (min)

Fig. 4. Identification of the disturbance model. It captures
the effect of the changes in the number of clients on
job runtime.

Disturbance model identification Figure 4 shows the step
responses for the identified and measured systems for a 50%
change in the number of clients.

As we can see, the identified model follows closely the mea-
surements taken from the real system, presenting a 87.94% fit.
Equation (3) gives us the discrete time transfer function of the
disturbance model:

ZC(z) = z−8 1.0716(z + 1)

z − 0.7915
(3)

Experiments with different step sizes show that the accuracy
of the disturbance model is good even as we go further away
from the operating point. While in the case of changes in the
number of nodes the accuracy decreases with the distance from
the operation point because of its higher non-linear behaviour.
Both of the identified discrete time transfer functions are
stable, first-order systems with their poles inside the unit circle.
Therefore the open loop system is inherently stable.

4. CONTROL

4.1 Challenges and motivations

Controlling the performance of MapReduce presents several
specific challenges. One such challenge is represented by the
large deadtime (>90s). This is due to the fact that, the effect
of adding nodes and clients, is a complex procedure and is not
instantaneous. Furthermore the implementation we use brings
other several specific challenges. For example, as starting and
removing nodes always influences the energetic and monetary
cost, we need a closed loop response with small, if no, overshoot.
Another interesting challenge is that of quantization, since the
number of nodes we add or remove must be a positive integer.
Finally, as the system performance may vary over time because
of the many points of contention, the controller algorithm needs
to be robust enough to handle modeling uncertainties.

4.2 Control architecture

A PI controller is chosen as it is well proven that for our system
(i.e. a first order system with deadtime - see equation (2))
it is sufficient even if the system is complex, with eventually
higher order dynamics, see Guillermo J (2005). Furthermore,
a PI feedback controller has well-proven disturbance rejection
properties for unmeasured and unmodelled disturbances.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

155

0 5 10 15 20 25 30
100

150

200

250

300

Se
rv

ic
e

tim
e

(s
)

Open loop experiment. 100% more clients are added.

Service time (y)
Control reference (y

r
)

SLO threshold

0 5 10 15 20 25 30
5

10

15

20

25

30

#C
lie

nt
s

Time (min)

Fig. 6. Open loop experiments

Since we can accurately measure the disturbance we also add
a feedforward controller that improves our controls response,
as it counteracts the effect of the disturbance before it effects
the output. The complete schema of the control architecture
is in Figure. 5. The variables used in the figure are defined in
Table 2.

ZMR

yr(k) ufb(k)

uff(k)

u(k)e(k)

d(k)

y(k)+ + -

Z
FF

PI controller

Feed-forward controller

MapReduce System

Service time#nodes

#clients

y(k)

Reference
service time

Z
PI

-

Fig. 5. MapReduce Control architecture

yr Reference average service time set in the SLA.

y System output - average service time of client requests.

u System control input - number of nodes in the system.

ufb Output of the PI controller.

uff Output of the feedforward controller.

e Error input to the feedback control.

d Disturbance input - number of clients running jobs.

ZMR Discrete time MapReduce system model.

ZPI Discrete time PI feedback controller.

ZFF Discrete time feedforward controller.

Table 2. Definition of control variables.

4.3 Open loop experiment

Figure 6 shows the baseline open loop experiment where
we have no control, only a step increase in the exogenous
input. Such a bursty increase in the number of clients occurs
frequently in practice, see Kavulya et al. (2010) who analyse a
10 month log production of Yahoo’s supercomputing cluster.
In our case we can see that, when 100% more clients are added,
the systems service time quickly exceeds the reference threshold
defined in the service level agreement. In order to respect the
threshold set in the Service Level Agreement (SLA) we employ
a PI controller.

4.4 PI Feedback Control

The standard equation of a sampled time PI controller can be
seen in equation (4):

ufb(k) = ufb(k − 1) + (Kp + Ki)e(k) + Kie(k − 1) (4)

The controllers parameters are determined to assure closed
loop stability and 0% overshoot. As we would like to avoid

a highly aggressive controller the controllers response to the
disturbance is somewhat slow. The reason behind this is the
minimization of the number of changes in the number of nodes,
because of monetary and energetic constraints. Based on these
requirements we computed the value of Kp = 0.0012372 and
Ki = 0.25584 for our controller. Figure 7 shows our controllers
response to a 100% change in the number of clients. We can see
that as the controller is determined to have a slow settling time,
the SLA threshold is breached for a short amount of time but
the controller will always take the service time to our reference
value. The controller steadily increases the number of nodes
until service time recovers. In order to avoid the non compliance
with the SLA and to improve the response time of the control
a feedforward controller is added.

