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Abstract: We study a distributed convex optimization problem with set constraints. The
objective function is a summation of strictly convex functions. Based on a multi-agent system
formulation, we consider that each node is with continuous-time dynamics and can only access
its local objective function. Meanwhile, each node is subject to a common convex set constraint.
The nodes can exchange local information with their neighbor nodes. A distributed gradient-
based control protocol is applied to each node. It is shown that when the nodes are connected as
an undirected graph and the time-varying gains of the gradients satisfy a persistence condition,
the states of all the nodes will converge to the unique optimal point subject to the set constraints.
Numerical examples are provided to demonstrate the results.
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1. INTRODUCTION

Optimization is one of the hottest research topics in science
and engineering due to its wide applications. Recently, dis-
tributed algorithm attracted more and more attentions of
researchers. See, for example, distributed cooperative con-
trol Qu (2009), Su and Huang (2012), Liu et al. (2013); dis-
tributed estimation Michael and Robert (2004), Calafiore
and Abrate (2009), distributed sensor deployment Khan
et al. (2009) and distributed resource allocation Raynal
(2013). Many advantages of distributed algorithm, such as
scalability, high reliability and the ability of reducing com-
munications, motivate researchers to explore distributed
optimization algorithms.

In the past decade, many works have been dedicated to
distributed optimization, Johansson et al. (2009), Nedic
and Ozdaglar (2009), Nedic et al. (2010), Notarstefano
and Bullo (2011), Zhu and Martinez (2012), Duchi et al.
(2012). Distributed optimization is to optimize a function
by connected nodes in a distributed way provided that
each node can access partial information of the function.
Since the nodes are connected and the cost function
information can be broadcasted to every corner, the global
optimum can be achieved under appropriate distributed
algorithms. By introducing a Lagrangian function and
applying the distributed dual averaging technique, the
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distributed optimization problem is investigated under
different scenarios; see Yuan et al. (2011), Duchi et al.
(2012), Zhu and Martinez (2012) and the reference therein.
Based on the distributed primal-dual method, multi-agent
optimization with inequality constraint is studied in Yuan
et al. (2011). A distributed algorithm for optimization is
provided in Zhu and Martinez (2012) by considering both
equality and inequality constraints.

Recently, the gradient based method (Nedic and Bertsekas
(2001), Rabbat and Nowak (2005)) has been widely used
in distributed optimization since it can be often execut-
ed in a distributed fashion. By incorporating consensus
approach, the distributed convex optimization problem is
studied in Nedic and Ozdaglar (2009). An approximate
optimal solution is given and the gap between the global
optimal objective function and the one under the proposed
algorithm is also derived. The optimization problem under
random communication graph is considered in Lobel and
Ozdaglar (2011). Under the condition that the link failures
are independent and identically distributed, the subgradi-
ent algorithm can guarantee the almost sure convergence
to the optimal set. In the recent years, there has been
more studies on the constraint distributed optimization
problem. Based on a randomized incremental subgradient
method, in Johansson et al. (2009) a distributed convex
optimization approach is proposed with each node subject
to a common convex constraint. Asynchronous distributed
gradient approach is investigated in Srivastava and Nedic
(2011), Nedic (2011). Using broadcasting approach, the
optimization problem is studied in Nedic (2011) based on
the subgradient method. This approach is robust to link
failure and is asynchronous which allows more freedom
for each agent to apply it. In Srivastava et al. (2010),
transmission noises are considered when solving the dis-
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tributed optimization problem. In Bianchi and Jakubowicz
(2013), the non-convex optimization is solved by applying
a stochastic gradient algorithm.

Most of the current works on gradient based distribut-
ed optimization are devoted to discrete-time systems. In
some practical systems, the nodes are with continuous-
time dynamics which requires continuous-time optimiza-
tion algorithm. However, there are many challenges when
developing continuous-time algorithms. For example, the
solutions of differential equations may not exist or may
not be unique. A linear programming problem is solved
in Brockett (1988) by introducing continuous-time gradi-
ent method. In Wang and Elia (2010), a continuous-time
algorithm is proposed for distributed convex optimization
without constraint. It is proved that the proposed algo-
rithm is robust to additive noises due to the introduction
of an integral term.

