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Abstract: The paper presents developed synthesis methodology of a hardware implemented 
reconfigurable logic controller from multiple languages incorporating ladder diagrams, instruction list 
and sequential functional chart according to IEC61131-3. It is focused on the originally developed a high 
performance computation model based on properly defined variable access. The method address 
synthesis process of logic and arithmetic operations. Presented approach is able to synthesize not only 
basic constructs of languages but also complex modules like timers and counters. The paper acquaint 
with the compilation of considered languages and complex modules into intermediate form suitable for 
logic synthesis process according to developed analysis, translation and mapping methods. The data flow 
graph has been chosen for intermediate representation of a program. An original enhancement of the 
DFG with attributed edges and specific nodes has been described. It allows for efficient representation 
and processing of logic and arithmetic formulas. The set of compilation algorithms that preserve effects 
of serial execution  order and offer obtaining massively parallel processing unit are presented. 
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1. INTRODUCTION 

The general concept of a PLC is based on the 
microprogrammable circuits. It consists of two inseparable 
parts that constitutes its operation. Those parts are hardware 
and software. The hardware part is able to execute a given set 
of logic and arithmetic instructions. The software is an 
ordered sequence of instructions that allows solving problem 
mapped to a instruction set of particular hardware platform. 
This approach is very simple and effective in case of 
programming and/or modifying program that can be also 
called a control algorithm (Bolton 2009, Chmiel and 
Hrynkiewicz 2010, John and Tigelkamp 2010). The serial 
execution of the program strongly limits performance of a 
PLC. This can be solved by replacing serial instruction 
execution with massively parallel implementation in 
reconfigurable hardware architecture of FPGAs. 

1.1. Previous works 

The implementation of the control algorithm with use of 
reprogrammable and reconfigurable logic has been proposed 
by different research groups (Bukowiec and Adamski 2012, 
Chmiel et.al. 2011, Du et.al. 2010, Economakos and 
Economakos 2008 and 2012, Ichikawa et.al. 2011, Milik and 
Hrynkiewicz 2012, Milik 2006, Mocha and Kania 2012, 
Welch 1997, Yadong et.al. 2005, Ziębiński et al. 2011). 
There have been proposed a custom FPGA architecture for 
direct mapping of a LD logic (Welch and Careleta 2000). In 
opposite to software solutions hardware offers intrinsic 
parallel execution of the tasks. It radically reduces the 

response time and offers better performance than software 
solutions. The significant limitation in wide use of 
reprogrammable digital circuits is their high design 
complexity and an experience required during the 
implementation processes. An early synthesis and 
architecture concepts are given in (Milik 2006). The 
sequential approach to the synthesis of control algorithm has 
been proposed by (Du et.al. 2010). There has been proposed 
method based on extended analysis of variables 
dependencies. They were limited to Boolean operations 
mapping, while contemporary PLCs combine logic and 
arithmetic operations to handle complex control tasks. The 
approach of translating the IL into C language that is further 
synthesized to hardware has been proposed by (Economakos 
and Economakos 2008 and 2012). The papers evaluates 
influence of coding style to obtained results. Evaluating 
entire space of solutions with different coding styles is 
inefficient and does not guarantee obtaining required neither 
optimal results. There is required a systematic method that 
will create required solution directly from a programming 
language. 

2. INTRODUCTION TO CONTROL PROGRAM 
SYNTHESIS 

The control program for a PLC can be described with reach 
set of languages (IEC, 2007) that cooperate with each other 
and are supposed to produce coherent control program. The 
Ladder Diagram (LD) has been inherited from relay control 
systems. Contacts and coils represent logic dependencies 
between signals and function blocks. The other commonly 
used method is the Instruction List (IL) language. This 
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language can be compared to assembly language of PLCs. 
The third language considered in this paper is the SFC that is 
used for graphical representation of concurrent control 
processes. 

