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Abstract:
This paper investigates the application of an extremum-seeking scheme to fine-tune the
parameters of a “local” urban traffic signal control strategy to improve its performance. A set
of conditions that the local traffic controller has to satisfy for stability of the closed-loop system
are introduced. Employing a self-organised traffic light scheme as the local controller, it is shown
that this strategy satisfies the aforementioned conditions, and its optimality is dependent on
the selection of a certain parameter. It is then demonstrated that, by employing an ES scheme,
it is possible to always regulate this parameter close to its optimum given any traffic conditions.

Keywords: Extremum-seeking, adaptive control, traffic control.

1. INTRODUCTION

Extremum-seeking (ES) is a non-model based steady-state
optimisation scheme for dynamical plants. An ES con-
troller regulates the input of a dynamical plant to the
value that optimises the steady-state output of the plant,
without requiring knowledge of the underlying dynamics.
In order to achieve this, ES requires several components,
namely the dither signals, gradient estimator, and the op-
timiser. There are many ways to realise these components,
the simplest of which is in Tan et al. [2006].

The components of a typical ES controller are separated
into three time-scales, with the plant being the fastest,
the dither and gradient estimator acting on the medium
time-scale, and the optimiser being the slowest. In order
to achieve the desired behaviour of ES, the input to
the plant is perturbed by a small dither signal. This
perturbation enables the gradient estimator to estimate
the local slope of the steady-state input-output map. The
optimiser, typically a gradient descent scheme, acts based
on the estimated slope.

A variety of different ES schemes (Spall [1992], Krstić
and Wang [2000], Chichka et al. [2006], Srinivasan [2007],
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Moase et al. [2010], Liu and Krstić [2010]) provide practical
benefits compared to the simple ES scheme of Tan et al.
[2006], although the working concepts are essentially the
same. One of these variants uses a Luenberger observer as
the gradient estimator (Banaszuk et al. [2004], Moase and
Manzie [2012]). The observer-based scheme has the advan-
tage of being able to extract the in-phase and quadrature
components of the dither, rather than just the dither
itself. Thus, the gradient of the steady-state map can be
estimated without relying on the average behaviour of
the gradient estimator. Hence, this study focuses on the
observer-based ES scheme.

In this paper, an application of ES for urban traffic signal
control is presented. The difficulties of choosing an optimal
urban traffic signal setting are twofold: the high number of
control inputs and the hard-to-model dynamics. Firstly, a
traffic network consists of a large number of intersections,
each with several control variables. When considering the
traffic of large cities, the number of variables can reach into
the thousands. Thus, finding an optimal signal setting is a
very difficult task. Secondly, the dynamics of traffic are
hard to model or predict. Although a simplified model
based on average dynamics is sometimes used (Diakaki
et al. [2002], Lin et al. [2012]), one cannot guarantee that
the control strategy is optimal. In this scenario, the use of
an extremum-seeking scheme might be beneficial since it
has the potential to seek the optimum without requiring
a priori knowledge of the system.

However, as mentioned previously, an ES scheme is a
steady-state optimisation scheme and acts at a slower
time-scale to the plant. Thus, it does not handle transient
response very well. It is then unreasonable to expect
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the ES controller to directly optimise the traffic signals.
It is proposed that a “local” traffic signal controller is
employed, which is then optimised by using an ES scheme.
Although Krstić and Wang [2000] and Killingsworth and
Krstić [2005] have presented similar concepts, this paper
extends the class of systems to address plants with noise
applied to the states.

There have been many traffic signal control strategies
developed throughout the last few decades. A traffic
signal control strategy can either be open-loop (Allsop
[1976], Gartner et al. [1991], Robertson [1969], Alvarez and
Poznyak [2010]) or closed-loop (Lowrie [1982], Boillot et al.
[1992], Diakaki et al. [2002], Tettamanti and Varga [2010],
Lin et al. [2012]), with the latter gaining more popularity
in the last decade.