In this paper, we shall consider the distributed convex
optimization problem with set constraints. The multi-
agent system is introduced to perform the distributed
gradient method in a continuous-time manner. The objec-
tive function is a summation of different convex functions
and each node can only access one convex function. The
discrete-time case can be found in Nedic et al. (2010).
By local information exchange, we can control the states
of the nodes to converge to the unique optimum within
the constraint set. The control input can be divided into
three parts: local information exchange, local subgradient
and set projection. Since the global optimum (without
set constraints) may not be in the constraint set, the
effect of local gradient needs to diminish such that the
set projection is not offset and the state of the nodes can
finally fall in the constraint set. On the other hand, the
effect of local gradient needs to be persistent such that the
optimum can be achieved. Therefore, the gain of the gradi-
ent in the algorithm should satisfy a persistence condition
which is less restrictive than the stochastic approximation
condition that requires square integrability in continuous-
time setting Li and Zhang (2009) or square summability in
discrete-time setting Nedic et al. (2010), Liu et al. (2011).

Some notations are listed below which will be used
throughout this paper. Given an arbitrary matrix M ,
[M ]i,j and M ′ denote its (i, j)-th entry and transpose
respectively. diag{x1, · · · , xn} is the diagonal matrix with
the i-th diagonal component being xi. Given a function
f , the gradient of f at x is denoted by ∇f(x). R, Rn

and Rm×n stand for the set of real numbers, the set of n
dimensional real vectors and the set of m×n matrices. 1n

is an n dimensional vector with each component being 1
and J = 1

n1n1
′
n. Given x, y ∈ Rn, ⟨x, y⟩ and |x − y| are

their inner product and the corresponding distance, i.e.
⟨x, y⟩ = x′y, |x − y| =

√
⟨x− y, x− y⟩. B(x, r) means an

open ball centered at x with radius r, i.e. B(x, r) = {y :
|y−x| < r}. The norm induced by the above inner product

in Rn×n is defined as ∥M∥ = sup|x|̸=0
|Mx|
|x| for M ∈ Rn×n.

Kronecker product of X and Y is denoted by X ⊗ Y .

2. PRELIMINARIES

Some preliminaries in graph theory and convex analysis
will be reviewed in this section.

2.1 Preliminaries in Graph Theory

An undirected graph denoted by G, with a node set
V = {1, 2, · · · , n} and an unordered edge set E ⊆ V × V
where self loop (i, i) is excluded, is often used to model
communications among nodes. (i, j) ∈ E means that
node i and node j can exchange information with each
other. The set of neighbours of node i is denoted by
Ni = {j | j ∈ V, (j, i) ∈ E}. A path from node i to
node j is defined by a sequence (i, l1), (l1, l2), . . . , (lp, j) ∈
E(G), where i, j, l1, . . . , lp are distinct nodes. G is called
connected if there exists a path between any pair of
distinct nodes. In addition, a weighted adjacency matrix
A ∈ Rn×n with [A]i,j = ai,j will be used to describe G,
where ai,j = aj,i ≥ 0 and ai,j > 0 if and only if (i, j) ∈ E .
Moreover, the Laplacian matrix is defined as L = D − A,

where D = diag{D1, · · · , Dn} and Di
∆
=

∑
j∈Ni

ai,j is the
in-degree of node i.

By denoting all the eigenvalues of L as λi, i = 1, 2, . . . , n,
some properties of the Laplacian matrix are recalled below:

Lemma 1. For an undirected graph G, suppose that the
eigenvalues of the Laplacian matrix L ∈ Rn×n of G satisfy
λ1 ≤ · · · ≤ λn, we have the following properties:

(1) λ1 = 0. λ2 > 0 if and only if G is connected.
(2) When G is connected, it has limt→∞ e−Lt = J and∥∥∫∞

0
e−Lt(I − J)dt

∥∥ ≤ 1
λ2
.

