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Abstract: The sEMG based movement recognition developed rapidly in recent years, which focus on 

intention estimation that velocity and angle of movement joint are not concerned. This paper proposed a 

quantitative analysis method of sEMG, with ability to estimate motion of human joints, which can be used 

to control rehabilitation robot system control by patient’s own intention. The quantitative model of the 

relationship between sEMG signals and movement joint was established utilizing error Back Propagation 

artificial Neural Network and support vector machine with a Gaussian kernel, where the features of sEMG 

were taken as input. Considering of the actual demands of rehabilitation, the 1-DOF, 2-DOFs and 3-DOFs 

movement experiments were supposed to collect the information of joint angle and sEMG signals for 

model training. The result shows the angle prediction curve outputted by model of SVM has more than 

90% consistency with the actual movement, while the model of BPNN gets a more imprecise output with 

complexity of movement arising. Initial online experiments on rehabilitation robot controlled by a healthy 

subject demonstrate that sEMG based movement control using the proposed method is feasible. 
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1. INTRODUCTION 

Surface electromyography (sEMG) signals are the potential 

variation when muscles contract controlled by central 

nervous system, which is control affected by muscle structure, 

contractility and chemical change. Under the control of the 

central nervous system, the impulse, carried down the motor 

neuron to the muscle via axons, fires an action potential in all 

of the innervated muscle fibers that accumulate to be motor 

unit action potential (MUAP). MUAP conducting to both 

sides of muscle fibers makes the fibers contract to generate 

muscle contractility (Tsai, 1999). 

sEMG signal represents the nerve stimulation of the muscle 

fibers from central nervous system in a particular area. Hence, 

it is possible to research how central nervous system controls 

and coordinates movement via sEMG signal. Many EMG 

analysis methods have been proposed in previous works (JIA 

and LUO, 2007). Especially, the research of sEMG based 

body joint recognition is very important because not only 

could the result of recognition be taken as control input signal 

of humanoid robots and prosthetics, but also it could be the 

stimulation signal used for electrical stimulation treatment 

(Alizade and Bayram, 2004). At present sEMG features 

based movement pattern recognition is fully developed 

method in the field of sEMG control, which limited to 

recognizing only the predefined movement. To recognize the 

pattern, the mean of wavelet neural network based classifier 

can reach a high accuracy of 90% and achieve a satisfactory 

classification result (Subasi et al. 2006). However, since the 

musculoskeletal system is very complex and the relationship 

of the EMG signals and arm motion is highly nonlinear, in 

most cases, only discrete control can be realized. In robot 

control field, for example, most of researchers focused only 

on the directional control of robotic wrists (Fukuda et al. 

2003) or on the control of multi-fingered robot hands within a 

limited number of discrete postures (Zecca et al. 2002; 

Dalley et al. 2012). Movement pattern recognition would 

have difficulties in smooth action switch and complex action 

realization. In order to address this problem, a switching 

regime model based robot arm control and ANN based 

control were proposed (Muceli and Farina, 2012). For 

example, when switching regime model was used to control 

an anthropomorphic robot arm, the user did not have to be 

acquainted with the interface mapping since natural arm 

motions sufficed to control the robot arm directly (Artemiad 

and Kyriakopoulos, 2010, 2011). Although the proposal of 

continuous movement recognition has a profound 

significance in sEMG based control, the accurate motion 

parameters such as joint velocity and angle for arbitrary of 

control have not been acquired yet. So the quantitative 

analysis method of sEMG signals was applied to the angle 

estimation of movement joint. Li Xingfei (2006) proposed 

the ANN based quantitative method to establish the 

relationship between sEMG signals and joint angles, which 

was just used in the simple 1-DOF situation however.  

In this paper, the quantitative model of the relationship 

between sEMG signals and movement joints was established 

utilizing error back propagation artificial neural network 

(BPNN) and support vector machine (SVM) with radial basis 

function kernel. Performances of the two methods were 

compared by a large number of experimental data. Regarding 

the special requirements of rehabilitation for patients of 

stroke and upper limb damage, the experiments of 1-DOF, 2-

DOFs and 3-DOFs movement were designed to collect the 

information of joint angles and sEMG signals for model 

training and testing. At the same time, the proposed method 
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was implemented to control the rehabilitation robot by 

healthy subjects. 

