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Abstract: This paper addresses iterative learning control (ILC) for periodic systems using
model predictive and optimization methods to redesign trajectories and reject periodic distur-
bances. Stability and optimality of these optimization methods is analysed and illustrated on
simulations. The additional prospects of the optimization formulation (e.g. including energy
costs, system identification) referred to the trajectory planning are accentuated. To reduce the
calculation effort of the optimization algorithm a variable and adaptive sampling period is
introduced. The advantages compared to classical ILC methods especially in consideration of
constraints are presented.
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1. INTRODUCTION

Iterative Learning Control (ILC) (Arimoto et al. [1984]
and Moore [1993]) is widely used in industrial repet-
itive/periodic and iterative processes (iterative: robotic
automation systems, machine press; periodic: motors with
eccentric, oscillating steam engines). In general the main
idea of this control concept is the disturbance rejection by
adapting the reference trajectories. Classical learning ap-
proaches transform the trajectories using e.g. P-controllers
(Moore [2001], Ratcliffe et al. [2005])

uj+1 = uj +Kej (1)

where uj is the trajectory of the current iteration, uj+1 is
the trajectory of the next iteration, e is the tracking error
and K is the gain of the ILC. By saving data from the last
cycles, calculating new trajectories and applying them to
the system, the control error can be reduced iteratively.
More information can be found in the survey papers of iter-
ative learning control Wang et al. [2009] and Bristow et al.
[2006]. One of the biggest disadvantages of the classical
approaches is the absence of a system/disturbance model
(model/predictive information) which could significantly
improve the control performance.
Many approaches can be found in the literature to solve
these problems. ILC strategies using PD/PID controllers
(Chen and Moore [2002]/Park et al. [1999], Madady
[2008]) include predictive information for a small horizon
(one step).
Anticausal filtering algorithms (Verwoerd [2005], van de
Wijdeven and Bosgra [2007]) solve the ILC problem using
information from the last iterations. The stored data can
be referred to the future system behavior and used for the
anticausal filter functions. Due to the filter characteristics
these methods are unsuitable for changing initial condi-
tions.

Further approaches discuss optimization methods (Pandit
and Buchheit [1999], Lee et al. [2000]) which improve
the controlled process using system model information.
These methods can be divided into two groups: static
optimization and dynamic optimization. In general, both
approaches are only applicable to cyclic non-periodic sys-
tems (non-changing initial condition). The proposed ap-
proach in this paper shows how system model data and in
addition system limitations (state/input constraints) can
be included very efficiently into an ILC design for periodic
processes (changing initial conditions) using the beneficial
structure of periodic systems (Section 3).
Model predictive control (MPC) ILC approaches which
combine the inner control design (process) with the outer
ILC strategy can be found in Lee and Lee [2000], Cueli and
Bordons [2008] and Wang and Doyle [2009], Chen et al.
[2013]. Therefore, for the inner process a MPC has to be
designed such that the ILC concept is included. Due to
the system dynamic, the prediction horizon of the MPC
is limited (calculation effort). A separation of ILC and
control design is not given by these concepts which is
contradictory to the general idea of ILC: to formulate a
general separable approach for controlled cyclic/periodic
processes.
For a separable ILC design for periodic processes un-
der constraints new methods have to be developed. The
approach presented in this paper concerns the specified
issue outlined above using model predictive methods. For
this purpose, a minimization problem is introduced and
solved such that the stability of the ILC is guaranteed
and the learning rate can be adapted continuously without
loss of stability. Including MPC methods into the ILC
approach leads to planned trajectories considering sys-
tem constraints. These trajectories are calculated at the
beginning of each period. Adapting the cost function of
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Fig. 1. ILC process

the resulting minimization problem can meet additional
optimization objectives (minimization of energy, identifi-
cation of the system dynamic, adapting inner control pa-
rameters). The considered system classes of the approach
can be extended to linear time invariant systems with
underlying nonlinear systems. To handle large prediction
horizons and to reduce the calculation effort, the model
predictive strategy uses variable sampling periods. This
allows an adaption of the learning process related to the
disturbance. In this paper this is called flexible focused
learning (FFL).
The paper is organized as follows: Concept and idea of
the ILC approach are introduced in Section 2. In Section
3, modelling, optimization, stability and calculation effort
of the control concept are presented. In Section 4, an
illustrative example is given to demonstrate the prospects
of the approach. Finally, Section 5 concludes the paper
and accentuates further prospects.
Throughout the paper scalars are indicated by nonbold
letters and vectors and matrices by bold letters.

