
An Observer with Measurement-triggered
Jumps for Linear Systems with Known

Input ?

F. Ferrante ∗ F. Gouaisbaut ∗ R. G. Sanfelice ∗∗

S. Tarbouriech ∗

∗ CNRS, LAAS 7, Avenue du Colonel Roche F-31400 Toulouse,
France and Univ de Toulouse, UPS, ISAE, F-31400 Toulouse, France.

Email:{ferrante, fgouaisb, tarbour}@laas.fr
∗∗Department of Aerospace and Mechanical Engineering, Department

of Electrical and Computer Engineering, University of Arizona,
Tucson, Email: sricardo@u.arizona.edu

Abstract: This paper deals with the estimation of the state of linear time invariant systems for
which measurements of the output are available sporadically. An observer with jumps triggered
by the arrival of such measurements is proposed and studied in a hybrid systems framework.
The resulting system is written in estimation error coordinates and augmented with a timer
variable that triggers the event of new measurements arriving. The design of the observer is
performed to achieve uniform global asymptotic stability (UGAS) of a closed set including the
points for which the state of the plant and its estimate coincide. Furthermore, a computationally
tractable design procedure for the proposed observer is presented and illustrated in an example.
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1. INTRODUCTION

State observer design is undoubtedly a difficult prob-
lem, with high relevance in applications. Indeed, observers
can be employed to obtain an estimation of certain state
variables, which are not directly accessible or also to re-
duce the number of the sensors used in control systems.
Many of the most interesting recent applications pertain to
controlled systems linked together through data networks.
The nature of such networks may often introduce time
delays, asynchronism, packages drop-out, and communica-
tion channel limitations; see, for example, Lopez Hurtado
et al. (2009). Moreover, in modern distributed systems,
the communication mechanisms across the network are
governed by logic statements, which aim at reducing the
required bandwidth over the communication channel; see,
for example, Wong and Brockett (1997). Such mechanisms
lead to an intermittent availability of the measured vari-
ables. In this setting, the classical paradigm of continu-
ously measured variables needs to be reconsidered to face
the new challenges induced by data network constraints.
Indeed, an observer can employ the measured output only
at discrete-time instants, which are a priori unknown, that
is the estimation algorithm is actually governed by an
event-triggered mechanism (see Åström and Bernhardsson
(2002) for further details). It is worthwhile to notice that

? This work has been supported by ANR project LimICoS contract
number 12 BS03 00501 and by HYCON2 Network of Excellence grant
agreement 257462. Research by R. G. Sanfelice has been partially
supported by the National Science Foundation under CAREER
Grant no. ECS-1150306 and by the Air Force Office of Scientific
Research under YIP Grant no. FA9550-12-1-0366.

for the periodic sampling case, several solutions are shown
in the literature, (see for example Maroni et al. (2000)).

In this paper, we focus on the estimation problem for
linear systems where the input injected into the plant
is known and the measured output is gathered in an
intermittent fashion. Building from the idea in Raff and
Allgöwer (2007), we propose an open-loop observer along
with a suitable event-triggered updating of the estimated
state. Since the evolution of the considered observer ex-
hibits both continuous-time behavior and instantaneous
updating, we provide a hybrid model of the observer
including the triggering logic. Then, using a Lyapunov
function, we propose a condition that guarantees global
uniform asymptotic stability of the estimation error as well
as robustness with respect to bounded perturbations, in
an input-to-state stability sense (see Sontag (1989) and
Cai and Teel (2009)). To this end, by relaxing the input-
to-state stability Lyapunov condition for hybrid systems
proposed by Cai and Teel in Cai and Teel (2009), we
exhibit a novel sufficient condition to prove input-to-state
stability in presence of persistent jumps. Finally, the ob-
tained condition is turned into a design algorithm for the
proposed observer based on the solution of a set of linear
matrix inequalities.

