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Abstract: This paper proposes a control approach for the energy management of parallel hybrid
electric vehicles based on stochastic model predictive control (SMPC). Apart from minimizing
fuel consumption, the controller additionally accounts for CO2 emissions. Considering the
vehicle’s velocity to be time-varying, the limits for both propulsion machines of the hybrid
vehicle are determined over a multiple prediction horizon. The stochastic approach has the
advantage that the future driving profile does not have to be known in advance but is predicted
based on an underlying stochastic model of the driver behavior. Simulation results obtained
on standard driving cycles such as NEDC demonstrate the potential of the SMPC approach
compared to a MPC controller with a-priori knowledge of the driving cycle.
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1. INTRODUCTION

1.1 Motivation

Passenger vehicles are a major source of greenhouse gas
emissions, producing around 15% of the EU’s emissions
of CO2. While emissions from other sectors are gener-
ally decreasing, those from transport have considerably
increased in the last decades. In addition to a European
Commission strategy adopted in 2007, the EU has put
in place a comprehensive legal framework to reduce CO2

emissions of passenger vehicles. The legislation sets bind-
ing emission targets for automobile manufacturers that
are obligated to ensure that new vehicles do not emit
more than an average of 130g CO2 per kilometer by 2015
and 95g by 2020. Apart from this long-term target the
strategy sets limitations regarding fuel consumption. With
the sources of oil being limited the caution measures have
to be taken regarding their exploration and their negative
environmental influence. One of the modalities to achieve
the fuel consumption and gas emission reduction is to
increase the share of alternative fuel vehicle technologies
such as hybrid electric vehicles (HEVs) on the market. In
addition to increasing the share of fuel efficient technolo-
gies, improvements in energy management strategies used
in HEVs can contribute in reaching the set environmental
protection goals.

HEVs use at least two different energy sources for their
propulsion. Frequently an internal combustion engine
(ICE) is combined with one or more electric machines
(EM) and an energy buffer. This provides them additional
degree of freedom that allows for more efficient operation.

? This work was founded by the German Research Foundation (grant
number AB-65/11-1).

Compared to conventional vehicles, HEVs can significantly
improve fuel economy due to their ability to recover the
kinetic energy during braking and optimize the operation
of the propulsion system.

1.2 Related Work and Main Contribution

In order to be able to achieve better fuel economy many
control strategies have already been proposed for HEVs
such as heuristic methods (HM) (see Guzzella and Scia-
retta [2013]), deterministic dynamic programming (DP)
(see Wang and Lukic [2012], Sundstrom and Guzzella
[2009]), stochastic dynamic programming (SDP) (see Liu
and Peng [2008], Tate et al. [2007], Johannesson et al.
[2005], Opila et al. [2012]), equivalent consumption min-
imization strategy (ECMS) (see Serrao et al. [2009],
Musardo et al. [2005]), model predictive control (MPC)
(see Beck et al. [2005], Borhan et al. [2012]) and game
theory (GT) (see Dextreit and Kolmanovsky [2013]). All
of these approaches have the goal to minimize fuel con-
sumption while keeping the propulsion system components
within reasonable operating limits.

Heuristic or rule-based methods achieve good performance
but only when designed for specific vehicle and specific
driving conditions. Deterministic dynamic programming
provides a global optimum for the power split between
the internal combustion engine and the electric machine
in terms of reduced fuel consumption. Unfortunately, the
necessity of knowing the driving cycle in advance in order
to solve the optimization problem and the high computa-
tional burden makes this nonlinear method inappropriate
for real-time application. While dynamic programming
uses a deterministically given driving cycle stochastic dy-
namic programming, as presented in Liu and Peng [2008],
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Tate et al. [2007], Johannesson et al. [2005] and Opila
et al. [2012], approximates the future driving profile by
a stochastic process. In Ripaccioli et al. [2010], Bichi et al.
[2010] and Di Cairano et al. [2013] a stochastic model pre-
dictive control algorithm (SMPC) was proposed as control
strategy for HEVs and realized on the example of a series
HEV. Combining the stochastic driving profile with the
idea of receding horizon control enables the estimation of
the future driver behavior for the whole prediction horizon.