Proof. The first property is straightforward by recalling
the graph theory in Godsil and Royle (2001). We shall
focus on the proof of (2). Since graph G is undirected, we
know that L is symmetric and there exists an orthogonal
matrix P = [ 1√

n
1n ϕ] with ϕ ∈ Rn×(n−1) orthogonal to

1n such that L = PΛP ′, where Λ = diag{λ1, · · · , λn}.
According to the first property, the connectedness of the
graph implies λi > 0, i = 2, . . . , n. Then we have

lim
t→∞

e−Lt = P lim
t→∞

e−ΛtP ′ = J.

The first equation has been proved.

Note that P ′(I − J) = [0 ϕ]′, then we have∫ ∞

0

e−Lt(I − J)dt=

∫ ∞

0

Pe−ΛtP ′(I − J)dt

=

∫ ∞

0

ϕdiag{e−λ2t · · · e−λnt}ϕ′dt

= ϕdiag

{
1

λ2
· · · 1

λn

}
ϕ′.

Since ∥ϕ∥ = ∥ϕ′∥ = 1, the above inequality implies the
result.

2.2 Convex Analysis

Given a set C, C is called convex if λx+(1−λ)y ∈ C for any
x, y ∈ C and 0 ≤ λ ≤ 1. For a closed convex set C ∈ Rm,
PC(x) ∈ C is the projection of x onto C, uniquely satisfying

|x− PC(x)| = inf
v∈C

|x− v| ∆
= |x|C .

A function f(·) : Rm → R is convex if ∀x ̸= y ∈ Rm and
0 < λ < 1,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (1)
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f is strictly convex when (1) holds as a strict inequality.
For a convex function f , if it is differentiable, then it
is continuously differentiable. Moreover, its gradient ∇f
satisfies that

f(y)− f(x) ≥ ⟨∇f(x), y − x⟩, ∀x, y
and is said to be monotone in the sense that

⟨∇f(x)−∇f(y), x− y⟩ ≥ 0, ∀x, y.

Before closing this section, the following lemmas are intro-
duced.

Lemma 2. (Aubin and Frankowska (2009)) Given a closed
convex set C ⊂ Rm, ∀x ∈ Rm, ∀y ∈ C, it has

⟨PC(x)− x, PC(x)− y⟩ ≤ 0. (2)

Lemma 3. (Shi et al. (2012)) Given a closed convex set
C ⊂ Rm and x, y ∈ Rm, we have

⟨x− PC(x), y − x⟩ ≤ |x|C(|y|C − |x|C). (3)

2.3 Non-smooth Analysis

Given a continuous function f : (t0, tf ) → R, the upper
Dini derivative D+f(t) is defined as

D+f(t) = lim sup
h→0+

f(t+ h)− f(t)

h
.

A continuous function f(t) is non-increasing over (t0, tf )
if and only if D+f(t) ≤ 0, t ∈ (t0, tf ).

The following lemmas are introduced.

Lemma 4. (Shi et al. (2013)) Let Vi(t, x) : R×Rm → R,
i = 1, . . . , n be continuously differentiable and V (t, x) =
maxi=1,...,n Vi(t, x). If I(t) = {i : V (t, x) = Vi(t, x)}
denotes the set of indices where the maximum is reached
at t, then D+V (t, x(t)) = maxi∈I(t) V̇i(t, x(t)).

Lemma 5. Let E be an open set in R2 and g(t, u) is a
continuous scalar function defined on E. Assume that
v(t) and w(t) are continuous on [t0, t0 + a), with (t, v(t)),
(t, w(t)) ∈ E. If v(t0) ≤ w(t0) and the inequalities below
hold for t ∈ [t0, t0 + a):

D+v(t) ≤ g(t, v(t)), D+w(t) ≥ g(t, w(t)),

then v(t) ≤ w(t), t ∈ (t0, t0 + a).

