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Abstract: This paper addresses to the problem of designing, modelling and practical realization
of robust model predictive control which ensures a parameter dependent quadratic stability and
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reduced to off-line output feedback gain calculation. A numerical example and an application
to a real process is given to illustrate the effectiveness of the proposed method.
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1. INTRODUCTION

Model predictive control (MPC) is a modern controller
which is widely used in industrial applications. The main
idea of MPC is to predict the future behaviour of the sys-
tem over a finite receding horizon and to find the optimal
value of the system input with respect to predictions and
given constraints. There exist several different realizations
of MPC. Extensive overview of MPC algorithms can be
found in Maciejowski [2002], Rossiter [2003].

The drawbacks of the most common MPC algorithms are
the on-line computational complexity and the feasibility
problem which in the past limited the use of MPC to
plants with a slow time response because it solves opti-
mization problem in each sample time. Another drawback
when the plant model is uncertain or unstable is the
lack of guaranteed stability and robustness of the closed-
loop system that can cause a poor performance of the
system. Numerous design procedures were developed to
guarantee robust stability. They are based on the infinite
time horizon with the on-line LMI optimization [Kothare
et al., 1996], the min-max optimization with a terminal
constraint in an invariant set [Scokaert and Mayne, 1998,
Lofberg, 2003], the off-line LMI optimization to calculate a
sequence of output feedback laws and the on-line selection
of the appropriate law [Ding et al., 2008] or the robust
tube-based control design approach [Mayne et al., 2005].
The problems of the computational complexity and the
robust stability are solved in the robust explicit MPC [Ker-
rigan and Maciejowski, 2004].An excellent survey of robust
MPC design can be found in [Bemporad and Morari, 1999,
Mayne et al., 2000, Rakovic, 2012]. Alternatively, in many
implementations the MPC is applied without input and
output constraints [Camacho and Bordons, 1999]. Then
the algorithm reduces to linear feedback controller. But
the design procedure still does not guarantee the stability
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or the robust stability and the closed-loop stability can
be checked only by simulation. Recently the new MPC
algorithm which guarantees the robustness of the closed-
loop system have been presented in Nguyen et al. [2013],
Veselý and Rosinová [2010], Veselý et al. [2010].

In this paper we pursue the ideas of Veselý et al. [2010]
where the robust MPC algorithm has been designed on the
base of the polytopic system quadratic stability and the
input constraints, but the implementation problem in the
real plants has been left out. However, the quadratic sta-
bility generally provides quite conservative results. To find
a less conservative approach in this paper the parameter
dependent quadratic stability(PDQS) [de Oliveira et al.,
1999, Peaucelle et al., 2000] is used. The controller feed-
back gains calculation is formulated in the form of bilin-
ear matrix inequalities (BMI). Because currently available
BMI solvers do not allow to work with high order systems
the problem of calculating an MPC output feedback gain
needs to be transformed from BMI to LMI with a lineari-
sation approach. The designed controller solves the main
drawbacks of the standard MPC because it guarantees
the robust stability and requires only a simple on-line
calculation based on the output feedback and the state
estimation for a prediction model. The problem of MPC
control algorithm design using PDQS and its practical
implementation is the main result of the paper.

The main principle of the controller design is described in
the section 2. In the section 3 an MPC design procedure
without constraints is derived. The last section contains
a numerical example and a practical implementation to
a real unstable magnetic levitation system with results
from experiments. The following notational conventions
will be adopted: The inequality P > 0 (P < 0) denotes the
positive (negative) definiteness of the matrix, I denotes
the identity matrix with a corresponding dimension and
the notation y(k + h|k) is for simplicity reasons replaced
by y(k + h) and denotes a h step ahead prediction of y
calculated in the sample time k.
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2. PRELIMINARIES AND PROBLEM
FORMULATION

Let the polytopic linear discrete time system be described
by

x̃(k + 1) = Ã(ξ)x̃(k) + B̃(ξ)u(k)

ỹ(k) = C̃x(k)
(1)

where x̃(k) ∈ Rn, u(k) ∈ Rm, ỹ(k) ∈ Rl are state, control
input and output variables of the system respectively. The
matrices Ã(ξ) and B̃(ξ) belong to the convex set S, with
M vertices S1, . . . , SM that can be formally defined as:

S :
{
Ã(ξ), B̃(ξ) :

(
Ã(ξ), B̃(ξ)