2.1. Existing Synthesis Models for Ladder Diagram 

The LD diagram is described by two sets of Boolean 
variables I and Q. The set I consists of variables associated 
with inputs while the set Q consists of variables associated 
with outputs and internal markers. The logic functions are 
defined by rungs and create ordered sequence of Boolean 
expressions: 

 ( ), , 1...i i I Q i rq f= =  (1) 

where i is the rung index. This approach has been used by 
implementation proposed by (Welch and Carleta 2000, 
Ichikawa et.al. 2011, Yadong et al. 2005)  

An exemplary LD network and its implementation is 
presented in the figure (Fig. 1). According to (1) the 
controller response time is proportional to the number of 
rungs in a program. In comparison to the programmatic 
approach this model reduces a computation time of logic 
functions. Distributing calculation process for each rung (q 
variable) introduces redundant cycles. In considered diagram 
(Fig. 1) variables q1 and q3 do not depend on other q 
variables. The q1 variable can be evaluated parallel with the 
q3 in the first cycle (t1).  

In order to reduce the number of calculation cycles 
dependencies between qi variables have to be determined. In 
the paper (Falcione and Krogh 1993) have introduced an idea 
of using dependencies and simultaneities graphs for creating 
the SFC from given LD. This idea has been employed by (Du 
et al. 2010) for creating optimized hardware structure. 
Similar idea has been employed by (Mocha and Kania 2012) 
for control algorithm partitioning. During analysis of the LD 
a dependencies graph is created. This is a directed graph that 
consists of nodes representing all qi variables. The node vi 
(representing variable qi) is connected by directed edge with 
node vj only if function fi depends on variable qj and i > j: 

 ( ) ( ),j i i j constf qv v ↔ ≠  (2) 

Number of elementary cycles based on dependencies analysis 
is equal to: 

 max 1T p= +  (3) 

where pmax is the longest path in the dependencies graph. It 
should be noted that the path length depends on components 
placement on a diagram. 

2.2. The Ladder Diagram High Performance Synthesis Model 

The LD can be considered as a sequence of operations that 
are processed. Let assume that variables associated with 
inputs are updated before the start of calculation process and 
remain constant during it. Let introduce the set of variables D 
that are assigned with value of processed expressions. Value 
of the variable di is assigned to variable qi at the end of 
calculation cycle (qi = di). This approach allows to 
distinguish between two values that are calculated in present 
cycle (di) and in previous cycle (qi). The equation (4) 
considered for m-th rung can be rewritten in following form: 

 
( )0 1, ,..., , ,...,m mm m n

mm

If q qd d d
q d

−=

=
 (4) 

Using proposed substitution of q variables allows to 
propagate calculation results through all functions bypassing 
registers (Fig. 2). The current value of control process is 
updated by single clock pulse after calculating all di values. 
In presented form the calculation process is fully parallel and 
consists of a single cycle that transfers values from 
d variables to respective q variables. 

3. INTERMEDIATE REPRESENTATION  
OF CONTROL PROGRAM 

For control program synthesis purposes it is required to 
develop an intermediate representation. that is suitable for 
high level synthesis process. It should be able to represent 
logic and arithmetic operations performed by PLCs. 

3.1. The Enhanced DFG with attributed edges 

For purpose of recording PLC programs authors have 
developed a form of Enhanced Data Flow Graph (EDFG) 
with attributed edges. This has been inspired by concept of 
the DFG (Gajski et al. 1994) and attributed edges used in 
BDD introduced by (Minato, 1995) and other functional 
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Fig. 1. The LD network (A) and its hardware equivalent (B). 
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Fig. 2. The LD network (A) and its hardware equivalent 
obtained with developed synthesis method(B) 
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improvements. The attributed edge in the DFG implements 
unary operations like logic inversion or arithmetic 
complement. The other implemented extension is a multiple 
argument node for commutative operations. There has also 
been introduced node for conditional argument selection. 
Presented modifications allow for efficient constructing and 
handling of data flow graphs. 

The Enhanced Data Flow Graph (EDFG) is given by 
,G V E=  where: V is a set of nodes representing 

elementary operations and E is a set of directed edges with 
attributes. The directed edge e is described by a triple 

, ,SRC DSTe av v= where: vSRC is a predeceasing node and vDST 
is a successor node of the directed edge. The a is an attribute 
of the edge chosen from the set A of allowed attributes. 