3. PROBLEM STATEMENT

We consider the following optimization problem

minF (x) =
∑n

i=1
fi(x)

s.t. x ∈ X , (4)

where F (·) is the cost function to be minimized, X ⊂ Rm

is a set constraint.

We shall solve this optimization problem in a distributed
way by introducing multi-agent systems. Suppose we have
n nodes with each node i assigned with a state value
xi ∈ Rm. Node i can only access the information of
fi and the node needs to exchange information with its
neighbor nodes such that the common optimum point in
X is achieved. Then problem (4) can be reformulated as

min
∑n

i=1
fi(xi)

s.t. x1 = · · · = xn, xi ∈ X . (5)

The assumptions of problem (5) are introduced as follows:

A1: X is convex and compact.

A2: fi(·), i = 1, . . . , n is strictly convex and differentiable.

A3: All the nodes are connected as an undirected fixed
graph.

We shall design a gradient based distributed algorithm
for the nodes such that problem (4) is solved. Noticing
that each node should solve a constrained optimization
problem and meanwhile reach consensus with other nodes,
the algorithm is thus proposed as follows.

ẋi(t) =
∑n

j=1
ai,j (xj − xi)− α(t)∇fi(xi) + PX (xi)− xi,

i = 1, . . . , n, (6)

where ai,j ≥ 0 is the weighting on the communication
edge, PX (·) is the projection onto X , and α(t) > 0 is a
continuous function satisfying the following assumption:

A4: Persistence condition∫ ∞

0

α(t)dt = +∞, lim
t→∞

α(t) = 0. (7)

Since the functions fi(·), i = 1, . . . , n are strictly convex
and the constraint set is closed and convex, there must
exist a unique point x∗ ∈ X such that

x∗ = argmin
v∈X

F (v) (8)

In the rest of this paper, we shall prove that under
algorithm (6), xi(t) asymptotically converges to x∗, i.e.

lim
t→∞

xi(t) = x∗, i = 1, . . . , n. (9)

4. CONVERGENCE ANALYSIS

In this section, we shall provide the main result and
analyze the convergence.

Theorem 6. Suppose A1-A4 hold. The distributed opti-
mization algorithm (6) converges to the optimum of (5)
if the communication graph is connected.

The analysis of the convergence in Theorem 6 is divided
into three steps: global set convergence, consensus analysis
and optimal point convergence.

4.1 Global set convergence

In this section we will prove that

lim
t→∞

|xi(t)|X = 0, i = 1, . . . , n. (10)

We shall first establish the global existence of xi(t), whose
local existence has been guaranteed by the continuity of
the righthand side of (6). Denote di(t) = |xi(t)|2X and
d(t) = maxi=1,...,n di(t). According to (6) and Lemma 3,
and recalling the monotonicity of ∇fi, it has

ḋi(t) = 2⟨xi − PX (xi), ẋi(t)⟩

≤ 2
∑n

j=1
ai,j |xi|X (|xj |X − |xi|X )

−2α(t)⟨xi − PX (xi),∇fi(PX (xi))⟩ − 2|xi|2X .(11)

By denoting I(t) as the index set containing the nodes
which attain d(t) at t, the following inequality holds
according to Lemma 4,
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D+d(t) = max
i∈I(t)

ḋi(t)

≤ max
i∈I(t)

[−2|xi(t)|2X

+2α(t)⟨xi − PX (xi),∇fi(PX (xi))⟩]
≤−2d(t) + 2α(t)s∗

√
d(t), (12)

where s∗ = max{∇fi(y) : y ∈ X , i = 1, . . . , n} < ∞. In
addition, by the continuity of α(t) and the assumption
that limt→∞ α(t) = 0, there exists M > 0 such that
supt≥0 α(t) < M . On the other hand, note that the
solution of the following equation{

ẏ(t) = 2(−y + s∗M
√
y)

y(0) = d(0) ≥ 0
(13)

is given by

y(t) =

{
[s∗M + e−t(

√
d(0)− s∗M)]2, d(0) > 0,

0, d(0) = 0.
(14)