)
=

M∑
i=1

ξi

(
Ãi, B̃i

)
,

M∑
i=1

ξi = 1, ξi ≥ 0
} (2)

Matrices Ãi, B̃i and C̃ are known with constant coefficients
of corresponding dimensions. Let consider the following
integrator to force disturbance rejection and to achieve
set-point tracking

z(k + 1) = z(k)− C̃x̃(k) + w(k) (3)

where w(k) is a desired set-point value. Adding the inte-
grator (3) to (1) one obtains:

x(k + 1) = A(ξ)x(k) +B(ξ)u(k) +Bww(k)

y(k) = Cx(k)
(4)

where

x(k) =

[
x̃(k)
z(k)

]
, A(ξ) =

[
Ã(ξ) 0

−C̃ I

]
, Bw =

[
0
I

]
,

C =

[
C̃ 0
0 I

]
, B(ξ) =

[
B̃(ξ)

0

]
, y(k) =

[
ỹ(k)
z(k)

] (5)

ỹ(k) is a plant output for the proportional part of the
controller and z(k) is a plant output for the integral part
of the controller. Optionally, the derivative part of the
controller can be added in the form of the first difference:

yd(k) = ỹ(k − 1)− ỹ(k) = C̃x̃(k − 1)− C̃x̃(k) (6)

Then the system (4) is augmented as follows:

x(k) =

[
x̃(k)
z(k)
zd(k)

]
, A(ξ) =

Ã(ξ) 0 0

−C̃ I 0
I 0 0

 , Bw =

[
0
I
0

]
,

C =

 C̃ 0 0
0 I 0

−C̃ 0 C̃

 , B(ξ) =

B̃(ξ)
0
0

 , y(k) =

[
ỹ(k)
z(k)
yd(k)

] (7)

The selection of the system (4) is based on (5) or (7)
depending on the desired controller structure. Simultane-
ously with (4) we consider the nominal plant of the system
in the form:

x(k + 1) = A0x(k) +B0u(k) +Bww(k)

y(k) = Cx(k)
(8)

where A0 =
∑M

i=1Aiξi0 and B0 =
∑M

i=1Biξi0 for any

values of ξi0 which satisfy
∑M

i=1 ξi0 = 1, ξi0 ≥ 0.

Remarks:

(1) If the MPC design is based on the quadratic stability,
the rate of change of coefficients ξi may reach any
value which satisfies (2).

(2) If the MPC design procedure is based on the parame-
ter dependent quadratic stability, ξi are constant and
unknown.

(3) In the references [Veselý et al., 2010, Nguyen et al.,
2013, Veselý and Rosinová, 2010], for the model
predictive control design procedure there are two
main ideas presented. In the first [Veselý et al., 2010]
ξi0, i = 1, . . . ,M are known and constant. In the last
two references coefficients ξi0 (for the realization of
the prediction model) are known but may be changed.

(4) For the next we assume that the system model (4)
and the nominal model (8) satisfy to remark 2.

The nominal model (8) will be used for the construction
of the prediction model and (4) is considered as a real
plant description providing the plant output. Therefore,
we assume that for time k, output y(k) is obtained from
the uncertain plant model (4), and predicted outputs for
time k + 1, . . . , k + Ny will be obtained from the model
prediction, when the nominal model (8) is used. The
prediction is carried out over a finite output horizon Ny

and a control horizon Nu (Nu ≤ Ny). Note that we
consider Fij = 0 for i = Nu + 1, . . . , Ny. Therefore for
the next development we consider Nu = Ny.

Consider the predictive control algorithm with output
feedback as follows:

u(k + i) =

Ny∑
j=0

F̄ij (ỹ(k + j)− w(k + j)) +

+ Eijz(k + j) =

Ny∑
j=0

Fijy(k + j)− F̄ijw(k + j)

i = 0, 1, . . . , Ny

(9)

where Fij =
[
F̄ij Eij

]
, F̄ij ∈ Rm×l, Eij ∈ Rm×l are

proportional and integral controller gain matrices.

States and outputs of the system for time instant k are
obtained from real system measurements:

x(k + 1) = A(ξ)x(k) +B(ξ)u(k) +Bww(k) (10)

y(k) = Cx(k) (11)

for time instants k + h, h = 1, . . . , Ny the nominal model
is used:

• h = 1
x(k + 2) = A0x(k + 1) +B0u(k + 1)

+Bww(k + 1)

= A0A(ξ)x(k) +A0B(ξ)u(k) +B0u(k + 1)

+A0Bww(k) +Bww(k + 1)

y(k + 1) = Cx(k + 1)

•
...

