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Abstract: While rich empirical evidence always shows certain degree of dependency among
different time periods for the returns of risky assets, the current literature on dynamic portfolio
selection has been dominated by the results under an independency assumption, although in
various forms. We consider in this paper a multiperiod mean-variance (MV) portfolio selection
problem for a market with multiple risky assets whose returns are statistically correlated among
time periods. Instead of assuming some particular stochastic processes to model the correlation,
we adopt a formulation with a general form of correlation, which enables us to better matching
our model with real markets. Recognizing the fact that, under this general setting, parameters in
the portfolio policy become path-dependent adaptive processes themselves, we solve the problem
analytically and derive an explicit form for the optimal portfolio policy, which remains as a linear
affine function of the current wealth.
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1. INTRODUCTION

The mean-variance formulation proposed by Markowitz
(1952) more than half century ago laid the foundation for
modern financial analysis. After the static MV portfolio s-
election theory was extended to multi-period MV portfolio
selection by Li and Ng (2000) and to continuous-time MV
portfolio selection by Zhou and Li (2000), both in 2000,
the past decade has witnessed significant advancement of
both theory and methodologies for dynamic MV portfolio
selection by leaps and bounds, see for example, Li et al.
(2001), Lim and Zhou (2002), Zhu et al. (2004), Bielecki et
al. (2005), Cui et al. (2012), and Cui et al. (2013). While
almost all the studies in continuous-time assume that the
stock prices follow a vector-valued Geometric Brownian
motion, most studies in discrete-time assume the time
independency of the return vector, with a few exceptions.

Abundant empirical evidence shows that the returns of the
risky assets always exhibit certain degree of dependency
among time periods, e.g., see Campbell and Viceira (2002)
and reference therein. Thus, it is necessary and meaning-
ful to investigate MV portfolio optimization models with
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correlated returns. The last decade has witnessed a few
attempts to incorporate a dependency structure of the
returns into the MV portfolio model. Çakmak and Özekici
(2006) adopt a Morkov chain to model the switching of the
market conditions. Costa and Araujo (2008) study such a
Markovian switching model with no bankruptcy restriction
on the wealth. Following the same line, Costa and Oliveira
(2012) extend such a method to a more general mean-
variance control problem. While the majority of the cur-
rent literature assumes particular stochastic processes to
model the correlation of the asset returns, investigation on
dynamic mean-variance models with a general correlation
form of returns does emerge recently. A general correlation
form is assumed in Xu and Li (2008) for returns at different
time periods for a market with only one risky asset and
one risk free asset. General forms of correlation structure
are also assumed for returns in the portfolio selection
formulations of Dokuchaev (2007) and Dokuchaev (2012).
In their work on time cardinality constrained dynamic MV
portfolio selection, Gao et al. (2013) investigate a dynamic
MV formulation with general correlation for a market with
multiple risky assets and one riskless asset. In this work,
we consider first a market with multiple risky assets only
and general form of correlation, and derive the analytical
portfolio policy of the dynamic MV portfolio optimization
model. We discuss next the case where a risk free asset is
also included in the market.

The remaining of this paper is organized as follows. We
first formulate the dynamic mean-variance portfolio selec-
tion problem with and without risk free asset in Section 2.

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 9007



We then derive in Section 3 the optimal portfolio policies
for these problems. We give in Section 4 an example to
illustrate our solution procedure. Finally, we conclude the
paper in Section 5. We use π(·) and v(·) to denote the
optimal control (policy) and the optimal value of problem
(·). The notations 1, 0 and I stand, respectively, for the
vector with all elements being 1, zero matrix, and the
identity matrix with a proper dimension.

2. PROBLEM FORMULATION

We assume that the capital market consists of n risky
assets, all of which evolve within a time horizon of T
periods, t = 0, 1, . . . , T − 1. An investor with initial
endowment x0 enters the market in period 0 and allocates
his wealth among these n assets at the beginning of each
of the T periods from t = 0 to t = T − 1. We denote the
return vector of the n risky assets in period t as

et ,
(
e1t , e

2
t , · · · , ent

)′
for t = 0, · · · , T − 1, which is a square integrable random
vector. In our study, we allow return vectors in different
time periods, {et, }T−1

t=0 , to be statistically correlated. All
the underlying uncertainties are modeled by a complete
probability space (Ω,P,F) with the structure of the filtra-
tion satisfying Ft ⊂ Ft+1, t = 0, · · · , T − 1 and FT = F .
The filtration Ft represents the information available at
stage t. 1 We use the notations Et[·], Covt[·] and Vart[·] to
denote the conditional expectation E[·|Ft], the conditional
covariance matrix Cov[·|Ft] and the conditional variance
Var[·|Ft], respectively. The following assumption is reason-
able in a financial market.