The EDFG allows to simplify representation and algorithmic 
handling of logic and arithmetic operations. An equivalent 

DFG and EDFG to the Boolean formulae y a b c d e= ⋅ ⋅ + ⋅  
are presented in the figure (Fig. 3). There have been 
considered two cases: a standard approach (A) and with use 
of attribute edges (B and C). Attributed edges not only reduce 
number of nodes in the diagram but also allow to simplify 
logic operation transformations. Introducing multiple 
argument nodes for commutative operations further reduces 
the expression tree. The final and simplified graph is shown 

in (C). The EDFG allows simplifying logic expression 
efficiently at early stage of synthesis process. For further 
minimization purposes Quine-McCluskey, Espresso or BDD 
are used. 

Similar flexibility is achieved for graphs representing 
arithmetic operations. The subtraction has been replaced by 
use of the complement value attribute. It reduces the set of 
arithmetic nodes to: addition, multiplication and division. 
The figure (Fig. 4) compares use of attributed edges for 
arithmetic operations. Implementation of an expression: 
y a b c d e= + − + −  using a standard approach is presented in 

Fig. 4.A. Similar result is achieved by use of attributed edges 
(Fig. 4.B). The only difference is use of the addition node in 
both cases. Finally the chain of nodes is merged and create a 
multiple arguments node (Fig. 4.C). 

3.2. Variables access model 

Variables are formally declared according to IEC61131-3 
requirements. For the purpose of synthesis process the 
variables set is divided into three subsets based on signal 
association. There are distinguished variables associated 
with: input signals, output signals and internal markers. 
A variable associated with an input signal is allowed to be 
read while value assignment is prohibited. A variable 
associated with output or marker is allowed for read and 
write access. A variable associated with the markers space 
can be optimized along with nodes that lost sink if only write 
access is performed to it. A variables associated with output 
signal or marker is not allowed to be read while no value 
assignment has been made to it. The variable value access 
requires proper implementation that assures sequential access 
according to developed synthesis model (see 2.2).  

Let the x is a variable that value is going to be read by node v, 
vxWR is a value assignment node to the x variable, vxDRV is the 
variable x value source node. The vxDRV is connected with an 
edge with vxWR. The vxRD is a value reading node of the x 
variable. If the variable x has not been assigned in current 
cycle than the vxWR node does not exist. In order to read a 
value of the x variable the vxRD node is created. A value of the 
x variable comes from the previous cycle or is an initial value 
(Fig. 5.1). If the value has been assigned to the variable x in 
current cycle than the vxWR node exists and is linked with a 
vxDRV node. A value of the x variable is obtained from the 
vxDRV node (Fig. 5.2). Described algorithm enables use of 
temporary variables with multiple assignments. It connects 
the v node with most recent vxDRV node. 
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Fig. 3. Comparison of the general DFG (A) and the EDFG 
with attributed edges (B) and optimized EDFG (C) 
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Fig. 4. Comparison of the general DFG (A) and the DFG 
with attributed edges (B and C) 
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4. LADDER DIAGRAM SYNTHESIS METHODOLOGY 

The compilation process delivers basic items of a language  
that are synthesized into intermediate form of the EDFG. The 
LD is a hybrid of logic control constructed with use of 
switches, wires, coils and a data flow part described with use 
of function blocks. In opposite to real circuit the LD is 
analyzed sequentially with use of the row based concept (IEC 
2007, John and Tigelkamp 2010).  

4.1. Ladder Diagram Logic Components Synthesis 

A node merges power flow from several sources. The 
synthesis process creates automatic variable for each node 
that belongs to the internal signals set. The LD node is 
allowed to be driven by multiple sources producing a logic 
sum of connected signals. 