• h

x(k + h+ 1) = Ah
0A(ξ)x(k) +

h∑
i=1

Ah−i
0 B0u(k + i)+

+Ah
0B(ξ)u(k) +

h∑
i=0

Ah−i
0 Bww(k + i)

y(k + h) = Cx(k + h)

For h = 1, . . . , Ny in the matrix form one obtains:
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xf (k + 1) = Afx(k) +Bfv(k) +Bwfwf (k)

yf (k) = Cfxf (k)
(12)

where

xf (k) =

 x(k)
...

x(k +Ny)

 , wf (k) =

 w(k)
...

w(k +Ny)

 ,
v(k) =

 u(k)
...

u(k +Ny)

 , yf (k) =

 y(k)
...

y(k +Ny)


(13)

Af =


A(ξ)
A0A(ξ)

...

A
Ny

0 A(ξ)

 , Cf =


C 0 . . . 0
0 C . . . 0
...

...
. . .

...
0 0 . . . C

 ,

Bf =


B(ξ) 0 . . . 0
A0B(ξ) B0 . . . 0

...
...

. . .
...

A
Ny

0 B(ξ) A
Ny−1
0 B0 . . . B0

 ,

Bwf =

 Bw 0 . . . 0
A0Bw Bw . . . 0

A
Ny

0 Bw A
Ny−1
0 Bw . . . Bw



(14)

Matrices (14) in the system with prediction (12) are used
only for calculation of robust controller gains (matrix Af is
augmented with zeros to square matrix). In the practical
implementation with respect to remark 4 matrices A(ξ)
andB(ξ) are replaced with A0 andB0 when ξi0 is constant.
Then for the model prediction we obtain matrices Afp and
Bfp in the form:

Afp =


A(ξ0)
A2

0
...

A
Ny+1
0

Bfp =


B(ξ0) 0 . . . 0
A0B0 B0 . . . 0

...
...

. . .
...

A
Ny

0 B0 A
Ny−1
0 B0 . . . B0


If ξi0 is known and can change value then all matrices A0

and B0 in (8) should be recalculated in every sample time.

Control algorithm (9) can be rewritten to matrix form:

v(k) = Fyf (k)− F̄wf (k) (15)

F =


F00 F01 . . . F0Ny

F10 F11 . . . F1Ny

...
... . . .

...
FNy0 FNy1 . . . FNyNy



F̄ =


F̄00 F̄01 . . . F̄0Ny

F̄10 F̄11 . . . F̄1Ny

...
... . . .

...
F̄Ny0 F̄Ny1 . . . F̄NyNy


(16)

Matrices Fij , i, j = 0, 1, . . . , Ny are output feedback gains
with constant entries to be determined by minimizing the
cost function as follows:

J =

∞∑
k=0

J̃(k) (17)

J̃(k) =

Ny∑
j=0

xT (k + j)qjx(k + j) +

Nu∑
j=0

uT (k + j)rju(k + j)

= xTf (k)Qxf (k) + vT (k)Rv(k)

(18)

qj ∈ Rn×n, rj ∈ Rm×m, Q and R are positive definite
matrices.

The following lemmas will be used in the next develop-
ment.

Lemma 1. Suppose there exists a Lyapunov function
V (xf (k), ξ) such that for the first difference of a Lyapunov
function ∆V (xf (k), ξ) = V (xf (k+ 1), ξ)−V (xf (k), ξ) the
solution of (12) with control algorithm (9) the following
inequality holds

∆V (xf (k), ξ) < 0 (19)

then the closed-loop system is robustly stable.

Lemma 2. Consider the system (4), if there exists a con-
trol law (9) and a Lyapunov function V (xf (k), ξ) =
xTf (k)P (ξ)xf (k) such that the closed-loop system is ro-
bustly stable and for the first difference of a Lyapunov
function on the closed-loop system solution holds:

∆V (xf (k), ξ) + J̃(k) ≤ 0 (20)

then the control law (9) is said to be the guaranteed cost
control law with J ≤ J∗.
Proof: Summing (20) from k = k0 to k = ∞ the upper
bound on J is obtained

J ≤ V (xf (k0), ξ) = J∗ (21)

The design procedure is given as follows:

min
F

J (22)

with constraints:

(1) System model (12) with given Ny and Nu.
(2) Robust stability constraint and performance (20).