In this publication a stochastic model predictive control
strategy is proposed and the controller performance is eval-
uated on standard driving cycles. Compared to Ripaccioli
et al. [2010], a parallel HEV model is used that is based
on torques instead of power demands. Furthermore, the
vehicle’s velocity is considered to be time-varying over
the prediction horizon. In this way, the actual machine
limits in terms of minimum and maximum torques that
depend on the rotational speed can explicitly be consid-
ered over the prediction horizon in the predictive control
scheme. The future driver behavior is represented by a
Markov chain with finite number of states. Thereby the
driver torque demand has been selected as state of the
Markov chain. Identifying a Markov chain requires the
estimation of transition probabilities which are commonly
determined based on a frequency analysis. In contrast
to Ripaccioli et al. [2010] and Di Cairano et al. [2013],
where ordinary maximum likelihood estimation is used, in
this publication a smoothing technique, as described in
section 3, is employed in order to conduct the learning
process. In addition to previous publications, apart from
the mass fuel rate, CO2 emissions are considered in the
optimization problem as well. This paper is organized as
follows: in section 2 the considered HEV model employed
for optimization is presented. Section 3 provides details
on the employed stochastic model of the driver behavior.
The formulation of a standard MPC scheme as well as
the applied SMPC optimization problem are outlined in
section 4. Finally simulation results and a comparative
analysis of a MPC reference controller and the SMPC
implementation is provided in section 5.

2. HYBRID VEHICLE MODEL

In the energy management strategy a parallel HEV ar-
chitecture has been considered as depicted in Fig. 1. The
engine and electric machine are mechanically linked to the
wheels. The following torque balance relation describes the
proposed coupling:

Twh(t) = ηgb ·R(i(t)) · (Tem(t) + Tice(t)) + Tbr(t) (1)

where Twh(t) is the torque at the wheels, ηgb the trans-
mission efficiency which is considered to be constant,
R(i(t)) the transmission ratio depending on the gear i(t)
and Tem(t), Tice(t), Tbr(t) are the torque of the electric
machine, the engine torque and the conventional braking
torque respectively.

The angular velocities of the combustion engine and the
electric machine are defined as:

ωice(t) = ωem(t) = ηgb ·R(i(t)) · ωwh(t) (2)

where ωwh(t) denotes the rotational speed of the wheel.
Both rotational speeds and torques are limited by mechan-
ical constraints. The minimum and maximum torques are
provided by maps for the engine and electric machine.

Diff. Gear

Engine Gearbox

Electric
Motor

Fuel Tank

Battery

Clutch

Fig. 1. Parallel hybrid electric vehicle configuration

2.1 Engine Model

In modeling of the internal combustion engine its dynamics
are neglected as the time constant of the engine is signifi-
cantly lower than controller sampling time Ts (here taken
to be Ts = 1 s). In this context only the fuel consumption
and gas emissions are considered. The fuel consumption is
modeled by a nonlinear map which depends on the ICE
torque Tice and the rotational speed ωice:

ṁf (Tice(t), ωice(t)) = fṁf
(Tice(t), ωice(t)) (3)

This nonlinear relation is approximated by a polynomial
of the form:

ṁf (Tice(t), ωice(t)) ≈
3∑
i=0

3∑
j=0

aij · ωiice · T
j
ice (4)

and used later in the optimization procedure to approxi-
mate the expression for the fuel consumption. The goal is
to make the model as simple as possible while still being
useful for the optimization algorithm. Apart from fuel con-
sumption, CO2 emissions are considered and minimized.
In a similar way as fuel consumption the nonlinear function
describing the CO2 emissions is given by map of the form:

ṁCO2
(Tice(t), ωice(t)) = fCO2

(Tice(t), ωice(t)) (5)

Similar to (4) this relation has been approximated by
a third order polynomial of the engine angular velocity
ωice and torque Tice and is applied in the control scheme
described in section IV. The maximum torque of the engine
is a function of its angular velocity:

Tice,max = fice,max(ωice) (6)

2.2 Electric Machine Model

The electric machine is designed to be able to meet the
higher torque demands. In addition to this the EM is also
used to recuperate the braking energy up to the point
when either its torque limit Tem,min(ω(t)) or the battery
charging limit has been reached, after which friction brakes
are activated. Similarly to the engine model, the dynamic
behavior is neglected and the electric machine is modeled
by an efficiency map which is a nonlinear function of the
torque Tem and the angular velocity ωem:

ηem(Tem(t), ωem(t)) = fηem(Tem(t), ωem(t)) (7)

Based on the efficiency map the power of electric machine
is gained as:

Pem(t) = fem(ηem(Tem(t), ωem(t)), ωem(t), Tem(t)) (8)

However in the optimization model this relation has been
approximated by a third order polynomial similar to (4).
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The minimum and maximum torques Tem,min(ωem(t)) and
Tem,max(ωem(t)) are given by a map in dependence of the
EM rotational speed as:

Tem,max = fem,max(ωem), Tem,min = −fem,max(ωem) (9)

In this publication no concrete hybrid vehicle has been
considered. Thereby all the necessary quantitative values,
efficiency maps for both machines as well as the fuel
consumption and CO2 emissions maps have been taken
from ADVISOR simulation tool, see Wipke et al. [1999].

2.3 Battery Model

The state of charge (SoC) of the battery is the amount
of electrical energy stored in it. The change of the SoC is
described by:

˙SoC(t) = − Pbatt(t)

Qmax · Unom
(10)

where Pbatt denotes the battery power, Qmax the nominal
battery capacity and Unom its nominal voltage. To ensure
a prolonged life of the energy buffer, the battery state of
charge should be kept close to a certain set-point and the
battery should operate within a prescribed, allowed range.
In this paper a range between 50% -70% is considered.
Some effects have been neglected. Actually, the internal
resistance and open circuit voltage depend on the state
of charge. However for the sake of simplicity open circuit
voltage is approximated by a constant voltage level and
losses due to internal resistance are not considered.

2.4 Vehicle Model

The vehicle is modeled as a point mass and only longitu-
dinal dynamics is considered:

Twh(t) = rwh(mveh · g · sin(θ) +mveh · g · fr · cos(θ)

+
ρ

2
·A · cw · v2(t) +mvehv̇(t)) (11)

where mveh is the mass of the vehicle, θ the road slope
which is assumed to be zero, fr the rolling friction coeffi-
cient, cw the drag coefficient of the vehicle, ρ the density
of the air, A the vehicle frontal area and v the velocity
of the vehicle. The rolling friction coefficient is actually a
function of the vehicle’s velocity but is set to a constant
value for the sake of simplicity.

3. STOCHASTIC DRIVER MODEL

In the formulation of SDP and SMPC a stochastic rep-
resentation of the future driver behavior is considered.
The torque required at the wheels is considered to be
an disturbance input to the SMPC controller. In this
paper a stationary Markov chain is used to generate driver
torque demands Treq. Markov chains are classes of Markov
processes for which state variables have finite number of
values and the probability of a transition from state i in
time k to state j in time k+1 is time invariant. As state of
the Markov chain the driver torque demand at the wheels
Treq has been considered. This variable has final number
of possible states m, i.e.

Treq = {T 1
req, T

2
req, ...T

m
req} (12)

This number is chosen in accordance with two basic re-
quirements: to keep the computational complexity within
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Fig. 2. Markov chain transition probability matrix with 18
states

reasonable bounds and the ability to capture the proba-
bility distribution function. Identifying the Markov chain
requires transition probabilities, i.e. a transition matrix T
to be estimated. This matrix is defined by the following
conditional probabilities:

T (i, j) = Pr{Treq(k + 1) = T jreq|Treq(k) = T ireq}
i, j = 1, ...,m (13)

In order to learn the transition probabilities of the Markov
chain standard driving cycles (NEDC, FTP-75, FTP High-
way) have been used as a training set, see Fig. 2. In
simulation runs, the driver torque demand at the wheel as
well as the wheel speed have been recorded. Subsequently
the quantization of training data set into a final number
of states has been conducted, and a smoothing technique
was applied to obtain the desired transition probabilities.

In this approach we rely on a more general form of
maximum likelihood estimation to represent the transition
probabilities and assume that each occurrence can be
assigned to more than one state in the Markov chain
and the ’degree’ of belonging to each state is expressed
via the membership function. Let xt be an occurrence of
the requested torque in the training set. We define the
membership function as in Dai [1995]:

mi(xt) =
{ m∑
k=1

{d(xt, T
i
req)

d(xt, T kreq)

}(F−1)}−1

, i = 1, ...,m

(14)
where d(xt, T

i
req) denotes the Euclidean distance between

measurement xt and T ireq and F is a constant that is
greater than one. Using memberships for each occurrence
in the training set smoothed transition probabilities are
estimated to determine T (i, j) in (13), i.e.

