

On Translation of LD, IL and SFC Given According to IEC-61131 for
Hardware Synthesis of Reconfigurable Logic Controller

Adam Milik*, Edward Hrynkiewicz*

*Institute of Electronics Silesian University of Technology of Gliwice, Poland
(e-mail: adam.milik@ polsl.pl; edward.hrynkiewicz@polsl.pl).

Abstract: The paper presents developed synthesis methodology of a hardware implemented
reconfigurable logic controller from multiple languages incorporating ladder diagrams, instruction list
and sequential functional chart according to IEC61131-3. It is focused on the originally developed a high
performance computation model based on properly defined variable access. The method address
synthesis process of logic and arithmetic operations. Presented approach is able to synthesize not only
basic constructs of languages but also complex modules like timers and counters. The paper acquaint
with the compilation of considered languages and complex modules into intermediate form suitable for
logic synthesis process according to developed analysis, translation and mapping methods. The data flow
graph has been chosen for intermediate representation of a program. An original enhancement of the
DFG with attributed edges and specific nodes has been described. It allows for efficient representation
and processing of logic and arithmetic formulas. The set of compilation algorithms that preserve effects
of serial execution order and offer obtaining massively parallel processing unit are presented.

Keywords: PLC, FPGA, LD, IL, SFC, DFG, high level synthesis, logic synthesis, reconfigurable
hardware

1. INTRODUCTION

The general concept of a PLC is based on the
microprogrammable circuits. It consists of two inseparable
parts that constitutes its operation. Those parts are hardware
and software. The hardware part is able to execute a given set
of logic and arithmetic instructions. The software is an
ordered sequence of instructions that allows solving problem
mapped to a instruction set of particular hardware platform.
This approach is very simple and effective in case of
programming and/or modifying program that can be also
called a control algorithm (Bolton 2009, Chmiel and
Hrynkiewicz 2010, John and Tigelkamp 2010). The serial
execution of the program strongly limits performance of a
PLC. This can be solved by replacing serial instruction
execution with massively parallel implementation in
reconfigurable hardware architecture of FPGAs.

1.1. Previous works

The implementation of the control algorithm with use of
reprogrammable and reconfigurable logic has been proposed
by different research groups (Bukowiec and Adamski 2012,
Chmiel et.al. 2011, Du et.al. 2010, Economakos and
Economakos 2008 and 2012, Ichikawa et.al. 2011, Milik and
Hrynkiewicz 2012, Milik 2006, Mocha and Kania 2012,
Welch 1997, Yadong et.al. 2005, Ziębiński et al. 2011).
There have been proposed a custom FPGA architecture for
direct mapping of a LD logic (Welch and Careleta 2000). In
opposite to software solutions hardware offers intrinsic
parallel execution of the tasks. It radically reduces the

response time and offers better performance than software
solutions. The significant limitation in wide use of
reprogrammable digital circuits is their high design
complexity and an experience required during the
implementation processes. An early synthesis and
architecture concepts are given in (Milik 2006). The
sequential approach to the synthesis of control algorithm has
been proposed by (Du et.al. 2010). There has been proposed
method based on extended analysis of variables
dependencies. They were limited to Boolean operations
mapping, while contemporary PLCs combine logic and
arithmetic operations to handle complex control tasks. The
approach of translating the IL into C language that is further
synthesized to hardware has been proposed by (Economakos
and Economakos 2008 and 2012). The papers evaluates
influence of coding style to obtained results. Evaluating
entire space of solutions with different coding styles is
inefficient and does not guarantee obtaining required neither
optimal results. There is required a systematic method that
will create required solution directly from a programming
language.

2. INTRODUCTION TO CONTROL PROGRAM
SYNTHESIS

The control program for a PLC can be described with reach
set of languages (IEC, 2007) that cooperate with each other
and are supposed to produce coherent control program. The
Ladder Diagram (LD) has been inherited from relay control
systems. Contacts and coils represent logic dependencies
between signals and function blocks. The other commonly
used method is the Instruction List (IL) language. This

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 4477

language can be compared to assembly language of PLCs.
The third language considered in this paper is the SFC that is
used for graphical representation of concurrent control
processes.