One example of a closed-loop traffic signal control is
self-organising traffic lights (SOTL). SOTL is a control
strategy which utilises a set of rules to be employed
by each intersection independently. Although there are
several variants (Nakatsuji and Kaku [1991], Chiu and
Chand [1993], Lammer and Helbing [2008]), one variant
was first presented by Gershenson [2005] for Manhattan-
like lattices, which only consists of two signal phases.
This was recently generalised by de Gier et al. [2011],
Gershenson and Rosenblueth [2012] and Zhang et al.
[2013] to handle multiple signal phases, and to consider
the traffic condition downstream of the intersection. One
interesting observation by de Gier et al. [2011] is that the
performance of the SOTL scheme is dependent upon one of
its parameters: the “threshold” value for each intersection.
The mean travel time through a SOTL controlled network
was shown to exhibit dependence on the threshold value,
such that there is an optimal threshold value which yields
the minimum mean travel time. However, the relationship
between these two quantities is not explicitly known, and
it can vary for different traffic conditions. Thus, manually
selecting the threshold value will potentially result in non-
optimal performance.

The aim of this paper is to study the use of extremum-
seeking schemes in optimising the selection of the threshold
used in SOTL for urban traffic signal control. The main
contributions of this paper are: providing conditions under
which an ES scheme can be applied to adaptation of a local
control with noisy plants; outlining a preliminary stability
result; and performing simulations which show the perfor-
mance of the ES scheme in various traffic scenarios.

2. THEORETICAL RESULT

Consider a nonlinear system,

ẋ = f(x, θ, ξ(t)), (1a)

y = g(x), (1b)

where x ∈ X ⊂ RNx is the plant’s state; θ ∈ ΘNθ is the
control input to the plant, where Θ ⊆ R; y ∈ R is the
plant’s output; ξ(t) ∈ Vf ⊂ RNξ is a disturbance term;
and g : RNx → R is a continuous function.

The plant is locally controlled by,

κ̇ = l(x, κ, u), (2a)

θ = m(x, κ, u), (2b)

where κ ∈ RNκ is the controller’s state and u ∈
[umin, umax] ⊆ R is the controller’s parameter.

Assumption 1. The local controller (2) are designed such
that there exist a steady-state input-output (IO) map J :
R → R, a disturbance measuring function σ : Vf → R≥0,
and βf ∈ KL such that given a constant u, the trajectory
of the plant satisfies

|g(x(t))− J(u)| ≤ max{βf (|g(x(0))− J(u)|, t), ‖σ(ξ)‖∞}.
(3)

Assumption 2. There exist u∗ ∈ [umin, umax] and K > 0
such that: J ′(u∗ + ũ) is continuous and bounded for all
ũ ∈ [umin − u∗, umax − u∗]; J ′(u∗ + ũ)/ũ ≤ K for all
ũ ∈ [umin − u∗, umax − u∗]− {0}.
Remark 1. These two assumptions state that the local
controller stabilises the plant, and its steady-state perfor-
mance is governed by a parameter u. Thus, the aim of the
extremum-seeking is to tune this parameter u such that
the performance is optimised.

Assumption 3. For any ξ ∈ Vf , σ(ξ) is bounded.

C ′ (ωt− φ)a sin (ωt)

ū

u

y

∫ ∫

A

L

kω ω

−C

x̂

θ x

ξ(t)
Plant

Local
controller

Fig. 1. Observer-based ES scheme applied to a plant with
local control.

Applying the considered ES scheme results in the following
full closed-loop system:

ẋ = f(x,m(x, κ, ū+ a sin(ωt)), ξ(t)), (4a)

κ̇ = l(x, κ, ū+ a sin(ωt)), (4b)

˙̂x = ωAx̂+ ωL(g(x)− Cx̂), (4c)

˙̄u = kωC ′(ωt− φ)x̂. (4d)

where L ∈ R3 is the observer gain, C = [1 1 0], C ′(·) =
[0 sin(·) cos(·)], and

A =

[
0 0 0
0 0 1
0 −1 0

]
. (5)

Assumption 4. L is chosen such that (A−LC) is Hurwitz.