The rest of this paper is structured as follows: the proposed 

basic principles and methods are analyzed in Section 2, the 

experiments and results are reported in Section 3, while 

Section 4 discusses the result and concludes this paper. 

2. METHODS 

2.1 Subjects and Data Acquisition 

Human upper limb can achieve a rather complex movement. 

In order to simplify the movement, the DOFs of the wrist 

joint and fingers will not be considered in the following 

works. The movements studied in this research include 

shoulder adduction/abduction, shoulder flexion/extension and 

elbow flexion/extension, so that the upper limb movement is 

regarded as simply two link models, where 2 DOFs in 

shoulder and 1 DOF in elbow are assumed. According to the 

muscle function and structure, 8 surface electrodes are 

attached to the surface of brachioradialis muscle, biceps, 

triceps, deltoid, pectoralis major, and trapezius to be suitable 

for monitoring the movements in experiments. The electrode 

placements are shown as Fig.2.1.  

 
Fig.2.1 The circles represent the positions of the electrodes and the triangles 

represent the postions of Vicon markers 

Vicon system starts to angle collecting at the same time as 

Delys system begins to make sEMG signals and angle 

simultaneously. The angles of the arm joints are measured by 

Vicon System. In this system, 3-D markers are stuck to the 

skin of human body to provide with the current position in 

Cartesian coordinate referring to the reference point. There 

are Marker1 and 2 attached to the forearm while Marker2 and 

3 on the rear arm. Assuming the position of Marker1 to 3 as 

Point1 to Point3 as: [ ]
k k k k
T x y z (k=1~6), As each 2 

points fixing the relevant axis, the vector representing 

forearm axis is
1 2 1
P T T , the vector of rear arm axis 

is
2 3 2
P T T , The angle between rear arm and forearm: 

1 2

1 2

cos
ellbow

P P
angle arc

P P
                      (1) 

The angles of shoulder-x and shoulder-y can be obtained 

calculated by the same way 

2.2 Feature Extraction of sEMG 

It is broadly reported in the biomechanics and physiology 

literature that sEMG signals are not stationary, in the sense 

that some signal features in accordance with respect to time. 

These changes can be observed by some statistical features of 

sEMG. The main work of this study is to establish a 

quantitative model using these features obtained by time 

domain analysis. Quantitative models actually establish the 

relationship between sEMG features and joint angles. Hence 

the feature extraction of sEMG is necessary. Time domain 

analysis is the common method applied to get sEMG features 

by regarding sEMG signals as the function related to time 

and getting its statistical features. The sEMG signals 

collected by the system are handled by amplification, notch 

frequency, high and low pass filtering. Aimed at movement 

five kinds of time domain features are extracted as below: 

(1) Mean absolute value: 

1

1 N

i
i

MAV x
N

                            (2) 

Where N is the length of sEMG, k=1,2,3…, N, 
i
x is the signal 

amplitude of  i sample. 

(2) Root mean square: 

2

1

1 N

i
i

RMS x
N

                            (3) 

(3) Slope sign changes: 

1
1 1

1

1  ( - )( - ) > 1
,

0  

N
i i i i

i i
i

x x x x
SSC f f

elseN
 (4)

 

Where is threshold value. 

(4) Waveform length: 

1

1
1

1 N

i i
i

WL x x
N

                      (5) 

Waveform length is the sum of length of N samples. The 

mutual effect of signal amplitude, frequency and action time 

of sEMG can be expressed by this parameter. 

(5) Zero crossing: 

1
1 1

1

1  0,1
,

0  

N
i i i i

i i
i

x x x x
ZC f f

elseN
 (6) 

ZC is the frequency signal cross 0, which reflects signal 

fluctuation. ZC is an important feature of the signal for 

recognition. 

2.3 Motion Estimation Based on sEMG 

Vicon system is common equipment in estimation of the 

human joint angles. However, it is too expensive to be 

applied to daily life or robot control. Kincet is a simpler one, 

but the mutual interference is a disaster when the movement 

is complicated. Motion estimation based on sEMG is simple 
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and practicable. An artificial neural network had been used in 

the quantitative estimation of joins based on sEMG, however, 

only one DOF was analyzed. In this paper, two methods, 

back propagation artificial neural network and support vector 

machine with a kernel of radial basis function were used to 

establish the model between the angle of the joint and sEMG. 