Assumption 1. We assume that the conditional covariance
matrices, Covt[et] := Et[ete

′
t] − Et[et]Et[et]

′, are positive
definite for all t = 0, . . . , T − 1.

Let ui
t be the dollar amount invested in the i-th risky asset

at time t, i = 1, · · · , n, and xt be the wealth level at time
t. Then, under the self-financing constraint, the wealth
process evolves according to

xt = 1′ut, t = 0, · · · , T − 1, (1)

xt+1 = e′tut, t = 0, · · · , T − 1, (2)

where ut ,
(
u1
t , u

2
t , ..., u

n
t

)′
. The dynamics in (1) and (2)

can be understood in the following way. At stage t, the
current wealth is xt and the wealth of next period, xt+1, is
a function of random return et and the portfolio allocation
ut, which are subject to budget constraint 1′ut = xt.
Since xt is the realized wealth at time t, the budget
constraint 1′ut = xt is a deterministic constraint at time
t. The investor is seeking a best mean-variance investment
strategy, ut, for t = 0, · · · , T − 1, such as to minimize the
variance of terminal wealth under a constraint that the
expected return is not less than a given aspiration level
ϵ > 0,

(P(ϵ)) : min
ut

Var[xT ]

Subject to:

{
E[xT ] ≥ ϵ,

{ut, xt} satisfies (1) and (2).

In this paper, we also consider a formulation in which
the risk free asset is also included in the market. Let the
1 Mathematically, Ft can be defined as the smallest σ-algebra
generated by e0, · · · , et−1.

returns of the risk free asset be rt, t = 0, · · · , T−1, which is
assumed to be deterministic in this paper. When the risk
free asset is included in the portfolio, we can represent
allocation in the risk-free asset by xt − 1′ut, which gives
rise to the wealth in the next time period as, xt+1 = rt(xt−
1′ut) + e′tut, for t = 1, · · · , T − 1. The wealth process can
be further written as the following compact form,

xt+1 = rtxt + P ′
tut, for t = 0, · · · , T − 1, (3)

where Pt ,
(
P 1
t , P

2
t , · · · , Pn

t

)′
is the excess return vector,

which is defined by Pt= et − rt1. In a market consisting
of multiple risky assets and a risk free asset, the mean-
variance portfolio optimization problem becomes

(Pf (ϵ)) : min
ut

Var[xT ]

Subject to:

{
E[xT ] ≥ ϵ,

{xt, ut} satisfies (3).

3. OPTIMAL PORTFOLIO POLICY

3.1 Solution of problem (P(ϵ))

We first solve problem (P(ϵ)). Solving problem (P(ϵ)) is
equivalent to minimizing a weighted sum of the mean-
variance pair for some ω > 0,

(P̄(ω)) min
ut

ωVar[xT ]− E[xT ]

Subject to: {ut, xt} satisfies (1) and (2).

Before we give the solution of problem (P̄(ω)), we intro-
duce the following stochastic processes αt, βt, ηt,Dt and dt
for t = T − 1, · · · , 0, which play important roles in solving
(P̄(ω)),

αt := 1/1′D−1
t 1, (4)

βt := (1′D−1
t dt)/(1

′D−1
t 1), (5)

ηt := Et[ηt+1] + d′tD
−1
t dt − (1′D−1

t dt)
2/(1′D−1

t 1) (6)

Dt := Et[αt+1ete
′
t], (7)

dt := Et[βt+1e
′
t], (8)

where αT = 1, βT = 1 and ηT = 0.