Note that in the above design procedure the optimisation
results are the gain matrices Fij , i, j = 0, 1, . . . , Ny

which can be calculated off-line using the above design
procedure which reduces to the standard robust controller
design procedure. From Peaucelle et al. [2000] the following
lemma is obtained:

Lemma 3. Assume that the uncertain system with control
algorithm is given by (12) and (15). The closed-loop
system is parameter dependent quadratic stable if there
exists a parameter dependent Lyapunov matrix P (ξ) =∑M

i=1 Piξi > 0, auxiliary matrices H and G such that the
following inequality holds:[

U1 −H +AT
ciG

−HT +GTAci Pi − (G+GT )

]
< 0

U1 = −Pi +AT
ciH

T +HAci +Q+ CT
f F

TRFCf

Aci = Afi +BfiFCf , i = 1, 2, . . . ,M

(23)

Because of BMI the following approach transforms above
inequality to LMI. On the base of Veselý et al. [2011] the
two step LMI desing procedure is obtained:

(1) Solve the following matrix equations:
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AT
ciPiAci − Pi +Q+ CT

f F
TRFCf < 0

− Pi +AT
ciH

T +HAci +Q+ CT
f F

TRFCf < 0

Aci = Afi +BfiFCf , i = 1, 2, . . . ,M
(24)

where Q and R are weighting matrices in the cost
function (17). Positive definite matrices Pi and matri-
ces F , H represent unknown variables. Equations (24)
are BMI. In order to transform (24) to linear matrix
inequalities at first a Shur complement is used: −Pi +Q CT

f F
T (Afi +BfiFCf )T

FCf −R−1 0
Afi +BfiFCf 0 −P−1i

 < 0

 U2

FCf

HT +BfiFCf

CT
f F

T (HT +BfiFCf )T

−R−1 0
0 −I

 < 0

U2 = −Pi +AT
fiH

T +HAfi −HHT−
− CT

f F
TBT

fiBfiFCf +Q

Then a linearisation approach described in [Han and
Skelton, 2003] transforms nonlinear diagonal terms to
LMI by finding its upper bounds. Where for a given
matrix W the linearisation is:

lin(X−1, Xk) = X−1k −X−1k (X −Xk)X−1k (25)

lin(XWX,Xk) =XkWXk −XWXk−
−XkWX

(26)

This linearisation approach requires several iterations
to find a solution. At first an initial value for Xk

is selected. In the next iteration Xk is equal to the
calculated value of X from the previous iteration.

(2) Check the robust stability. The LMI condition of
parameter dependent quadratic stability [Peaucelle
et al., 2000] is (23).

The quality of the above controller design method was
experimentally proved in [Vozák and Veselý, 2013].

In order to find F which is suitable for the application
on real processes with respect to noise suppression and
maximal values of manipulated variables it is possible to
use additional constraints. One of the possibilities is to
constraint elements of F = {fij}:
(1) c1min ≤ fij ≤ c1max for j = 1, 4, 7, . . ., ∀i (propor-

tional part of the controller)
(2) c2min ≤ fij ≤ c2max for j = 2, 5, 8, . . ., ∀i (integral

part of the controller)
(3) c3min ≤ fij ≤ c3max for j = 3, 6, 9, . . ., ∀i (derivative

part of the controller)

For the next development assume that the gain matrices
Fij are calculated off-line. The main problem is modelling
and practical implementation of control algorithm (9) on
the base of plant measurable output vectors y(k) and
states x(k). Note that designed gain matrices Fij guaran-
tee closed-loop stability, robustness and ensure guaranteed
cost.

3. PRACTICAL IMPLEMENTATION

In this section we construct for a given Ny and Nu the final
control algorithm for the case of robustly stable predictive
control without input and output constraints.

Multiplying (10) from the left side by Cf and substituting
(15) to (10)

yf (k) =CfAfx(k) + CfBfFyf (k)− CfBf F̄wf (k)

+ CfBwfwf (k)
(27)

Let matrix CfBfF be partitioned as follows:

CfBfF =
[
M1 M2

]
(28)

where M1 is the first block column of matrix CfBfF .

M1 =


CB0F00

CA0B0F00

...