0 5 10 15 20 25 30
100

150

200

250

300

350

Se
rv

ic
e

tim
e

(s
)

PI feedback control. 100% more clients are added.

Service time (y)
Control reference (y

r
)

SLO threshold

0 5 10 15 20 25 30
0

10

20

30

#C
lie

nt
s

Time (min)

#Clients (d)

10

20

30

40

50

60

#N
od

es

#Nodes (u)

Fig. 7. Closed loop experiments - Feedback Control

4.5 Feedforward Control

To improve upon the previous results, a fast feedforward
controller is designed to pro-actively reject the disturbance
before its effect is observed on the output. The disturbance
represents a change in number of concurrent clients. The
effectiveness of the feedforward controller depends entirely
on the accuracy of the identified model.Most importantly, it
does this at the same time the disturbance’s effect presents
itself. If the model is 100% accurate the net effect on the
response time should be zero, but because of the inherent
model uncertainties this is never the case in practice. Our
controller is determined using the standard feedforward formula
Zff (z) = −ZN (z)−1ZC(z) where Zff is the discrete time
feedforward controller and ZN , ZC are the discrete time models
from Figure 2. The equation of the computed feedforward
controller is given in equation (5).

Zff (z) = z−3 5.9698(z − 0.919)

(z − 0.7915)
(5)

The effect of adding the feedforward control to the already
existent feedback controller can be seen in Figure 8 (below on
page 6). We can see that the controller response is increased and
manages to keep the response time below the SLA threshold.
Furthermore, the feedback term compensates for all the model
uncertainties that were not considered when calculating the
feedforward and assures that the steady state error converges
to 0.

5. CONCLUSIONS AND FUTURE WORK

This paper presents the design, implementation and evaluation
of the first dynamic model for MapReduce systems. Moreover,
a control framework for assuring service time constraints is de-
veloped and successfully implemented. First we built a dynamic

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

156

0 5 10 15 20 25 30
100

150

200

250

300

350

Se
rv

ic
e

tim
e

(s
)

PI feedback + feedforward control. 100% more clients are added.

Service time (y)
Control reference (y

r
)

SLO threshold

0 5 10 15 20 25 30
0

10

20

30

#C
lie

nt
s

Time (min)

#Clients (d)

10

20

30

40

50

60

#N
od

es

#Nodes (u)

Fig. 8. Closed loop experiments - Feedback and Feedfor-
ward Control

grey box model that can accurately capture the behaviour
of MapReduce. Based on this, we use a control theoretical
approach to assure performance objectives. We design and
implement a PI controller to assure service time constraints
and then we add a feed-forward controller to improve control
response time. The control architecture is implemented in a
real 40 node cluster using a data intensive workload. Our
experiments show that the controllers are successful in keeping
the deadlines set in the service level agreement.
Further investigations are necessary in some areas and are stud-
ied now. Like implementing the control framework in an on-line
cloud such as Amazon EC2. Improving upon our identification
by making it on-line. Minimizing the number of changes in the
control input. Other control techniques such as an event-based
controllers and model agnostic controllers for example are being
studied. We also plan to add other metrics to our model like
throughput, availability and reliability.

REFERENCES

Cappello, F., Caron, E., Dayde, M., Desprez, F., Jegou, Y.,
Primet, P., Jeannot, E., Lanteri, S., Leduc, J., Melab, N.,
Mornet, G., Namyst, R., Quetier, B., and Richard, O. (2005).
Grid’5000: A large scale and highly reconfigurable grid ex-
perimental testbed. In Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing, 99–106. Wash-
ington, DC, USA.

Cardosa, M., Narang, P., Chandra, A., Pucha, H., and Singh,
A. (2011). STEAMEngine: Driving MapReduce provisioning
in the cloud. In 18th International Conference on High
Performance Computing (HiPC), 1–10. Bengalore, India.

Chen, Y., Alspaugh, S., and Katz, R.H. (2012). Design
insights for MapReduce from diverse production workloads.
Technical Report UCB/EECS-2012-17, EECS Department,
University of California, Berkeley.