Lemma 2. Given a > 0, h ∈ Rn and H ∈ Sn++. If H −
hh′ ≻ 0, then we have

h′H−1h = 1− 1

h′(H − hh′)−1h
, (9)(

a2 ah′

ah H

)−1

=

(
1

−1

a
h′

0 I

)(
1

a2
0

0 (H − hh′)−1

)

×

(
1 0

−1

a
h I

)
. (10)

The proof of Lemma 2 can be found in Horn and Johnson
(1990). Note that the processes αt and ηt, t = 0, · · · , T−1,
possess the following properties.

Lemma 3. It holds true that αt > 0 and 0 < ηt < 1 almost
surly for t = 0, · · · , T − 1.

Proof. (i) Under Assumption 1, since ηT = 1, ET−1[ete
′
t] ≻

0 holds true at stage t = T − 1, which implies αT−1 >
0. Now assume that αk+1 > 0. At stage k, we have
Ek[αk+1eke

′
k] ≻ 0, which also implies αk > 0.
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(ii) Now we prove that 0 < ηt < 1 for all t = T − 1, · · · , 0.
Since αt > 0, under Assumption 1, we have Dt ≻ 0, for all
t = 0, · · · , T − 1. Thus, the following inequality holds for
t = T − 1, · · · , 0,

(d′tD
−1
t dt)

(
(d′tD

−1
t dt)(1

′D−1
t 1)− (1′D−1

t dt)
2
)

=
(
(1′D−1

t dt)dt − (d′tD
−1
t dt)1

)
D−1

t

×
(
(1′D−1

t dt)dt − (d′tD
−1
t dt)1

)
> 0. (11)

At stage t = T − 1, based on (11), we have

ηT−1 = d′T−1D
−1
T−1dT−1 − β2

T−1/αT−1 > 0. (12)

Equality (9) implies

d′tD
−1
t dt = 1− 1(

1 + d′T−1

(
DT−1 − dT−1d′T−1

)−1

dT−1

) .
(13)

Substituting (13) to (12) yields 1−ηT−1 > (βT−1)
2/αT−1,

which further implies ηT−1 < 1. Now we assume that

(1− ηk+1) > (βk+1)
2/αk+1 > 0. (14)

Note that (14) implies that 0 < ηk+1 < 1. Together with
(11), we have ηk > 0. To prove ηk < 1, we first show that
the following equality is true,

(1− Ek[ηk+1])Dk − dkd
′
k ≻ 0. (15)

Given any x ∈ Rn, due to the induction assumption in
(14) and αk+1 > 0, we have

αk+1x
′(eke

′
k)x+ 2βk+1(x

′ek) + (1− Ek[ηk+1]) (16)

for any x ∈ Rn. Note that the inequality in (16) holds
for any realization of αk+1, βk+1, ηk+1, and ek. Taking
conditional expectation of (16) with respect to Fk gives
rise to

x′Dkx+ 2d′kx+ (1− ηk+1) > 0, ∀x ∈ Rn, (17)

which further implies,[
Dk dk
d′k 1− Ek[ηk+1]

]
≻ 0. (18)

Since 1 − Ek[ηk+1] > 0, applying the Schur’s complement
theory (Horn and Johnson (1990)) to (18) yields

Dk − d′kdk/(1− Ek[ηk+1]) ≻ 0,

which completes the proof for (15). We also have

1− ηk

= 1− Ek[ηk+1]− d′kD
−1
k dk + β2

k/αk

= (1− Ek[ηk+1])
(
1− d′k ((1− Ek[ηk+1])Dk)

−1
dk

)
+

β2
k

αk

=
( 1− Ek[ηk+1]

1 + d′k ((1− Ek[ηk+1])Dk − d′kdk)
−1

dk

)
+

β2
k

αk
. (19)

Combining (19) and (15) yields 1−ηk > β2
k/αk > 0, which

further implies ηk < 1. 2

Due to the nonseparability of the variance term in problem
(P̄(ω)) in the sense of dynamic programming, we adopt
the same idea as in Li and Ng (2000) by constructing the
following auxiliary problem A(λ, ω),

A(ω, λ) : min E[ωx2
T − λxT ],

Subject to: {ut, xt} satisfies (1) and (2).

The auxiliary problem A(ω, λ) can be solved explicitly.