2.1. Existing Synthesis Models for Ladder Diagram

The LD diagram is described by two sets of Boolean
variables I and Q. The set I consists of variables associated
with inputs while the set Q consists of variables associated
with outputs and internal markers. The logic functions are
defined by rungs and create ordered sequence of Boolean
expressions:

 (), , 1...i i I Q i rq f= = (1)

where i is the rung index. This approach has been used by
implementation proposed by (Welch and Carleta 2000,
Ichikawa et.al. 2011, Yadong et al. 2005)

An exemplary LD network and its implementation is
presented in the figure (Fig. 1). According to (1) the
controller response time is proportional to the number of
rungs in a program. In comparison to the programmatic
approach this model reduces a computation time of logic
functions. Distributing calculation process for each rung (q
variable) introduces redundant cycles. In considered diagram
(Fig. 1) variables q1 and q3 do not depend on other q
variables. The q1 variable can be evaluated parallel with the
q3 in the first cycle (t1).

In order to reduce the number of calculation cycles
dependencies between qi variables have to be determined. In
the paper (Falcione and Krogh 1993) have introduced an idea
of using dependencies and simultaneities graphs for creating
the SFC from given LD. This idea has been employed by (Du
et al. 2010) for creating optimized hardware structure.
Similar idea has been employed by (Mocha and Kania 2012)
for control algorithm partitioning. During analysis of the LD
a dependencies graph is created. This is a directed graph that
consists of nodes representing all qi variables. The node vi
(representing variable qi) is connected by directed edge with
node vj only if function fi depends on variable qj and i > j:

 () (),j i i j constf qv v ↔ ≠ (2)

Number of elementary cycles based on dependencies analysis
is equal to:

 max 1T p= + (3)

where pmax is the longest path in the dependencies graph. It
should be noted that the path length depends on components
placement on a diagram.

2.2. The Ladder Diagram High Performance Synthesis Model

The LD can be considered as a sequence of operations that
are processed. Let assume that variables associated with
inputs are updated before the start of calculation process and
remain constant during it. Let introduce the set of variables D
that are assigned with value of processed expressions. Value
of the variable di is assigned to variable qi at the end of
calculation cycle (qi = di). This approach allows to
distinguish between two values that are calculated in present
cycle (di) and in previous cycle (qi). The equation (4)
considered for m-th rung can be rewritten in following form:

()0 1, ,..., , ,...,m mm m n

mm

If q qd d d
q d

−=

=
 (4)

Using proposed substitution of q variables allows to
propagate calculation results through all functions bypassing
registers (Fig. 2). The current value of control process is
updated by single clock pulse after calculating all di values.
In presented form the calculation process is fully parallel and
consists of a single cycle that transfers values from
d variables to respective q variables.

3. INTERMEDIATE REPRESENTATION
OF CONTROL PROGRAM

For control program synthesis purposes it is required to
develop an intermediate representation. that is suitable for
high level synthesis process. It should be able to represent
logic and arithmetic operations performed by PLCs.

3.1. The Enhanced DFG with attributed edges

For purpose of recording PLC programs authors have
developed a form of Enhanced Data Flow Graph (EDFG)
with attributed edges. This has been inspired by concept of
the DFG (Gajski et al. 1994) and attributed edges used in
BDD introduced by (Minato, 1995) and other functional

i1

i2

q1

i3

D Q

CE

D Q

CE

D Q

CE

q2

q3
i4

t1

t2

t3

CLK

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

D Q

CE

xchg

Process Image
Register - Inputs

Process Image
Register - OutputsContacts & Nodes Coils

Ring Counter

i1 q1i2

q1 q2i3

q2

i3

i4

q3

Fig. 1. The LD network (A) and its hardware equivalent (B).