T (i, j) =

∑n
t=1mi(xt−1) ·mj(xt)∑n

t=2mi(xt−1)
, i, j = 1, ...,m (15)

and employed in the subsequent optimization problem to
predict the driver’s future behavior.
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4. STOCHASTIC MODEL PREDICTIVE CONTROL

We consider a state space representation of the continuous-
time system with additive uncertainty w:

ẋ = f(x,u, w) (16)

y = g(x,u, w) (17)

where xT = [v, SoC] denotes the state vector, uT =
[Tice, Tbr] the control vector and w(t) is an additive
disturbance that represents the driver torque demand. The
states of the system are the vehicle’s velocity v and the
battery’s state of charge SoC while the control inputs are
requested torque of internal combustion engine Tice and
the torque of the friction brakes Tbr. In this context Tem
is derived according to (1). The output of the system is
defined as yT = [ṁf , SoC, ṁCO2

] where ṁf stands for
the fuel mass rate, SoC for battery charge and ṁCO2

for
the rate of CO2 emissions. In order to be applied in the
predictive control scheme, (16)-(17) have to be linearized
at the current operating point. Thereby the resulting
discrete-time linear affine model can be represented as:

xk+1 = Akxk + Bkuk + W kwk + Γk (18)

yk = Ckxk + Dkuk + V kwk + ∆k (19)

where Ak ∈ R2×2 denotes the system matrix, Bk ∈ R2×2

the input matrix, Ck ∈ R3×2 the output matrix, W k ∈ R3

and V k ∈ R3 describe the influence of the system distur-
bance w on the state variables and output variables and
Γk ∈ R2 as well as ∆k ∈ R3 indicate affine terms that
result from the linearization at the current operating point.

In the standard MPC control formulation, starting at the
current state xk, an open-loop optimal control problem
is solved over a finite prediction horizon of length Hp.
Without loss of generality the quadratic cost function

min
∆u
{(y − yref )T ·Q · (y − yref ) + ∆uT ·R ·∆u} (20)

is minimized subjected to dynamic constraints, as well
as corresponding input and state constraints. An optimal
input sequence ∆u∗(k|k), ...,∆u∗(k+Hu−1|k) of length Hu

is obtained and only the first element is applied to the
system uk = uk−1 + ∆u(k|k). The optimization problem
is repeated at time k+1 based on a new state measurement
or estimate leading to a receding horizon control strategy.

In the stochastic MPC the system disturbance w(t), i.e. the
driver torque demand, is estimated along the prediction
horizon using a stochastic process outlined in section
3. Unlike the standard MPC, in the SMPC the idea
of multiple horizons is introduced. At each time step,
based on the current value of the disturbance w(k), an
optimization graph is build according to Di Cairano et al.
[2013]. The graph consists of nodes which represent a
particular future driver request and edges that connect
subsequent driver torque demands. Thereby the current
torque demand is represented by the root node. In this way,
the optimization tree might contain more paths, where
each path represents one possible request sequence and
therefore one prediction horizon. In the SMPC strategy
the cost function similar to (20) is minimized considering
all possible paths in the optimization graph. Starting from
the root node, we propagate node wise along the graph
until the leaf node of each path is reached. Compared to
the standard MPC formulation, the change of the control
input is assigned to each node except leaf nodes. The

Table 1. Node content in optimization graph

Property set Pi of node Ni

Treq,wh,i Requested wheel torque
ωreq,wh,i Expected wheel angular velocity
πi Probability of reaching node Ni from root node
prei Index of parent (predecessor) node
succ listi Indices of successor nodes
typei Node indicator (node or leaf)
Tem,min,i Minimum allowed ICE torque
Tem,max,i Maximum allowed ICE torque
Tice,min,i Minimum allowed EM torque
Tice,max,i Maximum allowed EM torque

optimization tree generated at each time instance contains
nmax nodes, i.e. N = {N1, ...,Nnmax