Proposition 4. The optimal policy for problem A(ω, λ) is

u∗
t (ω, λ) =

λ

2ω
Et[αt+1ete

′
t]
−1Et[βt+1et] + (αtxt −

λβt

2ω
)

× Et[αt+1ete
′
t]
−11, (20)

where αt and βt are defined in (4) and (5), respectively.
Furthermore, under the optimal policy u∗

t (ω, λ), we have

E[xT (ω, λ)] = β0x0 +
λη0
2ω

, (21)

E[x2
T (ω, λ)] = α0x

2
0 +

λ2η0
4ω2

, (22)

Var[xT (ω, λ)] = (α0 − β2
0)x

2
0 −

λ2

4ω2
(η0 − η20)

− λη0β0x0

ω
. (23)

Proof. Define the value function of problem A(ω, λ) as

Jt(xt) , min
uτ ,τ≥t

Et

[
ωx2

T − λxT

]
. (24)

Applying dynamic programming recursion and the smooth
property of the conditional expectation to (24) yields

Jt(xt) = maxut Et

[
Jt+1(xt+1)

]
. We claim that the value

function (24) is of a quadratic form,

Jt(xt) = ωαtx
2
t − λβtxt −

λ2

4ω
ηt, (25)

where αt, βt, ηt are defined in (4), (5) and (6), respectively.
Such a claim can be proved by induction method. At
stage T , since αT = 1, βT = 1 and ηT = 0, we have
JT (xT ) = ωx2

T − λxT . Assume that the claim in (25) is
true at stage t = k + 1. At stage t = k, the value function
(24) can be written as follows by using (2),

Jk(xk) = min
xk=1′uk

Et

[
ωαk+1x

2
k+1 − λβk+1xk+1 −

λ2

4ω
ηk+1

]
= min

xk=1′uk

(
ωu′

kDkuk − λd′kuk − λ2

4ω
Ek[ηk+1]

)
.

(26)

To solve (26), we consider the following Lagrangian func-
tion by introducing multiplier ρ,

L(ρ) = ωu′
kDkuk − λd′kuk + ρ(xk − 1′uk).

Applying the optimality condition of L(ρ) gives rise to

∇uk
L(ρ) = 2ωDkuk − λdk − ρ∗1 = 0,

which implies that

u∗
k =

1

2ω
D−1

k (λdk + ρ∗1), ρ∗ =
2ωxk − λ1′D−1

k dk

1′D−1
k 1

.

Since αk+1 > 0 by Lemma 3, Jk(xk) is a convex function
with respect to uk. We can conclude that the optimal
policy is indeed given by (20). Substituting u∗

k into (26)
yields

Jk(xk) =
(ρ∗)2

4ω
1′D−1

k 1− λ2

4ω
(d′kD

−1
k dk + Ek[ηk+1])

=ωαkx
2
k − λβkxk − λ2

4ω
ηk,

where αk = 1/1′D−1
k 1, βk = (1′D−1

k dk)/(1
′D−1

k 1) and

ηk =Ek[ηk+1] + d′kD
−1
k dk − (1′D−1

k dk)
2/(1′D−1

k 1), which
completes the proof the optimality of policy (20). Under
policy (20), we claim that the first and second order
conditional moments of xT preserve the following form,

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9009



Et[xT (ω, λ)] = βtxt +
ληt
2ω

, (27)

Et[x
2
T (ω, λ)] = αtx

2
t +

λ2ηt
4ω2

. (28)

It is obvious that the claims in (27) and (28) hold true at
stage T . We assume that such a claim is also true at time
k + 1. At time k, we have

Ek[xT ] = E
[
E[xT |Fk+1]|Fk

]
= Ek[βk+1e

′
ku

∗
k +

ληk+1

2ω
]

= Ek

[
βk+1e

′
k

( λ

2ω
D−1

k dk + (αtxt −
λβk

2ω
)D−1

k 1
)

+
λ

2ω
ηk+1

]
= βkxk +

ληk
2ω

.