In addition, the following continuity assumption on the
plant and local control dynamics is required. For nota-
tional compactness, define: xs := (x̂, ū), xf := (x, κ) and[

f(x,m(x, κ, ū), ξ)
l(x, κ, ū)

]
=: Ff (xf , xs, ξ). (6)

Assumption 5. There exists L > 0, such that for each
ρ > 0, there exists ω∗ > 0 such that for all ξ ∈ Vf ,
xs,1, xs,2 ∈ (R3, [umin, umax]), xf,1, xf,2 ∈ (X,RNκ), ω ∈
(0, ω∗], if ‖xs,1 − xs,2‖ ≤ ω∗, then it implies

‖Ff (z1, ξ)− Ff (z2, ξ)‖ ≤ L‖xf,1 − xf,2‖+ ρ (7)

Theorem 1. Under Assumptions 1–5, for any δ > 0 and
ru ∈ max{umax − u∗, u∗ − umin}, there exist (a∗, k∗, c) ∈
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R3
>0 such that for all (a, k) ∈ (0, a∗]× (0, k∗], there exists

ω∗ > 0 such that for all ω ∈ (0, ω∗], the trajectory
of ū(t) with any initial conditions ū(0) ∈ {ū : ū ∈
(umin, umax), |ū − u∗| ≤ ru} will asymptotically converge
to a (2π/ω)-periodic solution satisfying

lim sup
τ→∞

|u(t)− u∗| ≤ c a+ δ. (8)

Proof. Only a sketch of the proof is provided due to space
limitation. The proof follows two steps. First, the stability
of the ES scheme acting on the steady-state map J(u) is
proven using the same approach to [Moase and Manzie,
2012, Section III.A]. Then, the stability of the full closed-
loop system follows from [Teel et al., 2003, Theorem 1],
which enables the ES to act upon plants with noise.

3. SELF-ORGANISING TRAFFIC LIGHT

3.1 SOTL overview

At an intersection, all of the possible traffic flows are
grouped into several “phases”. The flows that belong to
the same phase will get green lights simultaneously. SOTL
controls the traffic lights at each intersection by deciding
which phase is the “busiest”, and switching the green light
accordingly.

The “busyness” of a phase is measured by a function
referred to as the “threshold function”. Let P denote an
arbitrary phase and κP(t) denote the threshold function
of P at time t. Note that notation used for the threshold
function is the same as the one used for controller’s state,
κ, because the threshold function can be considered as the
states of the controller SOTL. This will be explained in
more detail later.

Then, P is a candidate for the next active phase when
its threshold function κP(t) exceeds a threshold value,
κP(t) > u. The threshold function of a phase depends
on both the amount of traffic demand and how long it has
been idle. Specifically,

κP(t) = q(dP(t), τP(t)), (9)

where dP(t) is the total number of vehicles waiting for
phase P to be active; τP(t) is the idle time of phase P;
and q is the threshold function to be designed.

As stated previously, this work attempts to optimise the
selection of the SOTL threshold, u, by using ES. A more
detailed description of SOTL is outlined by Zhang et al.
[2013], including the threshold function used.

3.2 Performance metric

Although typically the performance metric in traffic con-
trol is vehicle flow rate, in steady-state the flow would be
equal to the incoming traffic flow into the network (vehicle
conservation) which is fixed. Thus, it is better to minimise
the travel time instead, which is approximately equivalent
to maximising speed. Specifically, let vi(t) be the speed
of vehicle i at time t and H(t) be the set of the vehicles
that are in the network at time t. Then, with Ta = 1500
seconds,

y(t) =
1

Ta

t∫

t−Ta+1

∑

i∈H(t)

vi(t). (10)

In practice, measuring y(t) in real time might be impos-
sible. However, it is possible to use another performance
metric, which might be equivalent to the proposed met-
ric. In fact, any performance metric can be used as long
as, coupled with the local controller (2), it satisfies the
outlined assumptions.

4. SIMULATIONS

4.1 Traffic Network

The network studied in this paper is a square grid network
consisting 16 intersections, each equipped with one SOTL
controller. Furthermore, at each time step, a vehicle is
inserted into the network through each inbound bound-
ary road with probability α. Similarly, when a vehicle
reaches the end of an outbound boundary road, it has
β probability of exiting the network, simulating queue
build-up due to congestion outside the network. α and
β can be varied to simulate various traffic conditions.
Lastly, there are four phases which are present at each
intersection: a north/south phase, an east/west turning
phase, an east/west phase and a north/south turning
phase. Each vehicle, at each intersection, makes a random
turning decision with a predetermined probability.