The proposed hybrid model allows us to effectively
exploit the properties of the time domain of the solutions
to the resulting hybrid system, in particular, the persis-
tence of jumps. This feature not only provides a tighter
understanding of the system behavior but also enables us
to construct a more general Lyapunov function, so as to
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overcome the convexity issues induced by non-uniformity
in sampling time, which are also pointed out in Raff and
Allgöwer (2007), and, moreover, to characterize the effect
of measurement noise via input-to-state stability.

The paper is organized as follows. Section II presents
the system under consideration, the problem we intend to
solve, and the hybrid modeling of the proposed observer.
Section III is dedicated to the main results, which provide
a solution to the stated estimation problem. Section IV
is devoted to numerical issues and provides a convex
design algorithm for the proposed observer. In Section V,
the effectiveness of the approach is illustrated through a
numerical example. Due to space limitations, proofs of the
results will be published elsewhere.

Notation: The set N0 is the set of the positive integers including

zero and R≥0 represents the set of the nonnegative real scalars. For

every complex number ω, Re(ω) and Im(ω) stand respectively for

the real and the imaginary part of ω. I denotes the identity matrix

whereas 0 denotes the null matrix (equivalently the null vector)

of appropriate dimensions. For a matrix A ∈ Rn×m, A′ denotes

the transpose of A and ‖A‖ denotes the Euclidean induced norm.

He(A) = A+A′. For two symmetric matrices, A and B, A > B means

that A−B is positive definite. In partitioned symmetric matrices, the

symbol ? stands for symmetric blocks. The matrix diag{A1; . . . ;An}
is the block-diagonal matrix having A1, . . . , An as diagonal blocks.

For a vector x ∈ Rn, x′ denotes the transpose of x, whereas ‖x‖
denotes the Euclidean norm. For a function s ∈ [0,+∞) → Rn,

‖s‖t = supτ∈[0,t] ‖s(τ)‖. Let X be a given set, Co{X} represents the

convex hull of X. δB is the closed ball with radius δ of appropriate

dimension in the Euclidean norm. A function α : R≥0 → R≥0 is

said to belong to the class K if it is continuous, zero at zero, and

strictly increasing. A function α : R≥0 → R≥0 is said to belong

to class K∞ if it belongs to the class K and is unbounded. A

function β : R≥0 × R≥0 → R≥0 is said to belong to class KL if it

is nondecreasing in its first argument, nonincreasing in its second

argument, and lims→0+ β(s, t) = limt→+∞ β(s, t) = 0. A function

β : R≥0 × R≥0 × R≥0 → R≥0 is said to belong to class KLL if, for

each r ∈ R≥0, the functions β(·, ·, r) and β(·, r, ·) belong to class KL.

2. PROBLEM STATEMENT

2.1 System description

Consider the following continuous-time linear system:

ż = Az +Bu

y = Mz
(1)

where z ∈ Rn, y ∈ Rq and u ∈ Rp are, respectively, the
state, the measured output, and the input of the system,
while A,B and M are constant matrices of appropriate
dimensions. Assume also that the input u belongs to the
class of the measurable and locally bounded functions
u : [0,∞)→ Rp. We want to design an observer providing
an estimate ẑ of the state z when the output y is available
only at some times tk, for k ∈ N0, not known a priori.
Figure 1 illustrates such a setting in the context of network
control. Suppose that {tk}+∞0 is a strictly increasing un-
bounded real sequence of times. Furthermore, assume that
there exist two positive real scalars T1, T2 with T1 < T2
such that 1

1 Concerning this assumption, see Postoyan et al. (2011); Briat and
Seuret (2012) and the references therein. Notice that, as pointed

ż = Az +Bu

y = Mz

˙̂z = Aẑ +Bu

ẑ+ = ẑ + L(y −Mẑ)

Data Network
Network
Supervisor

yu

ẑ

Observer

PlantPlant

y(tk)

Fig. 1. State estimation for a linear system with output
gathered through a data network.