i1

i2

q1

i3

D Q

CE

D Q

CE

D Q

CE

q2

q3
i4

CLK

D Q

CE

D Q

CE

D Q

CE

D Q

CE

Input Registers Contacts & Nodes Coils

d1
1

1

d2

d3

i1

q1

i1

i3q1

i3

i4

q2

q1

q3

q2

A. B.

d1

Fig. 2. The LD network (A) and its hardware equivalent
obtained with developed synthesis method(B)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4478

improvements. The attributed edge in the DFG implements
unary operations like logic inversion or arithmetic
complement. The other implemented extension is a multiple
argument node for commutative operations. There has also
been introduced node for conditional argument selection.
Presented modifications allow for efficient constructing and
handling of data flow graphs.

The Enhanced Data Flow Graph (EDFG) is given by
,G V E= where: V is a set of nodes representing

elementary operations and E is a set of directed edges with
attributes. The directed edge e is described by a triple

, ,SRC DSTe av v= where: vSRC is a predeceasing node and vDST
is a successor node of the directed edge. The a is an attribute
of the edge chosen from the set A of allowed attributes.

The EDFG allows to simplify representation and algorithmic
handling of logic and arithmetic operations. An equivalent

DFG and EDFG to the Boolean formulae y a b c d e= ⋅ ⋅ + ⋅
are presented in the figure (Fig. 3). There have been
considered two cases: a standard approach (A) and with use
of attribute edges (B and C). Attributed edges not only reduce
number of nodes in the diagram but also allow to simplify
logic operation transformations. Introducing multiple
argument nodes for commutative operations further reduces
the expression tree. The final and simplified graph is shown

in (C). The EDFG allows simplifying logic expression
efficiently at early stage of synthesis process. For further
minimization purposes Quine-McCluskey, Espresso or BDD
are used.

Similar flexibility is achieved for graphs representing
arithmetic operations. The subtraction has been replaced by
use of the complement value attribute. It reduces the set of
arithmetic nodes to: addition, multiplication and division.
The figure (Fig. 4) compares use of attributed edges for
arithmetic operations. Implementation of an expression:
y a b c d e= + − + − using a standard approach is presented in

Fig. 4.A. Similar result is achieved by use of attributed edges
(Fig. 4.B). The only difference is use of the addition node in
both cases. Finally the chain of nodes is merged and create a
multiple arguments node (Fig. 4.C).

3.2. Variables access model

Variables are formally declared according to IEC61131-3
requirements. For the purpose of synthesis process the
variables set is divided into three subsets based on signal
association. There are distinguished variables associated
with: input signals, output signals and internal markers.
A variable associated with an input signal is allowed to be
read while value assignment is prohibited. A variable
associated with output or marker is allowed for read and
write access. A variable associated with the markers space
can be optimized along with nodes that lost sink if only write
access is performed to it. A variables associated with output
signal or marker is not allowed to be read while no value
assignment has been made to it. The variable value access
requires proper implementation that assures sequential access
according to developed synthesis model (see 2.2).

Let the x is a variable that value is going to be read by node v,
vxWR is a value assignment node to the x variable, vxDRV is the
variable x value source node. The vxDRV is connected with an
edge with vxWR. The vxRD is a value reading node of the x
variable. If the variable x has not been assigned in current
cycle than the vxWR node does not exist. In order to read a
value of the x variable the vxRD node is created. A value of the
x variable comes from the previous cycle or is an initial value
(Fig. 5.1). If the value has been assigned to the variable x in
current cycle than the vxWR node exists and is linked with a
vxDRV node. A value of the x variable is obtained from the
vxDRV node (Fig. 5.2). Described algorithm enables use of
temporary variables with multiple assignments. It connects
the v node with most recent vxDRV node.

y

OR

~a

& c

&

~

b

&

~

e

d

y

OR

a

& c

b

ed

& &

A. B.

Graph Items Description
& OR ~AND node OR node NOT node

Simple edge NOT edge y

OR

ed

&
bc

a
4

3

C.