}, where nmax can
be set by the user in the same fashion as the prediction
horizon Hp and the control horizon Hu are set in the
standard MPC formulation. To each node in the graph
Ni, i = 1, ...nmax a property set Pi is assigned containing
the information summarized in Table 1. At each time
step, the optimization tree, containing estimated future
requested torque sequences, is rebuild and the SMPC
optimization scheme is repeated. Compared to standard
MPC, the SMPC problem exhibits slight modifications of
the cost functional and is formulated as follows:

min
∆u,εs,εf

∑
i∈N\N1

πi · (yi − yref )T ·Q · (yi − yref )

+
∑

j∈N\Nleaf

πj ·∆uT ·R ·∆u (21)

+
∑

k∈N\Nleaf

πk · uT · S · u + αs · εs + αf · εf

subject to the system dynamics:

x1 = xk, w1 = wk, u1 = uk (22)

xi = Akxpre(i) + Bkupre(i) + W kωi + Γk (23)

yi = Ckxpre(i) + Dkupre(i) + V kωi + ∆k, i ∈ N \ N1

(24)

and the following constraints:

Tice,i ≥ Tice,min(ωice,i), i = 1, ...nmax − 1 (25)

Tice,i ≤ Tice,max(ωice,i), i = 1, ...nmax − 1 (26)

Tem,i ≥ Tem,min(ωem,i), i = 1, ...nmax − 1 (27)

Tem,i ≤ Tem,max(ωem,i), i = 1, ...nmax − 1 (28)

Tbr,i ≤ 0, i = 1, ...nmax − 1 (29)

SoCi ≥ SoCmin − εs, i = 1, ...nmax − 1 (30)

SoCi ≤ SoCmax + εs, i = 1, ...nmax − 1 (31)

SoCNleaf
≥ SoCref − εf , SoCNleaf

≤ SoCref + εf (32)

εs ≥ 0, εf ≥ 0 (33)

It should be noted that integer value i refers to the index
of the node in the optimization graph. The cost function
of the SMPC scheme is a quadratic function and weights
the deviation of control outputs yT = [ṁf , SoC, ṁC02 ]
from their reference values, the change of control inputs
∆uT = [∆Tice, ∆Tbr], the absolute values of control in-
puts uT = [Tice, Tbr] and the use of slack variables εs
and εf that are employed in soft-constraints (30)-(32).
The diagonal matrix Q contains scalar weights that pe-
nalize the deviation from the battery’s state of charge set
point SOCref , the fuel consumption ṁf,ref and the CO2
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emission set point ṁCO2,ref . The matrix R contains the
weights for control input changes while the matrix S is
used to penalize the absolute value of the control inputs.
Weighting of the absolute values is used to force the control
strategy to use the friction brakes only in the case when
regenerative braking can not be realized. The matrices
Q, R and S at each node in the graph are given as:
Q = diag(qṁf

, qSoC , qṁCO2
), R = diag(r∆Tice , r∆Tbr

) and

S = diag(sTice , sTbr
). It should be noted that the SMPC

cost function accounts for all nodes in the optimization
tree such that the optimization is performed over all pos-
sible paths in the graph.

Constraints (25)-(28) on ICE and EM torques are intro-
duced to account for machine limitations. Thereby for
each node in the scenario tree upper and lower operational
limits for both propulsion machines are newly determined
based on (6) and (9). The state of charge should be kept
within certain operating range and the terminal constraint
(32) for state of charge is introduced. This assumption is
beneficial for sustaining battery charge and is commonly
presented in literature, see Ambuhl and Guzzella [2009].
The main intention of employing the terminal constraint
is to force the state of charge to tend towards its reference
value at the end of the prediction horizon. In the SMPC
scheme several prediction horizons might be available, as
the graph may exhibit tree structure and contains more
than one path. Therefore the terminal constraint is em-
ployed at each leaf node, as the end of a single horizon is
determined by one leaf node. The battery state of charge
constraint and terminal cost have been formulated as soft-
constraints and the slack-variables εs and εf are used to
ensure the feasibility of the optimization problem.