T1 ≤ tk+1 − tk ≤ T2. (2)

Since the information on the output y is available in
an impulsive fashion, motivated by the work of Raff
and Allgöwer (2007), to solve the considered estimation
problem, we design an observer with jumps in its state
following the law:

˙̂z = Aẑ +Bu when t /∈ {tk}+∞0 (3a)

ẑ(t+k ) = ẑ(tk) + L(y(tk)−Mẑ(tk)) when t ∈ {tk}+∞0
(3b)

where L is a real matrix of appropriate dimensions to
be designed. It is worthwhile to point out that in Sur
and Paden (1997) the same observer is adopted to state
estimation in presence of quantized measurement.
Following the lines of Sanfelice and Praly (2012), the state
estimation problem can be formulated as a set stabilization
problem. Namely, define

As =
{

(z, ẑ) ∈ R2n : z = ẑ
}

(4)

our goal is to design the matrix L such that As is globally
asymptotically stable for the plant (1) interconnected with
the observer in (3a). At this stage, as usual in estimation
problems, one considers the estimation error defined as
ε := z− ẑ, so the error dynamics are given by the following
dynamical system with jumps:

ε̇ = Aε when t /∈ {tk}+∞0 (5a)

ε(t+k ) = (I− LM)ε(tk) when t ∈ {tk}+∞0 . (5b)

Due to the linearity of the system (1), the estimation error
dynamics and the dynamics of z are decoupled. Then, for
the purpose of stabilizing the set As, one can effectively
just consider system (5).

Remark 1. Notice that assuming the knowledge of the
input is not overly restrictive. Indeed, in many practical
settings, all of the devices employed to control and super-
vise the plant may be embedded into the same system.
This situation is depicted in Figure 1, where the dotted
arrows denote impulsive data streams, while the solid
arrows denote continuous data streams. Notice also that,
often, the estimated state is part of a feedback controller
(e.g. in linear observer-based controller architectures), in
which case the input u is a static function of the estimated
state that is perfectly known.

2.2 Hybrid modeling

The fact that the observer experiences jumps when a
new measurement is available suggests that the updating

also in Hetel et al. (2012), condition (2) prevents the existence of
accumulation points in the sequence {tk}+∞0 , and, hence, it avoids
the existence of Zeno behaviors, which is typically undesired in
practice.
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process of the error dynamics can be described via a
hybrid system. Due to this, we represent the whole system
composed by the plant (1), the observer (3), and the logic
triggering jumps as a hybrid system (see Li and Sanfelice
(2013) where similar techniques are adopted to model a
finite time convergent observer).
Such a hybrid systems approach requires to model the
hidden time-driven mechanism triggering the observer
jumps. To this end, in this work, we augment the system
state with an auxiliary timer variable τ , which keeps track
of the duration of flows and triggers a jump whenever a
certain condition is verified. This additional state allows
to describe the time-driven jump triggering mechanism
as a state-driven jump triggering mechanism, which leads
to a model that can be efficiently represented by relying
on the framework for hybrid systems proposed in Goebel
et al. (2012). More precisely, we make τ to decrease as
ordinary time t increases and, whenever it reaches zero,
triggers a jump that makes a self reset of τ . In fact, after
a jump occurs, τ is re-initialized to some value belonging
to the interval [T1, T2] and, after the reset, it flows again.
Therefore, the whole system composed by the state ε and
the timer variable τ can be represented by the following
hybrid system:

Hε



ε̇ = Aε
τ̇ = −1

}
(ε, τ) ∈ C

ε+ = (I− LM)ε
τ+ ∈ [T1, T2]

}
(ε, τ) ∈ D

(6a)

with the flow set and the jump set defined as

C =
{

(ε, τ) ∈ Rn+1 : τ ∈ [0, T2]
}

D =
{

(ε, τ) ∈ Rn+1 : τ = 0
}
.

(6b)

For this system, we denote by x̃ = [ε′ τ ′]′ the state and by
f and G, respectively, the flow map and the jump map,
i.e.,

f(x̃) =

[
Aε
−1

]
(7a)

G(x̃) =

[
(I− LM)ε

[T1, T2]

]
. (7b)

Notice that to make the hybrid system (6) an accurate
description of the real time-triggered phenomenon, which
governs the feedback update process, the variable τ needs
to belong to the interval [0, T2], property that is guaran-
teed by the definition of C and D. Then, the stabilization
objective can be formalized by introducing the set 2

A =
{

(ε, τ) ∈ Rn+1 : ε = 0, τ ∈ [0, T2]
}
. (8)

Then, the problem we intend to solve can be formulated
as follows:

Problem 1. Given the matrices A, B, and M of appropri-
ate dimensions and two positive scalars T1 and T2 such
that T1 < T2, compute a matrix L ∈ Rn×q such that
the set A defined in (8) is Uniform Global Asymptotically
Stable (UGAS ) for the hybrid system (6).