2.3.1 Support Vector Machine 

The Support Vector Machine (SVM) is a machine learning 

method based on the small sample statistics study theory. 

There are two cases for SVM regression approach that are 

linear case and nonlinear case. SVM approach to linear 

regression amounts to both the minimization of ε insensitive 

loss and the minimization of the norm of linear parameters 

(
2

). For nonlinear regression problem, SVM approach 

first performs a mapping from the input space onto a high-

dimensional feature space, and then performs linear 

regression in the high-dimensional feature space using ε-

insensitive loss. SVM is a novel learning method that has 

solid theoretical basis and requires only small amount of 

sample. It does not rely on probability measures and Law of 

Large Numbers. Hence is different from many other 

statistical methods. In essence, SVM smartly evades the 

traditional inference process from induction to deduction. 

Instead, it employs transductive inference from training 

sample to predicting sample, which greatly simplifies 

classification and regression problems. The decision function 

of SVM is only determined by a few support vectors. The 

complexity of computation concerns the number of support 

vectors rather than the dimension of the sample space. 

2.3.2 SVM Model in Motion Estimation using sEMG Signals 

The standard SVR learning algorithm (Du and Wu, 2003) 

used in the regression estimate. The purpose of learning is to 

construct a regression estimate function f(x) making the 

distance of the target valueless than ε. The VC dimension of 

function minimizes at the same time, so the regression 

estimation problem can be converted into a quadratic 

programming problem with linear equality constraints and 

nonlinear inequality constraints, and then the only global 

optimal solution can be obtained. The generated samples 

(angles and sEMG) can be obtained according to some 

probability distribution ( , )P x y
 
.The samples are written 

as( , )
i i
x y . The main work of support vector regression (SVR) 

is to find a real-valued function ( ) ( )
i

f x x b  which 

can make the specific function ( ) ( , , ) ( , )R f c x y f dP x y  

minimum, where c is loss coefficient. However, the R(f) can’t 

be minimized directly as the ( , )P x y is unknown, thus, the 

formula of (7) is minimized. 

1

1 1
( ) ( ) ( )

2

l

i
i

E C y f x
l

           (7) 

Where ( ) max{0, ( ) }
i i

y f x y f x is the 

insensitive loss function of ε. The formula shows that when 

the error between the observed value of y  and function 

prediction f(x) less than the given positive number ε, the 

fitting is considered error free. The loss on ( , )x y  is ξ：

( )y f x .The minimized formula of (7) is 

equivalent to the optimization problem as following. 

*

*

, , , 1

*

*

1 1
min ( ) ( ) ( )

2
. . ( ( ) ) ,

( ( ) )

, 0

i i

l

i i
b i

i i i

i i i

i i

C
l

s t x b y

y x b
          (8) 

The dual form of (8) is 

*

*

, 1

* *

1 1

* *

1

max [ ( ) ( )]

1
           ( )( ) ( , )

2

. . ( ) 0, 0 , / , 1,2, ,

l

i i i i
i

l l

i i j j i j
i j

l

i i i i
i

y y

K x x

s t C l i l

 

(9) 

Where ( , ) ( ) ( )
i j i i

k x x x x  is kernel function, *( , )  is 

the solution of (9), C is the penalty coefficient. In this 

paper,
2

( , ) exp{ }K x y x y  (RBF kernel), the 

estimation function ( )f x  can be described as follows. 

*( ) ( ) ( ) ( , )
i

SV

f x x b K x x b     (10) 

The optimal regression function ( )f x could be obtained by 

dividing the sEMG signal futures as input and joint angles as 

output to train the initial model and then the quantitative 

relation model was established. SVR is based on structural 

risk minimization rather than the traditional empirical risk 

minimization that can guarantee reliable prediction ability. 

2.3.3 Cross validation and Measuring error 

 Cross validation (Basheer and Hajmeer, 2000; Haselsteiner 

and Pfurtscheller, 2000) is often used to obtain the optimal 

parameters for SVM models. In this paper, there are two 

parameters C andγof RBF kernel in SVM model that will be 

determined by K-fold cross validation. The K-fold cross 

validation is one way to improve the holdout method when 

the data set is larger. The data set is divided into k subsets, 

and the holdout method is repeated for k times. Each time, 

one of the k subsets is used as the test set and the other k-1 

subsets are put together to form a training set. Then the mean 

square error across all k trials is computed which can assess 

generalization error. A group of optimal parameters can be 

obtained by comparing the k times MSE. According to the 

characteristics of data, k=10 is applicable in this study. 