Then by comparison principle in Lemma 5, we have

d(t)< [s∗M + e−t(
√

d(t0)− s∗M)]2

≤max{d(0), (s∗M)2}. (15)

Now the boundedness of d(t) guarantees that the solution
of (6) exists over [0,+∞). Furthermore, for any ε > 0,
there exists a time constant tε such that ∀t ≥ tε, α(t) ≤ ε.
By replacing M and 0 with ε and tε respectively in (13),
we have ∀t ≥ tε,

d(t) < [s∗ε+ e−(t−tε)(
√
d(tε)− s∗ε)]2,

which implies that lim supt→∞ d(t) ≤ (s∗ε)2. The conclu-
sion is established by the arbitrariness of ε.

4.2 Consensus analysis

In this section we will prove that

lim
t→∞

(xi(t)− xj(t)) = 0. (16)

Denote the communication graph of the nodes by G, its
associated weighted adjacency matrix by [A]i,j = ai,j , and
the associated Laplacian matrix by L. Letting X(t) =
[x′

1(t) · · · x′
n(t)]

′ ∈ Rmn, it follows that

Ẋ(t) = −(L⊗ Im)X(t) + δ(t), (17)

where δ(t) = −col{α(t)∇f1(x1) · · · α(t)∇fn(xn)} +
col{PX (x1) − x1 · · · PX (xn) − xn}. In light of (10), we
know that limt→∞(PX (xi) − xi) = 0, i = 1, . . . , n, which
together with limt→∞ α(t) = 0 and the boundedness of
the gradients implies that limt→∞ |δ(t)| = 0. Then, ∀ε > 0
there exists a time instant tε such that |δ(t)| < ε, ∀t ≥ tε.

Define X̃(t) = [(I − J)⊗ Im]X(t). Then we have

˙̃X(t) =−(L⊗ Im)X̃(t) + [(I − J)⊗ Im]δ(t). (18)

According to Lemma 1, the following inequality holds

lim
t→∞

|X̃(t)| = lim
t→∞

∣∣∣∣∣e−(L⊗Im)tX̃(0)

+

∫ t

0

e−(L⊗Im)(t−τ)[(I − J)⊗ Im]δ(τ)dτ

∣∣∣∣∣
≤ |(J ⊗ Im)X̃(0)|+ lim

t→∞

∣∣∣∣∫ tε

0

[J(I − J)⊗ Im]δ(τ)dτ

∣∣∣∣
+ε lim

t→∞

∥∥∥∥∫ t

tε

e−(L⊗Im)(t−τ)[(I − J)⊗ Im]dτ

∥∥∥∥
≤ ε

λ2
, (19)

where λ2 is the second smallest eigenvalue of the Lapla-
cian matrix. Since the graph is connected, λ2 > 0. The
arbitrariness of ε implies that limt→∞ X̃(t) = 0. From the

definition of X̃(t) we know that

lim
t→∞

X(t) = (J ⊗ Im) lim
t→∞

X(t),

which implies (16).

4.3 Optimal point convergence

In this subsection we will prove (9). The proof is carried
out by contradiction. According to the convergence results
in the last two subsections, i.e. (10) and (16), for any ε > 0,
there exists a time instant tε such that ∀t ≥ tε,

|x̄(t)|X + max
i=1,...,n

|xi(t)− x̄(t)| ≤ ε

n
,

where x̄(t) = 1
n

∑n
i=1 xi(t). The uniformly boundedness of

xi(t), i = 1, . . . , n implies that

|F (PX (x̄))− F (x̄)|+
∑n

i=1
|fi(x̄)− fi(xi)| ≤ sε, (20)

where s = max{∇fi(y) : |y|X ≤ max(d(0), (s∗M)2), i =
1, . . . , n} < ∞.