Fig. 3. Comparison of the general DFG (A) and the EDFG
with attributed edges (B) and optimized EDFG (C)

a

y

b

c

d

e

a

y

b

c

d

e

Simple edge

Complemented edge

Addition node

Subtraction node

Description

A. B.

y

C.
a b c d e

Fig. 4. Comparison of the general DFG (A) and the DFG
with attributed edges (B and C)

vxRD

v-x vxRD

WRvar RD
1.

vxWR
vxWRx
WRvar RD

2.

v

vDRV

Do not care

Fig. 5. The variable value access algorithm

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4479

4. LADDER DIAGRAM SYNTHESIS METHODOLOGY

The compilation process delivers basic items of a language
that are synthesized into intermediate form of the EDFG. The
LD is a hybrid of logic control constructed with use of
switches, wires, coils and a data flow part described with use
of function blocks. In opposite to real circuit the LD is
analyzed sequentially with use of the row based concept (IEC
2007, John and Tigelkamp 2010).

4.1. Ladder Diagram Logic Components Synthesis

A node merges power flow from several sources. The
synthesis process creates automatic variable for each node
that belongs to the internal signals set. The LD node is
allowed to be driven by multiple sources producing a logic
sum of connected signals.

Let x is a variable associated with a schematic node
(junction), vxWR is a value assignment EDFG node to the x
variable, vCS is the EDFG node that is a new driver of the x
variable (cs - current value source), vPS is the node that
currently drives the x variable (ps - previous value source). If
a value is not assigned to the x variable then the vxWR node is
created and connected with the vCS node (Fig. 6.1). If the x
variable is assigned a value through the vxWR node than vOR
node is created. Both the vPS and vCS nodes are connected to
vOR. Previous connection from vPS to vxWR is removed (Fig.
6.2). The node assignment operation can be repeated for
multiple driving sources.

A switch is a component creating the logic AND operation
between input signal and a driving signal. The EDFG
equivalent of the switch is presented in the figure (Fig. 7).

Let the x is a variable associated with a signal driving the
switch, a is a variable controlling the switch and y is a
variable associated with an output signal. The vAND node is
created to represent a switch. Both variables x and a are read
with use of variable access algorithm. The attribute of the
edge is set according to the switch type (Fig. 7 case A or B)

The vAND operation result is assigned to the y variable.
according to the node connecting algorithm.

A coil assigns the power flow to the variable associated with
a signal. Following algorithm is used for obtaining DFG from
a coil item. This algorithm is adopted to cooperate with
remaining compilation algorithms, especially with variable
value access.

Let the a is a variable associated with driving signal, the
vaDRV is the driving node of the variable a, y is the variable
associated with the signal driven by considered coil. The
variable a value is read with use of variable access algorithm
that returns the vaDRV node. In opposite to a LD schematic
node, multiple assignment to the same Boolean variable
overwrites it value. If the y variable has not been assigned
than the vyWR node is created and. The vaDRV node is linked to
vyWR node (Fig. 8.1). If a value is already assigned to the y
variable then the vyWR driving node is linked to a recent
driving node (vbDRV →vaDRV) (Fig. 8.2).

4.2. The Ladder Diagram Complex Blocks Synthesis

The LD uses functional blocks to implement time
dependencies, counters, arithmetic calculations and other
complex functions (e.g. PID). Each block is replaced with its
EDFG functional equivalent. The equivalent sub EDFG is
connected between source and sink nodes with use of
described value access and assign algorithms. The figure
(Fig. 9) shows implementation of TON timer (A) and basic
set of arithmetic operations (B). Both blocks deliver logic and
numeric results. There are used two different value
assignment procedures. For logic variables is used the
algorithm described for schematic nodes while for numeric
variables is used the assignment algorithm described for coils

5. INSTRUCTION LIST SYNTHESIS ALGORITHM

The Instruction List (IL) is a low level programming
language. The processing concept is derived from
microprogrammable architecture of early PLC constructs.
According to the IEC61131-3 (IEC, 2007 chapter 3.2) an IL
program consists from variables declaration and sequence of

0x

WRvar RD
1.