2 Since A is closed, given a vector x ∈ Rn+1, the distance of x from
A is defined as follows:

|x|A = inf
y∈A
‖x− y‖.

It turns out that for every x̃ ∈ C ∪D ∪G(D), |x̃|A = ‖ε‖.

About the notion of UGAS of a given set for a generic
hybrid system H, we consider the definition provided in
(Goebel et al., 2012, Definition 3.6). Concerning the exis-
tence of solutions to system (6), relying on the concept of
solution proposed in (Goebel et al., 2012, Definition 2.6), it
is straightforward to check that for every initial condition
x̃(0, 0) ∈ C ∪ D, every solution to H is complete. In ad-
dition, we can characterize the domain of these solutions.
Indeed, the variable τ , acting as a timer, guarantees that
for every initial condition x̃(0, 0) ∈ C ∪ D, at least for
j ≥ 1, tj+1 − tj ∈ [T1, T2]. Therefore, the domain of a
solution φ to H can be written as follows:

domφ = ([t0, t1]× {0}) ∪

 ⋃
j∈N\{0}

([tj , tj+1])× {j}


T1 ≤ tj+1 − tj ≤ T2 ∀j ∈ N \ {0}
0 ≤ t1 − t0 ≤ T2

(9)
where domφ is the domain of φ, which is a hybrid time
domain. It should be noticed that the structure of the
foregoing hybrid time domain implies that

t ≤ T2(j + 1) ∀(t, j) ∈ domφ. (10)

3. MAIN RESULTS

3.1 Conditions for Uniform Global Asymptotic Stability

The following result provides conditions for the UGAS
of the set A defined in (8) for system (6). These conditions
ensure that the assumptions of the Lyapunov result for hy-
brid systems presented in (Goebel et al., 2012, Proposition
3.24) hold.

Theorem 1. Given two positive scalars T1 and T2 such that
T1 < T2, if there exist a symmetric positive definite matrix
P ∈ Rn×n and a matrix L ∈ Rq×n such that

(I−LM)′eA
′vPeAv(I−LM)−P < 0, ∀v ∈ [T1, T2], (11)

then the setA defined in (8) is UGAS for the hybrid system
(6).

Remark 2. Notice that assuming relation (11) to hold
implies that the eigenvalues of eAv(I − LM) are strictly
contained in the unit circle for every v belonging to [T1, T2].
In Section 4, we provide a design procedure, including an
algorithm.

3.2 Effect of measurement noise

Until now, the measured output y was assumed to
be perfectly known at sampling times tk. However, in
real-world settings, the measured output is affected by
measurement noise. Hence, having some insight on the
robustness of hybrid system (6) with respect to a bounded
measurement noise is undoubtedly useful.

To this end, denoting the measurement noise as η :
[0,+∞)→ δB, with δ ≥ 0 the measured output is defined
by

y = Mx+ η.

Then, the hybrid system (6) is rewritten as follows:
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Hη



ε̇ = Aε
τ̇ = −1

}
(ε, τ) ∈ C

ε+ = (I− LM)ε− Lη
τ+ ∈ [T1, T2]

}
(ε, τ) ∈ D

(12a)

with
C =

{
(ε, τ) ∈ Rn+1 : τ ∈ [0, T2]

}
D =

{
(ε, τ) ∈ Rn+1 : τ = 0

}
.