Due to the nonlinearity relationship between sEMG signals 

and joint angles, accurate mathematical model can’t be put in 

place to carry on the regression. So there is absolutely an 
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error existing in models. As the model is trained, the weights 

of the system are continually adjusted to reduce the 

difference between the output of the system and the desired 

response. The difference is referred to as the error and can be 

measured in several ways. The most common measurement is 

SSE and MSE. SSE is the average of the squares of the 

difference between each output and the desired output 

(Fausett, 1994). In this study, mean squared error (MSE) was 

used for measuring the performance of models. 

2.3.4 Back-Propagation Neural Network 

ANN proved by mathematical theory to have the ability to 

map any complex nonlinear function is one of the common 

methods for sEMG based movement recognition and 

classification of realizing a mapping function from input to 

output virtually. In this paper, BPNN algorithm (Buscema, 

1998) is selected to establish the quantitative model between 

sEMG signals and joint angles. The BPNN has a structure of 

3 layers with a hidden layer with 4 neurons.  

It is difficult to choose an appropriate learning rate for some 

specific problems. The learning rate is usually given by 

experience or experiment, thus, it is difficult to apply to the 

entire training process. In order to address this problem, an 

adaptive learning rate is selected in the paper.  

3. EXPERIMNETS ANG RESULTS 

3.1 Comparison of SVM and BPNN model 

The activation function of the hidden layer in BPNN is logsig 

function, while the output layer is purelin function. The 

hidden layer consists of one layer of four neurons selected 

out of a range of zero to eight determined by empirical 

function
in out

n n n a . The SVM method was 

compared with BPNN of trainlm, traingdx, and traingda 

training function. We compared the prediction accuracy of 

SVM and BPNN model in the three series of experiments 

including vertical movement, horizontal movement, and 

consecutive movement in 3D space. Those movements were 

chosen in the experiment since rehabilitation needs from 

simple to compound according to the theories of 

rehabilitation medicine. The performance indexes of models 

are MSE and degree of correlation r. 

A. Single Joint Single DOF  

The vertical movement (Fig.3.1) of the shoulder joint was 

selected in this experiment. This action is suitable for 

cerebral apoplexy patients in early rehabilitation training 

since it is easily be implemented by a robot and simple 

enough for patients. The results of two methods SVM model 

and BP neural network model were shown in Table 3.1. 

 

Fig.3.1 Vertical motion of the shoulder joint  

Table 3.1 Comparison of single joint 

evaluation SVM 

BP  neural network 

trainlm traingdx traingda 

r 

MAV 0.9877 0.9779 0.9756 0.9826 

SSC 0.9856 0.9837 0.9683 0.9704 

ZC 0.9923 0.9902 0.9765 0.9413 

MSE 

MAV 68.009 116.498 125.5847 114.6294 

SSC 85.316 88.5142 157.5692 163.5864 

ZC 41.377 57.3797 123.9226 291.5652 

From the data in the table, SVM outputted a little more 

accurately than BPNN. And from the aspect of feature 

comparison, ZC feature was most optimal. So we took this as 

input in the follow-up experiments.  
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Fig.3.2 Characteristic ZC corresponding test curve 

B. Two Joints Two DOFs 

The horizontal movement (Fig.3.3) of the shoulder joint and 

elbow joint was selected in this experiment and parts of the 

results were shown in Table 3.2. 

 

Fig.3.3 Horizontal motion of two joints 

Table 3.2 Comparison elbow horizontal movements 

evaluation SVM 
BP  neural network 

trainlm traingdx traingda 

r 

MAV 0.9238 0.9258 0.9077 0.7885 

SSC 0.9728 0.9706 0.9475 0.8930 

ZC 0.9285 0.9350 0.9301 0.9276 

MSE 

MAV 75.921 73.9084 92.1062 196.9809 

SSC 34.042 33.6153 54.2710 114.4728 

ZC 78.194 66.8504 70.1596 78.4655 

Due to space limitations, just a part of the results was shown 

in the table and only elbow test curve was given in Fig.3.4. 
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From experiments above, it could be concluded that different 

inputs of features would lead to different prediction results, 

so that it is meaningful to select suitable sEMG features for 

the model. From the experimental curves, the prediction 

performance of the SVM model was more effective. The 

motion in the horizontal plane is much more complicated 

than the first one and can be used for cerebral apoplexy 

patients in the middle of rehabilitation training.  
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Fig.3.4 Horizontal movement of elbow test curve with SSC 