vxWR

vxWRx

WRvar RD
2.

vPS

vxWR

vCS

vCSvPS

vCS

x

LD DAG

vPS
x

LD DAG
Do not care

Do not care

Fig. 6. The driving source connection algorithm for a node

a
x y &

a
x y

B.
x

y

a

&

x

y

a
A.

x - Read variable procedure y - Write variable procedure

Fig. 7. The EDFG switch equivalent

1. 2.

vyWR

vaDRV

vaWR

ya

yb

ya vyWR

vaDRV

vbWR

vbDRV

vaWR

Fig. 8. The coil compilation scheme

et
et

1

0

0

Increment

1

0

1

0

&

Control

t

q

pt

&OR

in

q OR

B.

1

0

a

b

y

en

y

eno

Depends on
impelemnted operation

OR

A.

Fig. 9. The EDFG equivalents of timer TON (1) and

arithmetic blocks (2)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4480

instructions. The data processing is based on a default
register cr (current result) and immediate or direct
addressable argument. The result type is determined by
preceding operation and passed arguments. The unary load
operation assigns value of an argument (arg) to the cr, while
store operation transfers content of the cr register to
particular variable (var)

 Load:
Store:

=
=

cr arg
var cr

 (5)

The semantics of unary instructions (operators) that are logic
or arithmetic is defined by following formulae:

 op =cr cr arg (6)
Where op denotes operation described by the instruction. The
IL enables nesting of operations with use of parenthesis. The
sequence of instructions inside parenthesis is executed
according to described rules. Worked out cr value in nested
block is passed as an operation’s argument. Use of
parenthesis implies saving of the cr content before executing
the nested block of instructions.

5.1. Instruction List pre-processing

In opposite to considered previously LD the IL program
requires pre-processing before mapping to an EDFG. The
serially processed instructions with conditional (JMPC,
JMPCN) and unconditional branches is represented in the
form of the Instruction and Control Flow Graph (ICFG).

The ICFG is directed graph given by 0, ,=ICFG I E i where:

{ }0 1, ,...,= nI i i i is a set of nodes that represent instructions of

the program, { }0 1, ,...,= mE e e e is a set of directed edges. The
directed edge is given by an ordered pair of nodes

(),=i j ke i i . The node i0 is an initial instruction of the
program. The IL operators have been classified into subsets
of nodes with one and two exits. The nodes created from:
arithmetic, logic, comparison and unconditional jump
instructions are represented by single exit nodes while
conditional jumps create two exit nodes.

5.2. The EDFG generation process from ICFG

The control flow in the ICFG is conditional. According to (5)
and (6) the operation result is based on content of the cr
register. The EDFG construction process utilize conditional
assignment. The sequence of conditional jumps that leads to
particular node determines its execution condition. Each
conditional jump instruction modifies current execution
condition of the path. The binding of the EDFG with ICFG
edge is based on two variables (Fig. 10). The ecn variable

records a logic condition of execution. The ecr variable is
linked with current result. Both variables (ecn and ecr) point
to appropriate EDFG nodes or predefined constants. The
initial node i0 assumes that ecr variable is empty and the ecn
points to constant 1 (logic true). In order to meet formal
requirements the first instruction of properly formulated IL is
not allowed to access cr value.

The figure (Fig. 11) considers three basic sequences of ICFG.
The linear or unconditional sequence (A) transforms ecr and
ecn as follows:

 2 1

2 1

=
= 

ecn ecn
ecr ecr arg

 (7)

The conditional divergent sequence (B) creates two paths that
are selected depending on cr value

1

0

= ∧ =

= ∧ =
T C C T

F C C F

ecn ecr ecn ecr

ecn ecr ecn ecr
 (8)

The multiple path convergent sequence (C) selects ecr value
as a tree of conditional selectors while the ecn is a logic sum
of all merged ecni nodes:

1 1

1 2 3

1 2

: 1

: 1
...

: ... 1
...