(12b)

Thus, the flow map remains defined as in (7a) while
the new jump map is given as

G̃(x̃, η) =

[
(I− LM)ε− Lη

[T1, T2]

]
(13)

To study the effect of the measurement noise, we consider
the input-to-state-stability (ISS ) concept introduced in
Sontag (1989) for continuous-time nonlinear systems and
recently extended to hybrid systems in Cai and Teel (2005,
2009). Notice that this extension of ISS to hybrid systems
deals with hybrid signals as external perturbations, and
for such class of signals, a suitable supremum norm is
provided. However, in our case, the perturbation t 7→
η(t) is a purely continuous-time signal, so it needs to be
transformed to a hybrid signal to fit in the framework
proposed by Cai and Teel. To this end, as shown in Robles
and Sanfelice (2011), given a solution φ to Hη, the signal
t 7→ η(t) can be represented as a hybrid signal ηH defined
as

ηH(t, j) = η(t) ∀(t, j) ∈ domφ. (14)

Now, if for the hybrid signal ηH we consider the (hybrid)
supremum norm ‖ηH‖(t,j) in Cai and Teel (2009), due to
(14), it turns out that for such signal one has ‖ηH‖(t,j) =
‖ηH‖t for every (t, j) ∈ domφ.

Notice that, although in Cai and Teel (2009) a condi-
tion for hybrid systems to be ISS is given, such a condition
does not hold in our context, at least in general. Indeed,
adopting the Lyapunov condition in Cai and Teel (2009)
to our problem would require the existence of a Lyapunov
function decreasing along the flow of the solutions to
system (12), which requires the matrix A to be Hurwitz.
On the other hand, since by Theorem 1 we exhibit the
existence of a Lyapunov function which is not increasing
along the flow of the solutions to system (12), by extending
this result, we show that condition (11) actually suffices to
guarantee the ISS property for the hybrid system (12).

Theorem 2. Given two positive scalars T1, T2 such that
T1 < T2, if there exist a symmetric positive definite matrix
P ∈ Rn×n and a matrix L ∈ Rq×n satisfying condition
(11), then the set A defined in (8) is ISS with respect to
η for the hybrid system (12).

Remark 3. The ISS property guaranteed by Theorem 2
only has perturbations on the jump map. On the other
hand, due to unmodeled dynamics, perturbations may
affect also the flow map. Thus, analyzing the behavior
of the hybrid system Hε in presence of a wider class
of perturbation is a relevant matter. At this stage, one
should notice that the way we adopted to model the hybrid
system (6) leads to a hybrid system which is structurally
robust with respect to bounded perturbations on the data;
namely, the hybrid system (6) is well-posed in the sense

defined in (Goebel et al., 2012, Definition 6.2). Thus,
the UGAS property of the set A defined in (8) for the
nominal systemHε holds (semiglobally and practically) for
the perturbed system as well. More specifically, provided
that the set (8) is UGAS for the hybrid system Hε, then
for each compact set M of the state space and each
ω > 0, there exists a function κ ∈ KLL, and a scalar
δ∗ > 0 such that for each δ ∈ [0, δ∗], every solution
φp to the perturbed system Hpε from M satisfies, for
all (t, j) ∈ domφp, |φp(t, j)|A ≤ κ(φp(t, j), t, j) + ω. It
is worthwhile to remark that getting a hybrid system
exhibiting the above mentioned well-posedness property
may not be trivial and it actually derives from suitable
choices done throughout the modeling stage.

4. NUMERICAL DESIGN PROCEDURE

In the previous section, a condition to establish the
UGAS and ISS properties, respectively, for systems (6)
and (12) was provided. However, due to its form, such a
condition is not computationally tractable to obtain a so-
lution to Problem 1. Indeed, from a numerical standpoint,
condition (11) has two drawbacks: it is not convex in P and
L, and it needs to be verified for infinitely many values
of v. The relevance of the second drawback is evident
at a first sight, while the lack of convexity is a severe
constraint, since non-convex problems often lead to NP-
hard problems; see, for example, Boyd et al. (1997). Thus,
in order to make the problem numerically tractable, some
manipulations are needed. To this end, the following result
provides a first step toward a convex design procedure for
the proposed observer.