Let x is a variable associated with a schematic node 
(junction), vxWR is a value assignment EDFG node to the x 
variable, vCS is the EDFG node that is a new driver of the x 
variable (cs - current value source), vPS is the node that 
currently drives the x variable (ps - previous value source). If 
a value is not assigned to the x variable then the vxWR node is 
created and connected with the vCS node (Fig. 6.1). If the x 
variable is assigned a value through the vxWR node than vOR 
node is created. Both the vPS and vCS nodes are connected to 
vOR. Previous connection from vPS to vxWR is removed (Fig. 
6.2). The node assignment operation can be repeated for 
multiple driving sources.  

A switch is a component creating the logic AND operation 
between input signal and a driving signal. The EDFG 
equivalent of the switch is presented in the figure (Fig. 7).  

Let the x is a variable associated with a signal driving the 
switch, a is a variable controlling the switch and y is a 
variable associated with an output signal. The vAND node is 
created to represent a switch. Both variables x and a are read 
with use of variable access algorithm. The attribute of the 
edge is set according to the switch type (Fig. 7 case A or B) 

The vAND operation result is assigned to the y variable. 
according to the node connecting algorithm. 

A coil assigns the power flow to the variable associated with 
a signal. Following algorithm is used for obtaining DFG from 
a coil item. This algorithm is adopted to cooperate with 
remaining compilation algorithms, especially with variable 
value access. 

Let the a is a variable associated with driving signal, the 
vaDRV is the driving node of the variable a, y is the variable 
associated with the signal driven by considered coil. The 
variable a value is read with use of variable access algorithm 
that returns the vaDRV node. In opposite to a LD schematic 
node, multiple assignment to the same Boolean variable 
overwrites it value. If the y variable has not been assigned 
than the vyWR node is created and. The vaDRV node is linked to 
vyWR node (Fig. 8.1). If a value is already assigned to the y 
variable then the vyWR driving node is linked to a recent 
driving node (vbDRV →vaDRV ) (Fig. 8.2).  

4.2. The Ladder Diagram Complex Blocks Synthesis 

The LD uses functional blocks to implement time 
dependencies, counters, arithmetic calculations and other 
complex functions (e.g. PID). Each block is replaced with its 
EDFG functional equivalent. The equivalent sub EDFG is 
connected between source and sink nodes with use of 
described value access and assign algorithms. The figure 
(Fig. 9) shows implementation of TON timer (A) and basic 
set of arithmetic operations (B). Both blocks deliver logic and 
numeric results. There are used two different value 
assignment procedures. For logic variables is used the 
algorithm described for schematic nodes while for numeric 
variables is used the assignment algorithm described for coils 

5. INSTRUCTION LIST SYNTHESIS ALGORITHM 

The Instruction List (IL) is a low level programming 
language. The processing concept is derived from 
microprogrammable architecture of early PLC constructs. 
According to the IEC61131-3 (IEC, 2007 chapter 3.2) an IL 
program consists from variables declaration and sequence of 
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instructions. The data processing is based on a default 
register cr (current result) and immediate or direct 
addressable argument. The result type is determined by 
preceding operation and passed arguments. The unary load 
operation assigns value of an argument (arg) to the cr, while 
store operation transfers content of the cr register to 
particular variable (var) 

 Load:
Store:

=
=

cr arg
var cr

 (5) 

The semantics of unary instructions (operators) that are logic 
or arithmetic is defined by following formulae: 

  op =cr cr arg  (6) 
Where op denotes operation described by the instruction. The 
IL enables nesting of operations with use of parenthesis. The 
sequence of instructions inside parenthesis is executed 
according to described rules. Worked out cr value in nested 
block is passed as an operation’s argument. Use of 
parenthesis implies saving of the cr content before executing 
the nested block of instructions. 

5.1. Instruction List pre-processing 

In opposite to considered previously LD the IL program 
requires pre-processing before mapping to an EDFG. The 
serially processed instructions with conditional (JMPC, 
JMPCN) and unconditional branches is represented in the 
form of the Instruction and Control Flow Graph (ICFG). 