(a) Intersection

Vehicle

Empty cell

(b) Cells within a road

Fig. 2. The illustration of the traffic model used.

In relation to (1) and (2), traffic is often represented with
flow equations. Using vehicle conservation, the dynamics
of the plant’s state x, which is the queue length in the
network, is represented by the nonlinear flow rate f , which
captures all of the events in the traffic, including but
not limited to: intersection queuing, lane changing and
turning. Furthermore, ξ(t) represents the inbound and
outbound traffic. The traffic light setting, θ, is controlled
by SOTL. The dynamics of the controller’s state κ are
governed by a function l with input from the queue length
x, itself κ (related to idle time), and the SOTL threshold
u. Then, θ is determined by a local feedback control m
based on the plant’s and controller’s state.

The simulations performed in this study utilise a cellular
automata model, which was comprehensively described
by de Gier et al. [2011]. In this model, each vehicle is
simulated individually. This implies that almost all events
in traffic are represented. Thus, this simulation model is
deemed sufficient to capture the traffic dynamics as in (1).

4.2 Steady-state maps

In this study, ui = ū for all i (i.e. the same parameter
is used at all intersections), leading to a one dimensional
optimisation problem. Separating the ui’s would provide
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scope for closed-loop improvement, but also complicates
the optimisation.

It is necessary to investigate whether Assumptions 1 and 2
are satisfied for the combination of the traffic network and
SOTL. In order to do this, the simulation is run several
times using various values of constant u. It is found that
indeed for each (α, β), there exists a map Jα,β(u) and the
output y converges to the vicinity of Jα,β(u) (Fig. 3).

In addition, it can be seen in Fig. 3a that β does not affect
the IO map except when β is very low, and the IO map
becomes relatively flat. This is to be expected from a low
density system. In a high density regime (approximately
α ≥ 0.17), a greater dependence on β is exhibited, yet its
effect only becomes apparent at approximately β < 0.3,
which is still fairly low. Thus, β = 0.9 is used for the
remainder of this paper, since it does not significantly
affect the result.

Moreover, note that the shape of the IO map changes
significantly with α, and when approximately α ≥ 0.18, it
becomes flat (Fig. 3b) due to the network being saturated.
Thus, when α ≥ 0.18, there is little benefit in adaptively
tuning the SOTL threshold u. However, if a different local
controller was used, there may be benefit in using ES for
adaptation of that controller’s parameter(s).

Lastly, in this simulation a vehicle is only inserted into
the network if there is space on the inbound boundary
road. It is found that the number of vehicles being denied
generation due to space limitation is also minimised at the
optimum u∗, and is increasing further away from u∗. The
increase is more pronounced as α is higher, except when
α is at the very high density regime (α ≥ 0.19).

4.3 ES parameter selection

Following the guidelines provided in Theorem 1, the ES
parameters are tuned to be: a = 1, k = 0.2, ω = 10−3

rad/s, φ = 55◦, and L = [0.237 0.343 0.167]
T

. The
dither frequency ω is chosen such that the ES scheme
is sufficiently slow that it is not too adversely affected
by the plant’s dynamics; the phase shift φ is chosen to
partially compensate the effect of the plant’s dynamics;
and L is chosen based on the optimisation done by Moase
and Manzie [2012].

4.4 Time-invariant demand

The traffic conditions considered are α = 0.13 and 0.17.
Furthermore, for each traffic condition, two initial condi-
tions for u are used, one from each side of the optimum.

As shown in Fig. 4, the ES scheme always converges to
the vicinity of the optimum. Note that in the α = 0.17
case, u converges to slightly different regions (on either
side of the optimum) for each of the initial conditions
tested. Although this error can be reduced by decreasing
(a, k, ω), the resulting output of the plant will be relatively
unaffected due to J being almost flat around the optimum.

However, note that the convergence speed is low, taking
approximately 35 and 85 hours for the output to converge
for the first and second traffic conditions respectively. This
is caused by the fact that the dynamics of the plant
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Fig. 3. The effect of SOTL threshold, α and β on the
plant’s steady state output.

take a long time to settle and the ES scheme must act
on a time scale slower than that of the plant. However,
note that in this study, the initial conditions of u are set
deliberately far from u∗. A more educated selection of the
initial condition might significantly reduce the convergence
time. Furthermore, the slow convergence implies that for
this combination of local controller and ES scheme, it is not
possible to converge to the optimum in a day, considering
that the demand will change within hours. In practice,
it is likely that different sections of the day would be
compartmentalised (e.g. different peak periods and off-
peak), with tuning performed separated over many days.