2. CONCEPT

To realize ILC for periodic systems using model predictive
methods it is essential to save all state information for
one period time. This state information can be used to
calculate the optimization step sizes using a step size
calculator (reduction of calculation effort). In parallel, the
required matrices for the optimization algorithm must be
constructed (Section 3). Finally, the optimization problem
is solved for the next period and applied to the system.
The structure of the ILC process is illustrated in Figure 1
where the system behavior plot shows the reference signal
(dash-dotted), the ILC output (solid) and the system
response (dashed). For small tracking errors or rather
small disturbance variations a large step size is reasonable.
If large tracking errors occur, a small step size has to be
used around the local tracking error (FFL). The width
of the region around the local error is set according
to the largest system time constant and the weighting
matrices of the optimization function. To keep the ILC
concept general, the approach generates trajectories for all
state variables (as needed for state control, flatness based
control or nonlinear control techniques).
In this paper the method will be illustrated on a state
space controlled third order LTI system described by

ẋ = Ax+Bu+Bdd (2)

where x ∈ R3 is the state vector, u ∈ R is the input
and d ∈ R is the disturbance. The system is controllable
and observable. For simplicity, the approach is described
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Fig. 2. ILC structure and control structure

on a single input system. Nevertheless, the theory is also
applicable to n-order MIMO systems. The state space
controlled process of the example (with ILC) referred to
the reference trajectory znref

can be reformulated to

żn =Aznzn+Bzn

[
aTn 1

][ znref
+eznILC

żnnref
+ėznnILC

]
︸ ︷︷ ︸
unref

+unILC
=
[
aTn 1

]
znILC

+Bzdndn. (3)

Here, the system is transformed to the controllable canon-
ical form (CCF) with the CCF-coefficients −aTn and nor-
malized (with S = diag(s) and the normalization coeffi-
cients s) to zn =Szz, Azn =SzAzS

−1
z , Bzn =SzBzS

−1
u

and Bzdn =SzBzd S
−1
d which is required due to the ILC

approach and due to the numerical precision of the algo-
rithm. In addition, a normalization leads to comparable
weighting matrices of the optimization problem (Section
4). unILC

|eznILC
is the additional ILC reference trajectory.

znILC
is the resultant reference trajectory.

In general, the system tracking error dynamic of the peri-
odic process is crucial for the ILC. Hence, the state space
dynamic must be referred to. For the presented example,
the error dynamic is given by (using Eq. (3))

ėn = Aznen +Bzn

[
aTn 1

] [ eznILC

ėznnILC

]
︸ ︷︷ ︸

unILC

+Bzdndn. (4)

The calculated additional reference trajectory of the ILC
optimization is given by unILC

. To calculate the corre-
sponding values eznILC

, the system dynamic equations

ėzn = Aznezn +BznunILC
+Bzdndn

ėznwo = Azneznwo +Bzdndn.
(5)

are needed. To get enILC
, the results have to be subtracted.

eznILC
= ezn − eznwo

(6)

For brevity, the proof is omitted. The calculation of ėznnILC

results from the derivative of ennILC
. Figure 2 illustrates

the ILC structure and the control structure. For the ILC
structure (upper figure) the transformation, normalization
and state vector computation is done inside the ILC al-
gorithm. j indicates the current period cycle, xref is the
reference state vector, e is the tracking error, uILC or
rather eILC is the additional ILC reference trajectory and
xILC is the resultant reference trajectory of the system.
The control structure (lower figure) shows the relations
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between plant and controller in the inner cascade and
ILC in the outer cascade. A disturbance calculator (model
based) reconstructs the periodic system disturbance recur-
sively. All data will be stored and applied to the learning
algorithm. The ILC approach itself is separated from the
inner control design.

3. ILC-OPTIMIZATION

3.1 Modelling

The central idea of the presented ILC approach is the plan-
ning of new trajectories for controlled periodic systems to
reject periodic disturbances. In addition, further optimiza-
tion goals (energy efficiency, considering constraints) can
be achieved. For this purpose, a quadratic cost function
with constraints is introduced

J =
1

2

∫ Tp

0

eTznQznen + ũTnILC
RnũnILC

dt

zn ∈ Qz, ezn ∈ Qe, un ∈ Qu
(7)

where Tp is the cycle time of a period and ũnILC
is the

additional ILC trajectory deviation to a reference ILC
trajectory un∞ILC

. The feasible state variables, errors and
learning vectors are set by Qz|e|u. The advantage of an ILC
approach using such a weighted (Qzn, Rn) cost function,
is the expandability, e.g. convex energy terms can be
included easily.
Using convex optimization solvers (for constraint prob-
lems), the minimization problem can be determined.
In this paper, Fast Gradient Methods (FGM) are used
(Richter [2012], Kögel and Findeisen [2011]). To calculate
the optimization, system and cost function have to be
discretized (van Loan [1978] and Franklin et al. [1998]).
Using (3) and (7), the cost function can be written as