The ICFG is directed graph given by 0, ,=ICFG I E i where: 

{ }0 1, ,...,= nI i i i is a set of nodes that represent instructions of 

the program, { }0 1, ,...,= mE e e e  is a set of directed edges. The 
directed edge is given by an ordered pair of nodes 

( ),=i j ke i i . The node i0 is an initial instruction of the 
program. The IL operators have been classified into subsets 
of nodes with one and two exits. The nodes created from: 
arithmetic, logic, comparison and unconditional jump 
instructions are represented by single exit nodes while 
conditional jumps create two exit nodes. 

5.2. The EDFG generation process from ICFG 

The control flow in the ICFG is conditional. According to (5) 
and (6) the operation result is based on content of the cr 
register. The EDFG construction process utilize conditional 
assignment. The sequence of conditional jumps that leads to 
particular node determines its execution condition. Each 
conditional jump instruction modifies current execution 
condition of the path. The binding of the EDFG with ICFG 
edge is based on two variables (Fig. 10). The ecn variable 

records a logic condition of execution. The ecr variable is 
linked with current result. Both variables (ecn and ecr) point 
to appropriate EDFG nodes or predefined constants. The 
initial node i0 assumes that ecr variable is empty and the ecn 
points to constant 1 (logic true). In order to meet formal 
requirements the first instruction of properly formulated IL is 
not allowed to access cr value.  

The figure (Fig. 11) considers three basic sequences of ICFG. 
The linear or unconditional sequence (A) transforms ecr and 
ecn as follows: 

 2 1

2 1

=
= 

ecn ecn
ecr ecr arg

 (7) 

The conditional divergent sequence (B) creates two paths that 
are selected depending on cr value 

 
1

0

= ∧ =

= ∧ =
T C C T

F C C F

ecn ecr ecn ecr

ecn ecr ecn ecr
 (8) 

The multiple path convergent sequence (C) selects ecr value 
as a tree of conditional selectors while the ecn is a logic sum 
of all merged ecni nodes: 
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In the generation process there is applied a logic optimization 
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Fig. 10. The correspondence between ICFG and EDFG 
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Fig. 11. ICFG basic node sequences 
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Fig. 12. The EDFG structures for assignment (1), conditional 

jump (2) and multiple path merge (3). 
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for created conditions. Logic minimization allows to simplify 
condition expression (subtree) when conditional path are 
merged. Minimization of conditional path also reduces 
complexity of result selection, optimizing argument selector 
structure. This approach allow to detect a dead code 
fragments. 

The EDFG representation of a value assignment and specific 
implementation for respective ICFG sequences are shown on 
the figure (Fig. 12). The item 1.A consider first value 
assignment. The item 1.B shows result of multiple value 
assignments to the vx variable. It should be pointed out that 
ICFG analysis use recursive processing. When multiple logic 
path are merged the analysis process returns to recently 
processed branch node and selects opposite path. The general 
assignment EDFG is further optimized by considering 
assignment conditions (ecn). The logic optimization allows to 
remove or reduce graph by removing nodes that logic 
conditions are absorbed. The Fig. 12.2 shows EDFG 
implementation of conditional node paths for true (A) and 
false (B) conditions respectively. The EDFG is created 
according to (8). Finally the Fig. 12.3 shows the method of 
creating EDFG for multiple path merge node for condition 
path (A) and current result (B) according to (9). 

6. SEQUENTIAL FUNCTIONAL CHART SYNTHESIS 

The SFC represents graphically sequential control processes. 
It is derived from Petri Net concept and enables describing 
control process with concurrency of actions (John and 
Tiegelkamp 2010). There are proposed direct synthesis 
models oriented for direct control flow implementation 
(Bukowiec and Adamski 2012, Philippot and. Tajer 2010). 
They are concentrated mainly on implementation of 
the controller description and are restricted to logic 
operations.  

Developed by authors approach is oriented for creating 
EDFG nodes with conformance of developed the single cycle 
computation process (see 2.2). The ability of creating 
common intermediate form allows to synthesize any mixture 
of supported descriptions (LD, IL) used for describing actions 
and conditions (IEC, 2007) in synthesized SFC. 