4.5 Step-change demand

In this subsection, the benefit of using the ES scheme
is highlighted by applying boundary conditions with a
step-change to the simulation. For the first half of this
simulation, α = 0.13 and α = 0.17 for the second half.
These values represent the change from fairly light to high
inbound traffic volume. Furthermore, the result of using
ES is compared with cases where u is kept constant. Five
cases of constant u are used, u = {4, 5, 6, 7, 8}, within
which lie the optima of the first and the second traffic
condition. The initial condition for the ES case is u = 4.5.

The simulation results are summarised in Table 1. The
second column shows the averaged plant’s output after

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5070



0 1 2 3 4
0

2

4

6

8

10

12

Time, t (days)

S
O

T
L 

th
re

sh
ol

d,
 u

0 1 2 3 4
9

9.5

10

10.5

11

11.5

Time, t (days)

P
la

nt
 o

ut
pu

t, 
y 

(m
/s

)

(a) α = 0.13

0 5 10 15
0

2

4

6

8

10

12

Time, t (days)

S
O

T
L 

th
re

sh
ol

d,
 u

0 5 10 15
2

2.2

2.4

2.6

2.8

3

3.2

Time, t (days)

P
la

nt
 o

ut
pu

t, 
y 

(m
/s

)

(b) α = 0.17

Fig. 4. Simulation results of the time-invariant traffic
condition using ES. The red and black curves show
the results when u(0) = 10 and u(0) = 2 respectively.

the initial major dynamic has settled down. This includes
the transient period after α is switched from 0.13 to 0.17.
The third column compares the performance degradation
relative to the case with the highest averaged y, which
is the ES case. In addition, the output is also averaged
ignoring the transient (to give an approximate steady-state
y) for both α = 0.13 and α = 0.17, and these values are
shown in the last two columns.
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 u

Fig. 5. The performance of the ES scheme in the step-
change condition case.

Table 1. Simulation results for a step change in α.

Aveaged Performance Averaged “steady-

u output, degradation state” y (m/s)

y (m/s relative to ES α = 0.13 α = 0.17

ES 6.887 - 11.00 2.85

4 6.782 1.5% 11.00 2.48

5 6.828 0.9% 11.03 2.57

6 6.792 1.4% 10.87 2.65

7 6.659 3.3% 10.66 2.60

8 6.518 5.4% 10.37 2.60

From Fig. 5, it can be seen that the ES scheme is able
to adapt to a change in the traffic condition such that
for the first and the second half of the simulation, the
ES converges to approximately 4.8 and 6 respectively.
Moreover, from the last two columns, it can be seen that
the ES successfully regulates y to the vicinity of its new
optimum. Furthermore, the performance of the scheme
is superior compared to the cases with constant u. The
very small degradation when α = 0.13 compared to the
constant u = 5 case is caused by the dither of the ES.

Therefore, it has been shown that when faced with a
change in traffic condition, the ES scheme can gain a
small advantage by adapting the threshold to the vicinity
of the new optimum. Moreover, by using ES, a priori
knowledge of the location of the optimum is not required.
Without online tuning, calibrating the optimal threshold
for a given network would be a lengthy and expensive
process which would be complicated by the fact that the
optimal threshold depends upon the network conditions.
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5. CONCLUSIONS AND FURTHER WORK

The benefits of using extremum-seeking to fine-tune a
local traffic control strategy was demonstrated. A set of
conditions that the local controller has to satisfy were
presented. By using simulation, it was shown that the
extremum-seeking scheme is able to adapt the parameter
close to its optimum in various traffic situations. Some
extensions for future work include using MISO and MIMO
extremum-seeking (Kutadinata et al. [2012]); investigation
using a more realistic traffic network; and finding more
easily measured performance metrics for a traffic network.
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controllers via extremum seeking. In Proceedings of the
2005 American Control Conference, pages 2251–2256,
June 2005.
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