J=
1

2

N−1∑
k=0

∫ (k+1)Tsk

kTsk

eTznQznen+ũTnILC
RnũnILC

dt=
1

2

N−1∑
k=0

vTkQkvk

(8)
where vTk =

[
eTznk

uTnkILC
uTnk∞ILC

dTnk

]
, Tsk is the sam-

pling period of step k,
∑N−1
k=0 Tsk = Tp and

Q=

∫ Ts

0

A
T
znd(τ) 0 0 0

BT
znd(τ) I 0 0
0 0 I 0

BT
zdnd(τ)0 0 I


Qzn

Rn −Rn

−Rn Rn

0

Aznd(τ)Bznd(τ)0Bzdnd(τ)
0 I 0 0
0 0 I 0
0 0 0 I

dτ
(9)

where Aznd(τ) = eAznτ , Bznd(τ) =
∫ τ
0
eAznηdηBzn and

Bzdnd(τ) =
∫ τ
0
eAznηdηBzdn and Q11 = Qend, Q22 =

Rund, Q33 = Ru∞nd, Q44 = Rdnd, Q12 = N eund, Q13 =
0, Q14 = N ednd, Q23 = Nuu∞nd, Q24 = Nudnd and
Q34 = 0. Predicting the system dynamics for one period
requires a high computational effort which can be reduced
using an adaptive step size according to the tracking error
(adaptive focused learning), the disturbance dynamic, the
weighting matrices Q and R and the largest system time
constant. In general, the step size should be small around
large errors. If TL is the largest time constant of the
system dynamic (related to the disturbance rejection),
an adequate band/region is, for instance, TL (Figure 3).
Parallel to the step size calculation, the dynamic system

Eznj+1
= Φjezn0j

+ ΓjUnILCj
+ ΞjSn (10)

system behavior

disturbance

LT
time

time

0zn
e

znE

znS

0zn
d

pT

LT LT LT

Fig. 3. Step size calculation

can be built up with the system matrices

Φj=


Aznd0

Aznd1
Aznd0

..

.
N−1∏
k=0

Azndk

,Γj=


Bznd0
0 · · · 0

Aznd1
Bznd0

Bznd1
· · · 0

...
...

. . .
...

N−1∏
k=1

Azndk
Bznd0

N−1∏
k=2

Azndk
Bznd1

· · · BzndN−1


(11)

and Ξj analog to Γj . Eznj+1 , UnILCj and Sn contains
the state/input and disturbance variables as vectors where
the disturbance can be determined from the last steps
recursively.
Being periodic, the system is called periodic steady state
when ezn0

= eznN
=
[
0n×(N−1)n In×n

]
Ezn. The limit

tracking error trajectory is given by

Ezn∼j =
(
I −Φ∗j

)−1 (
ΓjUnILCj + ΞjSn

)
(12)

where Φ∗j = Φj

[
0n×(N−1)n In×n

]
. On the assumption

that the disturbance is discrete and periodic and the
step size calculation pattern of the periods is constant
(Φj+1 = Φj = Φ,Γj+1 = Γj = Γ,Ξj+1 = Ξj = Ξ),
the limit tracking error trajectory relation of the next to
the current cycle can be written as

Ezn∼j+1
= Ezn∼j

+G∗ŨnILCj+1
(13)

where G∗ = (I −Φ∗)
−1

Γ and ŨnILCj+1
= UnILCj+1

−
UnILCj

.

3.2 Cost function design and stability

Theorem 1. For the minimization of the discrete cost
function 1

J= min
UnILCj+1

1

2

N−1∑
k=0

∫ (k+1)Tsk

kTsk

||ezn∼j+1 ||
2
Qzn

+||ũnILCj+1 ||
2
Rn

dt=
1

2

N−1∑
k=0

vT
k Qkvk

(15)

1 formulated as a quadratic function related to U :

J∗
j+1 = min

UnILCj+1

1

2
UT

nILCj+1
GUnILCj+1 + cTUnILCj+1 (14)

where G = G∗T
s QendG

∗
s + Rund + 2G∗T

s Neund and cT =
ET

zns∼j
ce + UT

nILCj
cu + ST

n cd with ce = QendG
∗
s + Neund,

cu = NT
uu∞nd − G∗T

s QendG
∗
s − G∗T

s Neund, cd = NT
edndG

∗
s +

NT
udnd, G∗

s = MG∗, Ezns∼j = MEzn∼j and M =[
0n×n(N−1) In×n

I(n(N−1))×(n(N−1)) 0(n(N−1))×n

]
.
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under constraints (18), vTk =
[
eTznk∼j+1

uTnkILCj+1
uTnkILCj

dTnk

]
,

the limit tracking error trajectory ezn∼ of the flexible
focused iterative learning controlled (FFL-ILC) system is
monotonically decreasing from cycle to cycle. The tracking
error converges to the periodic steady state error.