− −

=


∧ == 

 ∧ ∧ ∧ =

= ∨ ∨ ∨

n n

n n n

n

n

ecr ecn

ecr ecn ecn
ecr

ecr ecn ecn ecn
ecn ecn ecn ecn

 (9)

In the generation process there is applied a logic optimization

in

in+1

ecr
ecn

ICFG EDFG

Fig. 10. The correspondence between ICFG and EDFG

ecn1
ecr1

ecnn
ecrn

ecnT
ecrT

ecnF
ecrF

ecnC
ecrC

C.B.

ecn1 ecr1

ecn2 ecr2

A.

ecrC=1 ecrC=0

Fig. 11. ICFG basic node sequences

OR

ecr2 1

0
ecr1

ecn2

ecrn 1

0

ecnn

ecrecn

ecnC &

ecrC

ecnT

ecrT1

ecnC &

ecrC

ecnF

ecrF0

1.A

ecr0 1

0

ecn0

vxWR

vxWR

ecri 1

0

ecni

vxWR

ecr0 1

0

ecn0

vxWR

ecn2

ecnn

ecn1

1.B

2.A 2.B

3.A 3.B

Fig. 12. The EDFG structures for assignment (1), conditional

jump (2) and multiple path merge (3).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4481

for created conditions. Logic minimization allows to simplify
condition expression (subtree) when conditional path are
merged. Minimization of conditional path also reduces
complexity of result selection, optimizing argument selector
structure. This approach allow to detect a dead code
fragments.

The EDFG representation of a value assignment and specific
implementation for respective ICFG sequences are shown on
the figure (Fig. 12). The item 1.A consider first value
assignment. The item 1.B shows result of multiple value
assignments to the vx variable. It should be pointed out that
ICFG analysis use recursive processing. When multiple logic
path are merged the analysis process returns to recently
processed branch node and selects opposite path. The general
assignment EDFG is further optimized by considering
assignment conditions (ecn). The logic optimization allows to
remove or reduce graph by removing nodes that logic
conditions are absorbed. The Fig. 12.2 shows EDFG
implementation of conditional node paths for true (A) and
false (B) conditions respectively. The EDFG is created
according to (8). Finally the Fig. 12.3 shows the method of
creating EDFG for multiple path merge node for condition
path (A) and current result (B) according to (9).

6. SEQUENTIAL FUNCTIONAL CHART SYNTHESIS

The SFC represents graphically sequential control processes.
It is derived from Petri Net concept and enables describing
control process with concurrency of actions (John and
Tiegelkamp 2010). There are proposed direct synthesis
models oriented for direct control flow implementation
(Bukowiec and Adamski 2012, Philippot and. Tajer 2010).
They are concentrated mainly on implementation of
the controller description and are restricted to logic
operations.

Developed by authors approach is oriented for creating
EDFG nodes with conformance of developed the single cycle
computation process (see 2.2). The ability of creating
common intermediate form allows to synthesize any mixture
of supported descriptions (LD, IL) used for describing actions
and conditions (IEC, 2007) in synthesized SFC.

The SFC is described by four 0 0, , , := ⊂SFC S T A SS S
where: S is a set of states, T is a set of transitions and A is a
set of actions. The S0 is a subset of states that are initially
activated. The transitions ∈t T that connect steps are
described by triple , , : , ,= ∈ ⊂ ⊂P S P St t TS S c S S S S where:
SP is a set of preceding steps, SS is a set of succeeding steps
and c is a logic condition that fires the transition. Each step s
contains a Boolean variable x that denotes its activity
according to the IEC61131-3 requirements. The s.x notation
refers to activity variable of the step s. Each step variable
creates independent FSM that consists of active and inactive
states. Considering entire set S the activity variables create
mutually bounded set of FSMs. The activity variable coding
is similar to the one-hot encoding of a FSM. This method is
well suited for the FPGA architecture (Czerwiński and Kania
2013). While compared with encodings proposed in

(Bukowiec and Adamski 2012) it offers highest performance
and lowest resource consumption.