Similarly, the second order moment can be computed as

Ek[x
2
T ] = E

[
E[x2

T |Fk+1]|Fk

]
= Ek[αk+1u

∗′
k eke

′
ku

∗
k +

λ2ηk+1

4ω2
]

=
x2
k

1′D−1
k 1

+
λ2

4ω

(
d′kD

−1
k dk −

(1′D−1
k dk)

2

1′D−1
k 1

+ Ek[ηk+1]
)

= αkx
2
k +

λ2ηk
4ω2

,

which completes the proof. 2

Proposition 5. The following policy solves problem (P̄(ω)),

u∗
t (ω) =

1 + 2ωβ0x0

2ω(1− η0)
Et[αt+1ete

′
t]
−1(Et[βt+1et]− βt1)

+ αtxtEt[αt+1ete
′
t]
−11, (29)

with the optimal mean-variance pair of the terminal wealth
xT given by

E[xT ] =
β0x0

1− η0
+

η0
2ω(1− η0)

, (30)

Var[xT ] = (α0 −
β2
0

1− η0
)x2

0 +
η0

4ω2(1− η0)
. (31)

Furthermore, the efficient frontier can be expressed as

(E[xT ]−
β0x0

1− η0
)2

=
η0

1− η0
(Var[xT ]− α0x

2
0 +

β2
0x

2
0

1− η0
). (32)

Proof. Implied by Theorem 2 in Li and Ng (2000), the
optimal policy of problem (P̄(ω)) takes the same form as
(20). We now identify λ∗ such that π(A(λ∗, ω)) also solves
problem (P̄(ω)). From Theorem 2 in Li and Ng (2000), the
optimal λ∗ solves the following equation,

λ∗ = 1 + 2ωE[xT ]|π∗(A(ω,λ∗)). (33)

Combining (33) and (21) yields

λ∗ = 1 + 2ω(β0x0 +
λ∗η0
2ω

).

Solving the above equation gives rise to

λ∗ =
2ωβ0x0 + 1

1− η0
. (34)

Substituting λ∗ into the optimal policy π(A(ω, λ)) and the
expressions in (21) and (23) gives rise to the optimal policy

(29) of problem (P̄(ω)) and the mean-variance efficient
pair of the terminal wealth given in (30) and (31). The
efficient frontier (32) is achieved by eliminating ω from
(30) and (31). 2

Now we reach the final stage to solve problem (P(ϵ)) by
utilizing the optimal policy of problem (P̄(ω)).

Proposition 6. The optimal policy (29) of problem P̄(ω)
solves problem (P(ϵ)) with

ω , η0

2
(
β0x0 − (1− η0)ϵ

) . (35)

Proof. We introduce Lagrangian multiplier ω ≥ 0 for
problem (P(ϵ)),

L(ϵ, ω) : max
ut

ωVar[xT ] + (ϵ− E[xT ])

Subject to : {xt, ut} satisfies (1) and (2).

By weak duality, it is clear that v(L(ϵ, ω)) ≥ v(P(ϵ)).
On the other hand, note that solving problem (L(ϵ, ω))
is equivalent to solving problem (P̄(ω)). Thus, policy
π(P̄(ω)) also solves problem (L(ϵ, ω)). Under the optimal
policy π(P̄(ω)), the expected value and the variance,
E[xT (ω)] and Var[xT (ω)], are given in (30) and (31),
respectively. The strong duality, v(L(σ, ω)) = v(P(ϵ)),
holds once the feasible condition E[xT (ω)] = ϵ is satisfied.
Solving

β0x0

1− η0
+

η0
2ω(1− η0)

= ϵ

gives rise to the result in (35). 2

If all the returns et are independent among different peri-
ods, the conditional expectation degenerates to the uncon-
ditional expectation. In particular, we have Et[αtete

′
t] =

αtE[ete
′
t] and Et[βtet] = βtE[et]. Furthermore, the process-

es (4), (5) and (6) all become deterministic, for t = T −
1, · · · , 0,

αt =
1∏T−1

τ=t 1′E[ete′t]
−11

,

βt =

∏T−1
τ=t 1′E[ete

′
t]
−1E[et]∏T−1

τ=t 1′E[ete′t]
−11

,

ηt = ηt+1 +
(βt+1)

2

αt+1
E[et]

′E[ete
′
t]
−1E[et]−

(βt)
2

αt
.

Substituting αt, βt and ηt into (29) and (32) yields the
same optimal policy and efficient frontier given in Li and
Ng (2000).