Proof 3.1. Setting the cost function of the minimization
problem to (15), the limit tracking error trajectory is
monotonically decreasing from cycle to cycle caused by
(using Eq. (13))

N−1∑
k=0

∫ (k+1)Tsk

kTsk

||ezn∼j+1
||2Q + ||ũnILCj+1

||2Rdt≤
N−1∑
k=0

∫ (k+1)Tsk

kTsk

||ezn∼j
||2Qdt.

(16)
The system tracking error itself converges to the periodic
steady state caused to (using Eq. (10) and (12))

Ẽznj+1
= Φ∗Ẽznj

(17)

where Ẽznj|j+1
= (Eznj|j+1

−Ezn∼j ) and ρ(Φ∗) < 1 (due

to the controlled inner system). To guarantee satisfied
constraints of the dynamic system, the gap between the
periodic steady state cost function and the dynamic peri-
odic process has to be considered. Therefore, a variable
∆ > 0 is introduced (constraint conditions) to allow
small variations of the current state vector. Hence, satisfied
constraints of the ILC are guaranteed. In the presented
example the min/max constraints

Zn−(Φ∆n)w ≤ Znj ≤ Zn−(Φ∆n)w

Y n−(CΦ∆n)w ≤ Y nj ≤ Y n−(CΦ∆n)w

Un ≤ Unj+1
≤ Un

−∆ ≤ zn0j
−ZnN∼j+1

≤ +∆

−∆ ≤ zn0j
−ZnNj

≤ +∆

(18)
are set, where C = diag([Cznd1

· · · CzndN ]) is needed to

include output constraints (Y ,Y ), (Φ∆n)w = abs(Φ)∆
and (CΦ∆n)w = abs(CΦ)∆ are added for a worst case
approximation of the initial state behavior zn0j

+ ε with

|ε| ≤ ∆, abs(·) describes the absolute values of the insert
matrix and ZnNj

= zn0j+1
is the last state variable of the

current period and the initial value of the next period. For
all initial values zn0j

+ε with |ε| ≤∆, the constraints will

be satisfied for all periods. Furthermore, |zn0j
−zn0∼j+1

| <
∆. Hence, the limit tracking error trajectory of the system
satisfies the constraints. Being a controlled LTI system, the
process must converge toZn∼j+1

(Eq. (17)). Monotonically
convergence of the periodic steady state tracking error is
guaranteed (Equation (16)). The system converges to the
periodic steady state error.2

Due to controllability, observability and the convex opti-
mization, the periodic tracking error converges to zero, if
no constraints are violated. The proof is omitted. Stability
and constraint relations between the periodic steady state
and dynamic system behavior are illustrated in Figure 4
where Zn∼j is the periodic steady state of the last cycle,
Znj is the current system behavior, Znref

+ EznILCj+1 is
the ILC output of the current cycle, Zn∼j+1 is the periodic
steady state of the current cycle and Znref

is the reference
value.

n2

nZ
n w( )

nZ

n2

n w( )
~n j

Z

ref ILC 1n zn j
Z E

refn
Z

n j
Z

~ 1n j
Z

system behavior

time

Fig. 4. Periodic steady state/dynamic behavior under
constraints

An adaption of R during and between the periods/cycles
is practicable without loss of stability. This allows fast
learning for the first cycles and slower learning afterwards.
In special cases, the learning rate is constrained by ∆. This
can be avoided by using a larger ∆ first and a decreasing
∆ from cycle to cycle. Finally, the feasibility of the
optimization has to be checked for the first cycle. For all
following periods, feasibility is guaranteed automatically.