5. SIMULATION RESULTS

The performance of the SMPC control strategy is evalu-
ated on the standard driving cycles NEDC, FTP-75 and
FTP Highway. The obtained results are compared to a
MPC controller which has a perfect knowledge of the driv-
ing cycle and therefore of the future torque demands. The
simulation model employed to evaluate the performance
of both strategies is a feed-forward model of a parallel
HEV and all vehicle parameters and data are taken from
the advanced vehicle simulator ADVISOR. The transition
probability matrix T of the Markov chain, applied to
predict the driving profile, is estimated offline using the
training set which contains observation data from NEDC,
FTP-75, FTP Highway and MODE 10-15 driving cycles.
Increasing the number of states in the Markov chain leads
to higher computational complexity. Thus a trade-off be-
tween the reliability of the stochastic model and compu-
tational speed is made and a Markov chain with 18 states
is considered. In the smoothing technique employed for
transition probability generation the parameter F is set to
1.5 as simulations have shown that taking a greater value
results in strongly smoothed data set. The sampling time
for both, baseline MPC and SMPC energy management
strategy is chosen to be Ts = 1s. The following MPC
parametrization has been used: qṁf

= 2, qSoC = 2000,
qṁCO2

= 0.2, r∆Tice = 0.01, r∆Tbr
= 0, sTice = 0, sTbr

= 1

and the battery reference value is set to 60% of its charge
(SOCref = 0.6). The weights of slack-variables εs and εf
are set to 105 and 103 respectively. The optimization graph

Table 2. SMPC vs. MPC control results

Drive Cycle CO2 (%) ṁf (%) ∆ SoC gain/loss (%)

NEDC +7.24 +7.1 +5.98 / +3.25
FTP-75 +0.97 +0.9 +1.30 / +0.2
FTP Highway +2.19 +2.15 +1.03 / +2.8
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Fig. 3. Results of SMPC and MPC over NEDC cycle
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Fig. 4. Results of SMPC and MPC over FTP-75 cycle

in the SMPC scheme has 100 nodes (nmax = 100) while the
prediction and control horizon in the MPC scheme used as
a benchmark are Hu = 50 and Hp = 50 respectively. The
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initial conditions are set to SoC(0) = 0.6, Treq = 0 Nm and
ωreq(0) = 0 rad/s while the lower and upper limit for SoC
are selected to be SoCmin = 0.5 and SoCmin = 0.7 respec-
tively. Furthermore, qpOASES is used as QP (active-set)
solver, see Ferreau [2012].

The torque split as well as the SoC trajectories for
both control strategies over the NEDC and FTP drive
cycle are presented in Fig. 3 and Fig. 4 respectively.
For the sake of brevity illustration of the results for
FTP Highway is not shown. For most of the NEDC
cycle duration the SoC trajectory of the SMPC controller
lies very close to the SoC profile of the reference MPC
controller. Larger deviations from the SoC of the reference
controller can be noted in the range from 850 s to 1220 s
for NEDC and between 200-300 s and 1580-1680 s for FTP-
75 cycle and are a consequence of the uncertainties in
the stochastic driver model. Table 2 contains information
on how much the fuel consumption and CO2 emissions
are larger for the SMPC controller compared to reference
control strategy. While the SMPC control scheme shows
larger fuel consumption and CO2 emissions of about 7%
for the NEDC, these deviations are considerably small for
FTP-75 and FTP Highway. From this result it can be
concluded that torque demands in the NEDC are harder to
predict than for the other driving cycles. Nevertheless, it
can be recognized that the stochastic driver model is well
suited to obtain results close to the control scheme that
exploits full knowledge of the driving cycle. In addition,
Table 2 provides procentual information on the deviation
of the SoC from its reference value at the end of the driving
cycle for both, SMPC and MPC strategy.

6. CONCLUSION AND FUTURE WORK

We have presented an energy management strategy for
parallel HEVs. The aim was to optimize the fuel economy
and CO2 emission while keeping the battery’s state of
charge within prescribed bounds. In the realized control
approach the future driving behavior has been approxi-
mated by a stochastic process. The results obtained have
been compared to the MPC that has a full knowledge of
a driving cycle and therefore assures good fuel economy
and CO2 emissions reduction. These indicate that SMPC
is a promising control strategy for HEVs which has the
advantage over deterministically based approaches that
the driving cycle does not have to be known in advance
and can be implemented online.

Future work will aim at integrating a prediction of future
gear shifts in the SMPC scheme, defining a reference
trajectory for the battery’s SoC as well as the evaluation
of the strategy on real driving profiles. Furthermore a
comparison with other recently proposed strategies such
as game theory might be a subject of further studies.
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