The excitation function is created for each step (variable)
independently reducing analysis complexity. The activation
and deactivation of a step is determined by appropriate
functions that are assigned to s.xSET and s.xCLR variables of
formula:

 () ().= ∧ ∨ ∧SET CLRs x s x s x s x s x (10)

The step is activated provided any of preceding steps is active
and transition associated with this step is fulfilled. This can
be put down in form of logic sum of partial conditions:

 for :..
∈

= ⋅ ∈∑ SSET
t T

c t Sssp xs x (11)

If the transition is convergent than it is required that all
preceding steps belonging to transition must be active. This
creates a general activation statement:

 for :..
∈ ∈

 = ⋅ ∈∑ ∏ 
 

SET S
t T sp Sp

sp xs x c t s S (12)

The step is deactivated provided all steps that precede
transition are active and the transition condition is met:

 for :..
∈

 = ⋅ ∈∑ ∏ 
 

CLR P
t sp Sp

sp xs x c t s S (13)

The step activation and deactivation functions are represented
in a form of EDFG according to (12 and 13). Each step
activity variable is represented with basic structure given by
(10). The figure (Fig. 13) shows an exemplary SFC and
equivalent EDFG considering implementation of the step s2.x
activity variable.

The SFC defines set of actions that are described by other
languages. The action is triggered by reaching particular
steps. There has been developed methodology of bounding an

s2:x

&
3

1
s2:x

2

5

4

OR

&
s2

s1

c1

s1:x

s3

c2

c1 c2
1. 2.

Fig. 13. The SFC (1) and step s2 equivalent EDFG (2).

A. B.

S2.XA1.M

1
OR

A1.M

2
S1.X

&

OR
5

4

6

S3.X

S, R Control

s2

s1

s3

A1S

A1R

A1N

1

0
vxWR

vxRD

A1

Conditional assignment
Fig. 14. A SFC multiple attribute action triggering (A) and

equivalent EDFG structure (B).

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4482

action with triggering steps activity. The example presented
in figure (Fig. 14) shows the N, S, R actions implementation.
There has been considered a methodology of merging
different triggering conditions for the same actions. There are
applied experience gained from IL synthesis. The action
execution is conditional. Similarly to IL compilation there is
applied conditional assignment of output (see Fig. 12.1).

7. SUMMARY

The paper presents methodology of synthesizing the LD, IL
and SFC descriptions into common representation of the
EDFG. Presented approach allows for obtaining a description
coming from multiple languages that is mapped into
hardware structures. There is presented original
implementation of EDFG that utilize attributed edges and
specific nodes accommodated for hardware implementation.
The compilation process to EDFG representation allows to
obtain massively parallel description of control program. The
optimization of EDFG structures eliminates unused
statements and simplifies expressions containing constant
values. The EDFG also is used by developed synthesis
algorithms for performing operation mapping, scheduling and
finally generating a description in Verilog HDL
accommodated to FPGA architecture. Presented set of
synthesis and compilation algorithms belong to originally
developed the reconfigurable PLC synthesis toolbox capable
of synthesizing custom hardware implementation from LD,
IL and SFC. The compilation and synthesis tool is subject of
ongoing research and development (Milik 2012, Milik and
Hrynkiewicz 2012).

REFERENCES

Bolton W.(2009) Programmable Logic Controllers, Newens
Bukowiec A. Adamski M. (2012) Synthesis of Macro Petri

Nets into FPGA with Distributed Memories;
International Journal of Electronics and
Telecommunications, vol. 58, nr 4, March 2012, pp. 403-
410

Chmiel M., Hrynkiewicz E.(2010): Concurrent operation of
processors in the bit-byte CPU of a PLC. Control
Cybernetics. 2010 vol. 39 issue 2, pp. 559-579

Chmiel M., Hrynkiewicz E, Mocha J. Milik A.(2011):
Central processing units for PLC implementation in
Virtex-4 FPGA. 18th IFAC World Congress 2011, Milan,
Italy