The SFC is described by four 0 0, , , := ⊂SFC S T A SS S  
where: S is a set of states, T is a set of transitions and A is a 
set of actions. The S0 is a subset of states that are initially 
activated. The transitions ∈t T  that connect steps are 
described by triple , , : , ,= ∈ ⊂ ⊂P S P St t TS S c S S S S where: 
SP is a set of preceding steps, SS is a set of succeeding steps 
and c is a logic condition that fires the transition. Each step s 
contains a Boolean variable x that denotes its activity 
according to the IEC61131-3 requirements. The s.x notation 
refers to activity variable of the step s. Each step variable 
creates independent FSM that consists of active and inactive 
states. Considering entire set S the activity variables create 
mutually bounded set of FSMs. The activity variable coding 
is similar to the one-hot encoding of a FSM. This method is 
well suited for the FPGA architecture (Czerwiński and Kania 
2013). While compared with encodings proposed in 

(Bukowiec and Adamski 2012) it offers highest performance 
and lowest resource consumption.  

The excitation function is created for each step (variable) 
independently reducing analysis complexity. The activation 
and deactivation of a step is determined by appropriate 
functions that are assigned to s.xSET and s.xCLR variables of 
formula: 

 ( ) ( ). . . . .= ∧ ∨ ∧SET CLRs x s x s x s x s x  (10) 

The step is activated provided any of preceding steps is active 
and transition associated with this step is fulfilled. This can 
be put down in form of logic sum of partial conditions: 

  for :..
∈

= ⋅ ∈∑ SSET
t T

c t Sssp xs x  (11) 

If the transition is convergent than it is required that all 
preceding steps belonging to transition must be active. This 
creates a general activation statement: 

  for :..
∈ ∈

 = ⋅ ∈∑ ∏ 
 

SET S
t T sp Sp

sp xs x c t s S  (12) 

The step is deactivated provided all steps that precede 
transition are active and the transition condition is met: 

  for :..
∈

 = ⋅ ∈∑ ∏ 
 

CLR P
t sp Sp

sp xs x c t s S  (13) 

The step activation and deactivation functions are represented 
in a form of EDFG according to (12 and 13). Each step 
activity variable is represented with basic structure given by 
(10). The figure (Fig. 13) shows an exemplary SFC and 
equivalent EDFG considering implementation of the step s2.x 
activity variable. 

The SFC defines set of actions that are described by other 
languages. The action is triggered by reaching particular 
steps. There has been developed methodology of bounding an 
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Fig. 13. The SFC (1) and step s2 equivalent EDFG (2). 
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equivalent EDFG structure (B). 
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action with triggering steps activity. The example presented 
in figure (Fig. 14) shows the N, S, R actions implementation. 
There has been considered a methodology of merging 
different triggering conditions for the same actions. There are 
applied experience gained from IL synthesis. The action 
execution is conditional. Similarly to IL compilation there is 
applied conditional assignment of output (see Fig. 12.1).  

7. SUMMARY 

The paper presents methodology of synthesizing the LD, IL 
and SFC descriptions into common representation of the 
EDFG. Presented approach allows for obtaining a description 
coming from multiple languages that is mapped into 
hardware structures. There is presented original 
implementation of EDFG that utilize attributed edges and 
specific nodes accommodated for hardware implementation. 
The compilation process to EDFG representation allows to 
obtain massively parallel description of control program. The 
optimization of EDFG structures eliminates unused 
statements and simplifies expressions containing constant 
values. The EDFG also is used by developed synthesis 
algorithms for performing operation mapping, scheduling and 
finally generating a description in Verilog HDL 
accommodated to FPGA architecture. Presented set of 
synthesis and compilation algorithms belong to originally 
developed the reconfigurable PLC synthesis toolbox capable 
of synthesizing custom hardware implementation from LD, 
IL and SFC. The compilation and synthesis tool is subject of 
ongoing research and development (Milik 2012, Milik and 
Hrynkiewicz 2012). 
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