CA
Ny

0 B0F00

 (29)

and M2 is the other part of matrix CfBfF . From (28) and
(27) one obtains:

CfBfFyf (k) = M1y(k) +
[
M2 0

]
yf (k + 1)

= M1y(k) +M2yf (k + 1)
(30)

Using (30) and (27):

[I −M2]yf (k + 1) =CfAfx(k) +M1yf (k)

− Cf

(
Bf F̄ −Bwf

)
wf (k)

(31)

From (9) rewrite the control algorithm:

u(k) =F00y(k) +
[
F01 . . . F0Ny

0
]
yf (k + 1)−

−
[
F̄00 . . . F̄0Ny

]
wf (k)

(32)

Substituting (31) to (32) and after some manipulation:

u(k) = D1x(k)+(F00 +D2) y(k)−
(
D3 + F̄0

)
wf (k) (33)

D1 =
[
F01 . . . FNy

0
]

[I −M2]−1CfAf (34)

D2 =
[
F01 . . . FNy 0

]
[I −M2]−1M1 (35)

D3 =
[
F01 . . . FNy

0
]

[I −M2]−1Cf (Bf F̄ −Bwf ) (36)

F̄0 =
[
F̄00 . . . F̄0Ny

]
(37)

Matrices D1, D2, D3 for the case of ξi0 = const., i =
1, 2, . . . ,M are constant too and calculated off-line but for
the case when ξi0 changes, matrices D1, D2, D3 should be
recalculated in every sample time. Because gain matrices
F and F̄ are constant and guarantee the closed-loop robust
stability the calculation of D matrices is straightforward.

4. EXPERIMENTAL RESULTS

In order to prove applicability of the MPC algorithm
two examples are presented. The first is a simulation
of randomly generated system. In the second example
the algorithm was implemented to control an unstable
magnetic levitation system.

4.1 Random system

The system model is generated as a random discrete time
model in the affine form:

Ã(q) = Ãq0 + q1Ãq1 + q2Ãq2

B̃(q) = B̃q0 + q1B̃q1 + q2B̃q2

(38)

where q1, q2 ∈ 〈−1, 1〉.

Ãq0 =

[
0.7060 0.2769
0.0318 0.0462

]
, Ãq1 =

[
0.1265 0.0557
0.0195 0.1094

]
Ãq2 =

[
0.0656 0.0849
0.0036 0.0934

] (39)
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B̃q0 =

[
0.6787
0.7577

]
B̃q1 =

[
0.7431
0.3922

]
B̃q2 =

[
0.6555
0.1712

]
(40)

From (38) four vertices of polytopic model (1) are ob-
tained:

Ã1 = Ãq0 + Ãq1 + Ãq2, B̃1 = B̃q0 + B̃q1 + B̃q2

Ã2 = Ãq0 − Ãq1 + Ãq2, B̃2 = B̃q0 − B̃q1 + B̃q2

Ã3 = Ãq0 + Ãq1 − Ãq2, B̃3 = B̃q0 + B̃q1 − B̃q2

Ã4 = Ãq0 − Ãq1 − Ãq2, B̃4 = B̃q0 − B̃q1 − B̃q2

(41)

Calculated output feedback matrix F with Q = I, R = I,
Ny = Nu = 7 and system model structure (5) is:

F =



−0.5525 0.3945 −0.0141 0.0120 −0.0057
−0.6459 0.7151 0.0147 0.0070 0.0064
−0.2396 0.2647 0.0024 −0.0074 0.0011
−0.1947 0.2148 0.0006 −0.0104 0.0004
−0.1964 0.2164 0.0004 −0.0106 0.0003
−0.2069 0.2279 0.0006 −0.0104 0.0004
−0.2076 0.2279 0.0005 −0.0102 0.0003
−0.0580 0.0589 −0.0016 −0.0051 −0.0006

0.0272 −0.0028 0.0342 −0.0009 0.0384 0.0007
−0.0079 0.0045 −0.0145 0.0038 −0.0192 0.0032
−0.0101 0.0005 −0.0117 −0.0000 −0.0127 −0.0005
−0.0114 −0.0001 −0.0123 −0.0006 −0.0128 −0.0010
−0.0115 −0.0001 −0.0123 −0.0006 −0.0128 −0.0011
−0.0114 −0.0001 −0.0123 −0.0006 −0.0128 −0.0010
−0.0111 −0.0001 −0.0119 −0.0006 −0.0124 −0.0010
−0.0034 −0.0004 −0.0029 −0.0003 −0.0025 −0.0003