C. Two Joints three DOFs 

In this experiment, a consecutive movement in 3D space was 

chosen (Fig.3.5). In the 3D space, the angle between the 

forearm and the z axis was redundancy. Hence angles of the 

elbow, shoulder-x, and shoulder-y were taken as output. The 

only trainlm function was used in the BP neural network 

because the BPNN does not have much difference when three 

functions were used respectively in the previous experiments. 

 

Fig.3.5 Motion with 3DOFs of two joints  

The results of SVM model were obviously better than the 

result of BP when a consecutive movement was selected in 

3D space. Due to space limitations, just a part of results were 

shown in in Fig.3.6 and Fig.3.7. 
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Fig.3.6 Consecutive movement of the elbow test curve 
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                Fig.3.7 Consecutive movement of the shoulder-x test curve 

From output curves of the experiment, SVM model had a 

satisfactory output result and could make the prediction 

curves smooth, which would be suitable for the actual 

situation of continuous movement, while BPNN output had a 

large error. Even though BPNN performed a similar tendency, 

it couldn't satisfy the actual demand. 

3.2 Experimentation 

The upper limb rehabilitation robot adopted in our 

experiments has the design of exoskeleton arm to be in 

accordance with physiological features of the human upper 

limbs. The robot is able to accomplish the movement of 

shoulder adduction/abduction, flexion/stretch and elbow 

flexion/extension in 3D space. In order to be suitable for 

different patients in the clinical situation, the size of the robot 

was designed to be adjustable. Upper limb rehabilitation 

robot is constituted by robotic arm, control system and sensor 

system. In order to avoid injuring the participant, four force 

sensors were installed under the shoulder joint to get the 

force information corresponding to the intention of 

movement between the participant and robot. One healthy 

volunteer was selected as the subject of robot online 

experiments. Experimental process: 1) Building training data 

sets by the acquisition system of sEMG and joint angles. 2) 

Processing the raw data and extract the sEMG signal features. 

3) Training SVM model by the selected features. 4) Getting 

the trained model into the control system. 5) Conducting 

online experiments using the output of SVM model as a 

control signal. The information of position and force was 

illustrated in fig.3.8 and fig.3.9 when the trial was conducted. 
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Fig.3.8 Position of the output test 
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Fig.3.9 Force of the output test 

The movement of health arm could be tracked by the upper 

limb rehabilitation robot from the curve of position. In spite 

of the error about compensation to angles by the force 

information was not so accurate, but impedance control could 

guarantee the safety of participants by stopping the 

movement immediately when the accidents occurred.  

4.  CONCLUSION AND DISCUSSION 

In this paper, the control method of the rehabilitation robot 

based on sEMG signals suiting for the specific application of 

unilateral hemiplegic patient impaired motor function 

rehabilitation was developed. The sEMG signals were 

analyzed with the time domain method so that 5 kinds of time 

domain features were extracted. A continuous quantitative 

model of SVM was established to describe the relationship 

between joint angles and sEMG signals based on these sEMG 

features. The model was modified by a large amount of data 

collected from the experiment to predict the joint angles 

according to the sEMG signals. Experiments showed the 

prediction of SVM model was more precise than the model of 

improved BP neuron network especially for continuous 

motion. It must be noticed that the test motion and the train 

motion must be exactly similar so that the model can perform 

well. Based on the SVM model, the real time control of 

rehabilitation robot was accomplished with sEMG features 

selected through the comparative experiment. According to 

the experiment in volunteer subjects, the model and control 

strategy was confirmed with a superior prediction result, 

which is of great significance in the field of upper limb 

rehabilitation robot.  

It is worth noting that the online experiments were done in an 

ideal situation instead of conducting on the patients, so the 

reliability and practicality of the method should still be tested 

and verified in the clinical application. The future work will 

focus on improving the method of robustness and the method 

verification in the clinical experiments. 
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