3.2 Solution of problem (Pf (ϵ))

Now we turn to consider problem (Pf (ϵ)), in which the risk
free asset is also included in the portfolio. We first define

the discount factor as γt =
∏T−1

τ=t rτ , for t = 0, · · · , T .
In problem (Pf (ϵ)), we can assume that ϵ > x0γ0; Oth-
erwise, the optimal investment policy is to invest all the
initial wealth in the risk-free account. To solve problem
(Pf (ϵ)), we then define the following process recursively,
for t = T − 1, · · · , 0,
ρt = Et[ρt+1]− Et[ρt+1P ′

t](Et[ρt+1PtP ′
t])

−1Et[ρt+1Pt],
(36)
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with boundary condition ρT = 1. The process ρt possesses
the following property,

Lemma 7. For all t = T − 1, · · · , 0, 0 < ρt < 1 holds true
almost surely.

Lemma 7 can be proved by a method similar to the one
for Lemma 3. As the same as the way in solving (P(ϵ)),
We now also consider the following problem of a weighting
sum of the mean-variance pair for (Pf (ϵ)),

(P̄f (ω)) : min
ut

ωVar[xT ]− E[xT ]

Subject to: {xt, ut} satisfies (3).

Proposition 8. The following optimal portfolio policy
π(P̄f (ω)) solves problem (P̄f (ω)),

u∗
t (ω) = −(rtxt −

t∏
τ=0

rτx0 −
1

2ωγt+1ρ0
)Et[ρt+1PtP

′
t ]
−1

× Et[ρt+1Pt], (37)

for t = T−1, · · · , 0, where ρt is given in (36). Furthermore,
the expected value and variance of the optimal terminal
wealth are expressed as

E[xT (ω)] =
1− ρ0
2ωρ0

+ x0γ0, (38)

Var[xT (ω)] =
1− ρ0
4ω2ρ0

, (39)

respectively, and the efficient frontier is expressed as

Var[xT (ω)] =
ρ0

1− ρ0
(E[xT (ω)]− x0γ0)

2 (40)

for E[xT (ω)] > x0γ0.

Proof. Proposition 8 can be proved in the same way as the
proof for Proposition 5. However, we provide an alternative
proof here. We treat problem (P̄f (ω)) as a special case
of problem (P̄(ω)) by regarding the risk free asset as a
special risky asset. Let êt ∈ Rn+1 be the augmented return

vector, i.e., êt =
(
rt, e

′
t

)′
, for t = 0, · · · , T − 1. Due to the

composition of êt, the processes αt, βt and ηt defined in
(4), (5) and (6) can be expressed as

αt = γ2
t ρt, βt = γtρt, ηt = 1− ρt, (41)

where ρt is defined in (36) for t = T, · · · , 0. Clearly, when
t = T , the claim (41) is true. Now we assume that claim
(41) holds true at time t = k + 1. At time t = k, we have

Ek[αk+1êkê
′
k]

−1

=
1

γk+1

(
r2kbk rkh

′
k

rkhk Hk

)−1

=
1

γk+1

(
1

−1

rkbk
h′
k

0 I

) 1

r2kbk
0

0 bk(bkHk − hkh
′
k)

−1


×

(
1 0

−1

rkbk
hk I

)
, (42)

where bk , Ek[ρk+1] and hk , Ek[ρk+1ek], Hk ,
Ek[ρk+1ekek]. Using expression (42) leads to the following,(

1 1′ )Ek[ρk+1êkê
′
k]

−1

(
1
1

)
=

1

γ2
kbk

+
1

γ2
kbk

(hk − bkrk1)
′(bkHk − hkh

′
k)

−1

× (hk − bkrk1). (43)

Note that

Ek[ρk+1Pk] = hk − bkrk1, (44)

bkHk − hkh
′
k = bkEk[ρk+1PkP

′
k]

− Ek[ρk+1Pk]Ek[ρk+1P
′
k]. (45)

Combining (43) with (45) and (44) and using Lemma 2
give rise to

αk = 1/
( (

1 1′ )Ek[ρk+1êkê
′
k]

−1

(
1
1

))
= γ2

k(bk − Ek[ρk+1P
′
k]Ek[ρk+1PkP

′
k]

−1Ek[ρk+1Pk])

= γ2
kρk.