0.0410 0.0025 0.0426 0.0070 0.0431
−0.0234 0.0023 −0.0273 −0.0019 −0.0309
−0.0133 −0.0009 −0.0137 −0.0018 −0.0137
−0.0129 −0.0015 −0.0127 −0.0019 −0.0122
−0.0129 −0.0015 −0.0126 −0.0019 −0.0121
−0.0130 −0.0014 −0.0128 −0.0019 −0.0123
−0.0125 −0.0014 −0.0123 −0.0017 −0.0119
−0.0022 −0.0003 −0.0020 0.0002 −0.0017


Matrix F̄ is a proportional gain of the controller defined
in (9). Then matrices (34)-(37) are:

D1 = [−0.0181 −0.2541 0.2384]

D2 = [0.2942 −0.2815]

D3 =[0.0558 − 0.2270 − 0.2003 − 0.1666

− 0.1285 − 0.0874 − 0.0444 − 0.0005]

F00 = [−0.5525 0.3945]

F̄0 =[−0.5525 − 0.0141 − 0.0057 − 0.0028

− 0.0009 0.0007 0.0025 0.0070]

(42)

Simulated system output and input is in fig. 1.

4.2 Magnetic levitation

The main principle of magnetic levitation model CE152
made by HUMUSOFT [HUMUSOFT, 1996] is to control
the position of a steel ball between a coil and an induction
sensor. The process was identified in three working points
(position y = 0.3, 0.5, 0.75[mu]) and a discrete-time
polytopic model in the state-space with the sampling
period Ts = 0.001 was created:

t[s]

u(k)

0 10 20 30 40 50 60 70 80
0

0.3

0.6

0.9

1.2

1.5

Fig. 1. Simulated system input (dash-dotted line), output
(solid line) and set-point (dashed line).

Ã1 =

[
2.006 1
−1.003 0

]
B̃1 =

[
0.00341
0.00341

]
Ã2 =

[
2.009 1
−1.005 0

]
B̃2 =

[
0.0052
0.00521

]
Ã3 =

[
2.0 1
−0.995 0

]
B̃3 =

[
0.00508
0.00508

]
C̃ = [ 1 0 ]

(43)

The matrix F calculated with Q = 1, R = 85000, Ny =
Nu = 3, c1max = −c1min = 5, c2max = −c2min = 5 and
c3max = −c3min = 0.03 is:

F =

−2.2557 4.5427 0.002 3.5318 −2.3153 0.0009
−0.2055 −0.1212 −0.000 −0.0411 0.0496 −0.000
−0.0779 −0.0788 −0.000 −0.0277 0.0265 −0.000
0.0017 −0.0240 −0.000 −0.0088 0.0054 −0.000

−4.1428 −3.9659 0.0008 −4.6655 1.7631 0.0008
0.1021 0.0849 −0.0000 0.2200 −0.0213 −0.0000
0.0545 0.0520 −0.0000 0.1268 −0.0040 −0.0000
0.0111 0.0144 −0.0000 0.0313 0.0034 −0.0000



t[s]

y[mu]

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Fig. 2. Measured system output (solid line) and set-point
(dashed line)

The equation of the observer is written as:

x̂(k + 1) = Ã0x̂(k) + B̃0u(k) + LC̃
(
x(k)− x̂(k)

)
(44)
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t[s]

u[mu]
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0.6
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1

Fig. 3. Measured system input

Observer gain matrix L was computed by solving the dual
problem to the discrete-time LQ with weighting matrices
QL = 10I and RL = I of appropriate dimensions.

L =

[
1.8542
−0.9635

]
(45)

System output and input measured on real process exper-
iments are in figures 2 and 3. The figures show that

• the system is robustly stable in all working points,
• the output has zero steady state error.

5. CONCLUSION

A new predictive control algorithm guarantees the robust
stability of the closed-loop and the guaranteed cost con-
trol. Due to off-line calculation of gain matrices its practi-
cal implementation is straightforward and with only simple
on-line calculations required. In the case without input and
output constraints it obviously reduces to linear feedback
controller with constant gain matrices. For this approach a
control algorithm was derived and practically implemented
to control unstable magnetic levitation system. Obtained
results prove good performance of the controller.
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