Czerwiński R., Kania D. (2013) Finite state machine logic
synthesis for complex programmable logic devices.
Lecture Notes in Electrical Engineering, vol. 231,
Springer, 2013

Daoshan Du, Xiaodong Xu, Kazuo Yamazaki (2010) A study
on the generation of silicon-based hardware PLC by
means of the direct conversion of the ladder diagram to
circuit design language, The International Journal of
Advanced Manufacturing Technology, Springer London,
2010, vol. 49, issue 5, pp.615-626

Economakos C.; Economakos G. (2008) FPGA
implementation of PLC programs using automated high-
level synthesis tools; IEEE International Symposium on
Industrial Electronics, pp 1908 – 1913

Economakos C.; Economakos G. (2012). C-based PLC to
FPGA translation and implementation: The effects of
coding styles, 16th International Conference on System
Theory, Control and Computing, pp.1-6, 12-14 Oct. 2012

Falcione A., Krogh B. H. (1993). Design Recovery for Relay
Ladder Logic, IEEE Control Systems, vol.13, no.2,
pp.90-98, April 1993

Gajski D., N Dutt., Wu A., Lin S., (1994) High-Level
Synthesis Introduction to Chip and System Design,
Kluwer Academic Publishers

John K. H., Tiegelkamp M. (2010): IEC 61131-3:
Programming Industrial Automation Systems: Concepts
and Programming Languages, Requirements for
Programming Systems, Decision-Making Aids, Springer-
Verlag, Berlin Heidelberg

Ichikawa S., M. Akinaka, R. Kieda, H. Yamamoto, (2006)
Converting PLC instruction sequence into logic circuit:
A preliminary study, IEEE Inter. Symp. on Industrial
Electronics, vol.4, pp. 2930-2935, 9-13 July 2006

Ichikawa S, M. Akinaka, H. Hata, R. Ikeda, H. Yamamoto,
(2011) An FPGA implementation of hard-wired
sequence control system based on PLC software, IEEJ
Transactions on Electrical and Electronic Engineering,
Vol. 6, No. 4, pp. 367--375 (2011)

IEC (2007), IEC 61131-3 en:2003, Programmable controllers
- Part 3: Programming languages, 2007

Milik A., Hrynkiewicz E. (2012): Synthesis and
implementation of reconfigurable PLC, International
Journal of Electronics and Telecommunications, vol. 58,
nr 1, March 2012, pp. 85-94

Milik, A. (2012). On Mapping of DSP48 Units for Arithmetic
Operation in Reconfigurable Logic Controllers, Proc. of
IFAC Workshop on Programmable Devices and
Embedded Systems, Brno, 2012.

Milik, A., (2006) High Level Synthesis – Reconfigurable
Hardware Implementation of Programmable Logic
Controller, Proc. of IFAC Workshop on Programmable
Devices and Embedded Systems, Brno.

Minato S. I. (1995). Binary Decision Diagrams and
Applications for VLSI CAD, Kluwer Academic Publisher

Mocha J., D. Kania (2012) Hardware Implementation of a
control program in FPGA structures, Electrical Review
Dec. 2012 vol. 88 issue 12a, pp. 95-100

Philippot A., A. Tajer (2010) From GRAFCET to Equivalent
Graph for synthesis control of discrete events systems,
18th Mediterranean Conference on Control &
Automation (MED), 2010 pp.683-688

Welch, J.T.; Carletta, J. (2000) A direct mapping FPGA
architecture for industrial process control applications
International Conference on Computer Design pp.595-
598, 2000 doi: 10.1109/ICCD.2000.878352

Yadong L., Kazuo Y., Makoto F., Masahiko M. (2005)
Model-driven programmable logic controller design and
FPGA-based hardware implementation, ASME
DETC2005, 2005, pp. 81-88

Ziębiński A., Cupek R., Sroka W. (2011) Application in Java
language realizing the function parser of pseudocode
describing structure of a specialized coprocessor of PLC
in VHDL, Measurement Automation and Monitoring
2011 vol. 57 nr 8, pp. 845-847

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4483