Proposition 1. Let T1 and T2 be two given positive scalars
such that T1 < T2. If there exist a symmetric positive
definite matrix P ∈ Rn×n, a matrix J ∈ Rq×n, and a
matrix F ∈ Rn×n such that for every v ∈ [T1, T2]−He(F ) F − JM eA

′vP
? −P 0
? ? −P

 < 0 (15)

then the matrices P and L = F−1J satisfy condition (11).

Remark 4. Notice that condition (15) is convex with re-
spect to the unknown matrices F,L, and P .

To efficiently design the observer, one needs to avoid
finding a solution to (15) for infinitely many values of v.
To overcome this issue, we propose to embed the term eAv,
with v in the interval [T1, T2], in a convex set, obtaining
in this way a convex design procedure composed by a
finite number of inequalities. This technique consists in
finding some matrices X1, X2, . . . , Xν ∈ Rn×n, such that
eAv ∈ Co{X1, X2, . . . , Xν} whenever v ∈ [T1, T2].
To this end, consider the following well known expression

eAv =

σr∑
i=1

mr
i∑

j=1

Rije
λiv

vj−1

(j − 1)!
+

+

σc∑
i=1

mc
i∑

j=1

2eRe(λi)v
(
Re(Rij) cos(Im(λi)v)

− Im(Rij) sin(Im(λi)v)
) vj−1

(j − 1)!

(16)

where σr is the number of distinct eigenvalues, σc the
number of distinct complex-conjugate eigenvalue pairs.
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The constants mi and mc are, respectively, the multiplicity
of the real eigenvalue λi and of the complex-conjugate
eigenvalue pair λi, λ

∗
i in the minimal polynomial of the

matrix A. The matrices Rij are real n × n matrices
corresponding to the residuals associated to the partial
fraction expansion of (sI − A)−1. Notice that several
methods can be adopted to compute such matrices. In this
work, we rely on the procedure proposed in Leyva-Ramos
(1993). Once the value of the residuals are known, to build
a polytopic embedding of eAv one can proceed in a similar
manner of Heemels et al. (2010). Namely,

{X1, . . . , Xν} =

{
σr∑
i=1

mr
i∑

j=1

Rijβij +

σc∑
i=1

mc
i∑

j=1

γij Re(Rij)+

γ∗ij Im(Rij) : βij ∈ {βij , βij}, γij ∈ {γij , γij}, γ∗ij ∈ {γ∗ij , γ
∗
ij}

}
,

(17)

where

βij = max
v∈[T1,T2]

eλiv
vj−1

(j − 1)!

βij = min
v∈[T1,T2]

eλiv
vj−1

(j − 1)!

γij = max
v∈[T1,T2]

2eRe(λi)v cos(Im(λi)v)
vj−1

(j − 1)!

γij = min
v∈[T1,T2]

2eRe(λi)v cos(Im(λi)v)
vj−1

(j − 1)!

γ∗ij = max
v∈[T1,T2]

−2eRe(λi)v sin(Im(λi)v)
vj−1

(j − 1)!

γ∗ij = min
v∈[T1,T2]

−2eRe(λi)v sin(Im(λi)v)
vj−1

(j − 1)!

(18)

The proposed technique leads to the following result.

Corollary 1. Let T1 and T2 be two given positive scalars
such that T1 < T2. Let {X1, . . . , Xν} be the matrices
obtained by (17). If there exist a symmetric positive
definite matrix P ∈ Rn×n, a matrix J ∈ Rq×n, and a
matrix F ∈ Rn×n such that, for every i = 1, . . . , ν,[−He(F ) F − JM XiP

? −P 0
? ? −P

]
< 0 (19)

then the matrices P and L = F−1J satisfy condition (11).

Corollary 1 represents an efficient solution to Prob-
lem 1, which finally can be solved by Algorithm 1, which
is given below.