Dean, J. and Ghemawat, S. (2008). MapReduce: simplified data
processing on large clusters. Communications of the ACM,
51(1), 107–113.

Guillermo J, S. (2005). PID Controllers for Time-Delay
Systems. Birkhauser Boston.

Hellerstein, J.L., Diao, Y., Parekh, S., and Tilbury, D.M.
(2004). Feedback control of computing systems. John Wiley
& Sons, Inc., New Jersey.

Herodotou, H. and Babu, S. (2011). Profiling, what-if analysis,
and cost-based optimization of MapReduce programs. Proc.
of the Very Large Database Endowment (PVLDB), 4(11),
1111–1122.

Kavulya, S., Tan, J., Gandhi, R., and Narasimhan, P. (2010).
An analysis of traces from a production MapReduce cluster.

In Proceedings of the 10th IEEE/ACM International Con-
ference on Cluster, Cloud and Grid Computing (CCGRID),
94–103. Washington, DC, USA.

Lin, H., Ma, X., and Feng, W.C. (2012). Reliable MapReduce
computing on opportunistic resources. Cluster Computing,
15(2), 145–161.

Ljung, L. (2002). Prediction Error Estimation Methods. Cir-
cuits, systems, and signal processing, 21(1), 11–21.

Malrait, L., Marchand, N., and Bouchenak, S. (2009). Model-
ing and control of server systems: Application to database
systems. In Proceedings of the European Control Conference
(ECC), 2960–2965. Budapest, Hungary.

Poussot-Vassal, C., Tanelli, M., and Lovera, M. (2010). Linear
parametrically varying MPC for combined quality of service
and energy management in web service systems. In American
Control Conference (ACC), 2010, 3106–3111. Baltimore,
MD.

Ren, Z., Xu, X., Wan, J., Shi, W., and Zhou, M. (2012).
Workload characterization on a production Hadoop cluster:
A case study on Taobao. In IEEE International Symposium
on Workload Characterization (IISWC), 3–13. La Jolla, CA.

Rutten, E., Buisson, J., Delaval, G., de Lamotte, F., Diguet,
J.F., Marchand, N., and Simon, D. (2013). Control of auto-
nomic computing systems. Submitted to ACM Computing
Surveys.

Sangroya, A., Serrano, D., and Bouchenak, S. (2012). Bench-
marking Dependability of MapReduce Systems. In IEEE
31st Symposium on Reliable Distributed Systems (SRDS), 21
– 30. Irvine, CA.

Tian, C., Zhou, H., He, Y., and Zha, L. (2009). A dynamic
MapReduce scheduler for heterogeneous workloads. In Pro-
ceedings of the 8th International Conference on Grid and
Cooperative Computing (GCC), 218–224. Washington, DC,
USA.

Tian, F. and Chen, K. (2011). Towards optimal resource
provisioning for running MapReduce programs in public
clouds. In IEEE International Conference on Cloud Com-
puting (CLOUD), 155–162. Washington, DC, USA.

Verma, A., Cherkasova, L., and Campbell, R. (2011). Re-
source provisioning framework for MapReduce jobs with
performance goals. In Middleware 2011, volume 7049 of
Lecture Notes in Computer Science, 165–186. Springer Berlin
Heidelberg.

White, T. (2012). Hadoop: the definitive guide. O’Reilly Media,
CA.

Xie, D., Hu, Y., and Kompella, R. (2012). On the performance
projectability of MapReduce. In IEEE 4th International
Conference on Cloud Computing Technology and Science
(CloudCom), 301–308. Taipei.

Yang, H., Luan, Z., Li, W., and Qian, D. (2012). MapReduce
workload modeling with statistical approach. Journal of
Grid Computing, 10, 279–310.

Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., and Stoica,
I. (2008). Improving MapReduce performance in hetero-
geneous environments. In Proceedings of the 8th USENIX
Conference on Operating systems design and implementation
(OSDI), 29–42. Berkeley, CA, USA.

Zhang, Z., Cherkasova, L., Verma, A., and Loo, B.T. (2012).
Automated profiling and resource management of pig pro-
grams for meeting service level objectives. In Proceedings of
the 9th International Conference on Autonomic Computing
(ICAC), 53–62. San Jose, CA, USA.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

157