3.3 Calculation effort and optimality

To reduce the calculation effort of the minimization prob-
lem, the step size has been adapted (FFL). This has an
influence on the quality/costs/optimality of the minimiza-
tion problem. Therefore, general relations are given (costs
with|without adapted step size: Ja|J0):

• large R in relation to Q: Ja � J0
• small R in relation to Q: Ja ≈ J0
• high dynamic in d for the hole period: Ja � J0
• high dynamic in d only in small regions: Ja ≈ J0

Referring to these relations, it is reasonable to increase
the step size for a low dynamic in d and a small R and
vice versa to decrease the step size for high dynamics
in d and a large R. Hence, the calculation effort can be
reduced without increasing optimization costs (no loss of
optimality). For non-changing step size calculations (from
cycle to cycle), the required matrices and vectors can be
calculated offline. In Kögel and Findeisen [2011] a com-
putation of the warm start Fast Gradient Method (FGM)
calculations/calculation time is formulated. Nevertheless,
for unfinished optimizations, the last calculated trajecto-
ries can be applied to the system.

4. SIMULATION

To illustrate the effect of the presented approach, this sec-
tion concentrates on the simulation results. The depicted
process is a LTI state space controlled (K) system in the
inner cascade, and the given ILC approach (Section 3) in
the outer cascade (Figure 5). All required parameters to
specify system, controller, and ILC are listed in Table 1.

For the presented example, a rectangular disturbance d
acts on the system, which only injects a high dynamic
for a small region (falling/rising edge). For the rest of
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Fig. 6. Simulation results (1)

the period, large sampling times can be applied to the
optimization (FFL). The ILC calculates d recursively from
the last periods. Sinusoidal reference trajectories are im-
plemented. The simulation results are illustrated in Figure
6 and 7. Figure 6 demonstrates a comparison of a system
with and without ILC. It can be seen, that the constraints
are satisfied by the optimization. Figure 7 depicts the
learning process which starts at the second period. As
illustrated, the calculated/estimated disturbance describes
the real disturbance sufficiently and the tracking error
decreases from period to period. Learning at the second
period can be realized due to the fact that the optimization
calculation finishes in one sampling step. Due to the sam-
pling period adaption, the length N of the optimization
can be kept small. This leads to a small optimization
problem. Thus, the minimization can be solved in real-
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time. Especially for fast processes and long trajectories
(large N) a reduction of the calculation effort is crucial.
In Figure 6, the optimization result uILC is depicted. It
is obvious that the sampling period adaption does not
influence the result substantially (large step sizes only for
a small disturbance dynamic behavior). Comparing the
results of the optimization problems (with and without
adaptive sampling period), only a cost function deviation
in the ppm range occurs while the calculation effort is five
times less. ∆ can be set very small without influencing the
optimization result (due to the small tracking errors at the
beginning of each period).
Flexible and adaptive learning structure due to the dy-
namic system behavior without loss of stability, considera-
tion of further optimization objectives (energy costs, con-
straints), identification of the system/disturbance model
and adaption of the control parameters are the most ad-
ditional benefits of the presented approach.

5. CONCLUSIONS

In this paper, iterative learning control for periodic pro-
cesses using optimization and model predictive methods
is presented. The designed cost functions guarantee the
stability of the ILC concept. The prospects of includ-
ing other optimization goals (energy costs, constraints,
identification) and dynamic learning (adaptive weighting
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Plant

System matrix A

[
−4 1 1
0 −3 1
1 1 −3

]
Input matrix BT

[
−1 −1 0

]T
Disturb. input matrix BT

d

[
−1 −1 0

]T
Output matrix C I

Feedthrough matrix D = Dd 0

Sampling periods Ts, 4Ts, 8Ts 0.01, 0.04, 0.08

Periodic time Tp 1

Controller

State controller (sys-
tem poles: -20,-22,-24)

K
[
513 569 3449

]
ILC

Normalizing z sz
[
3142 1000 159

]
Normalizing u su 25.3

Normalizing d sd 0.05

Prediction horizon N 48

Learning gap ∆
[
0.001 0.001 10−7

]
State weighting matrix Qzn

[
100000 1000 10

]
Input weighting matrix Rn 0.5

Min.|Max. tracking er-
ror

e|e

[
−∞

−3·10−4

−∞

]∣∣∣∣∣
[
∞

2·10−4

∞

]
Min.|Max. input u|u −∞|0.3

Table 1. Simulation parameters

matrices) are accentuated. To make the optimization real-
time capable, the calculation effort of the optimization
is reduced using variable sampling periods related to the
disturbance without loss of optimality.
Future works will focus on the learning algorithm. The
learning structure can be expanded to dynamic focused
learning where the optimization operates in an activated
focus of the period. Furthermore, first order uILC can
be used to decrease the minimization costs especially for
large sampling periods. For research, a combination of the
presented approach and classical approaches can be fruit-
ful. With a combination, current variations of the system
behavior compared to past periods can be included.
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