Algorithm 1 Observer design

1: Find the residual matrices Rij in (16)

2: Compute the scalars βij , βij , γij , γij , γ∗ij , γ
∗
ij as in (18)

3: Compute the matrices {X1, . . . , Xν} as in (17)
4: Solve (19) with respect to J , P and H
5: L← H−1J
6: return L

5. ILLUSTRATIVE EXAMPLE

Consider the mass-spring system proposed by Geromel
and de Oliveira (2001), which is defined by the following

data:

A =

 0 0 1 0
0 0 0 1
−2 1 −1 0
2 −2 0 −2

 , M = [1 0 0 0]

B′ = [0 0 1 0]

(20)

consider also u(t) = sin(t). By fixing T1 = 0.2 and T2 = 3,
Algorithm 1 yields:

P =

0.1180 0.2460 0.1889 0.1491
0.2460 1.1788 1.0392 0.9646
0.1889 1.0392 0.9407 0.8778
0.1491 0.9646 0.8778 0.8328

 , L =

 1.0000
−0.9433
−0.6773
1.6274

 .
(21)

Figure 2 depicts the projection onto ordinary time
t of the states z(t, j) and ẑ. In this simulation, the
sampling instants are selected randomly in the interval
[T1, T2] according to a standard Gaussian distribution.
Simulations show that the estimates appear to quickly
converge toward the plant state z since the estimate ẑ and
the state z are nearly overlapped after three jumps.

6. CONCLUSION

This paper proposed a methodology to model and
design, through a convex problem, an event-triggered
observer to estimate the state of a linear plant whenever
the output is measured in an impulsive fashion. Moreover,
the proposed observer is shown to be ISS with respect
to measurement noise and having a degree of robustness
with respect to small enough bounded perturbations. The
results in this paper suggest several directions of research
on event-triggered observers. For example, the setting
allows to consider a design problem for the updating logic
of τ , in order to somehow schedule the sampling instants.
Moreover, the design of an observer-based controller in
the presence of impulsive output measurement represents
certainly an interesting outlook.
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Fig. 2. The evolution of the states z and ẑ projected onto
ordinary time t.

(a) Projection onto ordinary time t of z1(t, j)
(solid) and ẑ1(t, j) (dashed).
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(b) Projection onto ordinary time t of z2(t, j)
(solid) and ẑ2(t, j)(dashed).
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(c) Projection onto ordinary time t of z3(t, j)
(solid) and ẑ3(t, j)(dashed).
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(d) Projection onto ordinary time t of z4(t, j)
(solid) and ẑ4(t, j)(dashed).

0 5 10 15
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

flows [t]

x
4
,
x̂
4

Goebel, R., Sanfelice, R.G., and Teel, A.R. (2012). Hybrid
Dynamical Systems: Modeling, Stability, and Robust-
ness. Princeton University Press.

Heemels, W.P., Van De Wouw, N., Gielen, R.H., Donkers,
M., Hetel, L., Olaru, S., Lazar, M., Daafouz, J., and
Niculescu, S. (2010). Comparison of overapproxima-
tion methods for stability analysis of networked control
systems. In Proceedings of the 13th International Con-
ference on Hybrid Systems: Computation and Control,
181–190.

Hetel, L., Daafouz, J., Tarbouriech, S., and Prieur, C.
(2012). Stabilization of linear impulsive systems through
a nearly-periodic reset. Nonlinear Analysis: Hybrid
Systems.

Leyva-Ramos, J. (1993). A new look at partial fraction
expansion of transfer function matrices from a com-
putational viewpoint. Computers & Mathematics with
Applications, 26(3), 27–35.

Li, Y. and Sanfelice, R.G. (2013). A robust finite-time
convergent hybrid observer for linear systems. In Pro-
ceedings of the 52th IEEE Conference on Decision and
Control, 2013.

Lopez Hurtado, I., Abdallah, C.T., and Canudas-de Wit,
C. (2009). Control under limited information: Special
issue (part i). International Journal of Robust and
Nonlinear Control, 19(16), 1767–1769.

Maroni, M., Bolzern, P., Nicolao, G.D., and Shaked, U.
(2000). Existence and convergence of solutions to
the h sampled-data estimation problem. International
Journal of Control, 73(15), 1382–1391.

Postoyan, R., Tabuada, P., Nešić, D., and Anta, A. (2011).
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