By using the similar method, we can prove that βk = γkρk
and ηk = 1 − ρk. Then substituting (41) to the optimal
policy (29) and optimal mean-variance pair (30) and (31)
for the augmented return êt yields the optimal policy in
(37) and the mean-variance pair in (38) and (39). 2

Proposition 9. Problem (Pf (ϵ)) can be solved by policy
π(P̄f (ω

∗)) given in (37) with

ω∗ , 1− ρ0
2ρ0(ϵ− γ0x0)

. (46)

Proof. Using the argument similar to the proof of Propo-
sition 6, (Pf (ϵ)) is solved when E[xT (ω

∗)] = ϵ holds, i.e.,

1− ρ0
2ω∗ρ0

+ x0γ0 = ϵ, (47)

based on (38). The solution to (47) is exactly the optimal
ω∗ given in (46). 2

4. ILLUSTRATIVE EXAMPLE

We use one simple example to illustrate the computational
procedure provided in Section 3 for problem (P̄(ω)). We
consider a case with two risky assets whose return process
follows an AR(1) stochastic process model, i.e., et+1 = c+
Aet + ξ, where

A =

(
0.01 −0.002

−0.002 0.012

)
, c =

(
1.05
1.05

)
,

with initial value e−1 = (1.07, 105)′, and ξ being a distur-
bance term that takes only two values of (0.055,−0.045)′

and (0.02, 0.06)′ with probability 0.3 and 0.7, respectively.
We also assume that the investment horizon is T = 8 and
ω = 2. Figure 1 depicts the tree-structure of the realization
of the returns et for t = 0, 1, · · · , T (Only first 4 periods are
plotted). The second column of Table 1 gives the details of
the returns in each of these scenarios. The corresponding
process αt, ηt and ηt, for t = T, T − 1, · · · , 0, can be
computed by (41). Note that the conditional expectation
is computed according to each individual scenario (node)
in the scenario tree (Figure 1). We give the details of αt,
βt and ηt for t = 0, 1, 2 in the last three columns in Table
1.

From Proposition 5, by using the parameters listed in Ta-
ble 1, we can compute the correspondent optimal portfolio
policy for each of these scenario as follows.
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Fig. 1. The scenario tree of returns

Node t et αt βt ηt
1 0 (1.070, 1.050)′ 1.302 0.742 0.577
2 1 (1.113, 1.015)′ 1.269 0.776 0.526
3 1 (1.039, 1.120)′ 1.247 0.763 0.534
4 2 (1.114, 1.015)′ 1.228 0.805 0.472
5 2 (1.039, 1.120)′ 1.207 0.792 0.481
6 2 (1.113, 1.016)′ 1.228 0.805 0.472
7 2 (1.038, 1.121)′ 1.207 0.791 0.481

Table 1. The information of each scenario

node1 : u0(x0) = (4.428,−3.428)′x0 + (−5.140, 5.140)′,

node2 : u1(x1) = (4.312,−3.428)′x1 + (−5.140, 5.140)′,

node3 : u1(x1) = (4.581,−3.581)′x1 + (−5.732, 5.732)′,

node4 : u2(x2) = (4.311,−3.311)′x2 + (−5.734, 5.734)′,

node5 : u2(x2) = (4.580,−3.580)′x2 + (−6.148, 6.148)′,

node6 : u2(x2) = (4.315,−3.315)′x2 + (−5.740, 5.740)′,

node7 : u2(x2) = (4.583,−3.583)′x2 + (−6.153, 6.153)′.

The correspondent efficient frontier of {
√
Var[xT ],E[xT ]]}

is given as

(E[xT ]− 1.754)2 = 1.364(Var[xT ] + 1.312× 10−6).

5. CONCLUSION

For a market with the most general structure of correlation
for returns of risky assets, we have derived analytically the
optimal portfolio policy for the multiperiod mean-variance
formulation. When the returns are correlated, the return
history does contain valuable information for us to predict
the future return. Thus, parameters in the portfolio policy
become path-dependent adaptive processes themselves. It
will be interesting to investigate further the prediction
power hidden in our complicated optimal portfolio policy.
By calibrating real market data into our model formula-
tion, we could verify the validity and gain more insights
from applying our derived policy.
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