Denote li(t) = |xi(t)−x∗|2 and l(t) =
∑n

i=1 li(t). Then we
have

l̇i(t) = 2⟨xi − x∗, ẋi(t)⟩

= 2

⟨
xi − x∗,

∑n

j=1
ai,j (xj − xi)

−α(t)∇fi(xi) + PX (xi)− xi

⟩
≤ 2

∑n

j=1
ai,j ⟨xi − x∗, xj − xi⟩

+2α(t) (fi(x
∗)− fi(xi)) ,

and

l̇(t)≤ 2α(t)
∑n

i=1
(fi(x

∗)− fi(xi))

= 2α(t)[F (x∗)− F (PX (x̄)) + F (PX (x̄))− F (x̄)

+
∑n

i=1
(fi(x̄)− fi(xi))]

≤ 2α(t)[F (x∗)− F (PX (x̄(t))) + sε], t ≥ tε. (21)

By considering that x∗ is a unique global minimum of
F on X and

∫∞
0

α(t)dt = +∞, we can prove that
lim inf
t→∞

|PX (x̄) − x∗| = 0. Moreover, by global set conver-

gence and consensus result we obtain lim inft→∞ l(t) = 0.
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On the other hand, assume that lim supt→∞ l(t) = δ > 0.

Noticing that lim inft→∞ l(t) = 0, E = {τ : l̇(τ) =
0, l(τ) is a local maximum} consists of infinitely many
points. Besides, there exists an infinite sequence {tnk

} ⊆
E such that δ = lim supk→∞ l(tnk

). However, by (21)

l̇(tnk
) = 0 implies F (PX (x̄(tnk

))) − F (x∗) ≤ sε when
tnk

≥ tε. By the arbitrariness of ε it can be seen that
PX (x̄(tnk

)) → x∗ and lim supk→∞ l(tnk
) = 0, a contradic-

tion. Hence lim supt→∞ l(t) = 0, which entails (9).

5. APPLICATION TO BUILDING TEMPERATURE
REGULATION

In this section, we shall consider a building temperature
regulation problem and apply the proposed algorithm for
thermal comfort optimization. Due to the thermal con-
duction and convection among the adjacency zones, the
temperature of each zone interacts with each other. By
ignoring the heat transfer from external wall of the build-
ing and radiation, the indoor zone temperature dynamic
model is given as follows Wang (1999):

MicpṪi(t) =
∑
j∈Ni

mi,jcp(Tj − Ti) + ui(t), i = 1, . . . , n,

(22)
where Ti (oC) is the temperature of zone i, ui (kJ) is
the heat exchange rate provided by supply air through
terminal unit in zone i, Mi (kg) is the mass of air in zone
i, mi,j (kg/s) represents mass flow rate between zone i and
j, cp (kJ/kg · oC) is specific heat of air . We assume that
Mi = 100kg, mi,j = 2kg/s, cp = 1kJ/kg · oC. The heat
exchange rate is affected by the supply air flow rate and
temperature. Therefore, we can control ui(t) by tuning
the air handling unit and terminal unit. For simplicity,
we consider only 4 zones and the configuration is given
in Fig. 1. From the model it is clear that the connection

Fig. 1. Configuration of Zones.

graph is undirected and can be describe in Fig. 2. The

Fig. 2. Connection graph of Zones.

corresponding adjacency matrix A and Laplacian matrix
L are given below:

A =

 0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 , L =

 −2 1 1 0
1 −2 0 1
1 0 −2 1
0 1 1 −2

 .

The reference temperature Ti,0, i = 1, . . . , 4 are given
below:

T1,0 = 25oC, T2,0 = 25.5oC,

T3,0 = 26oC, T4,0 = 26.5oC.

The cost function for each zone is defined as fi = (Ti −
Ti,0)

2, which can be understood as thermal comfort penal-
ty. On the other hand, due to thermal comfort constraint
and cooling/heating capacity of air-conditioning system,
there is temperature constraint for all of the zones, which is
defined as T = [23oC, 28oC]. We set the initial conditions
as follows:

T1(0) = 29oC, T2(0) = 30oC,

T3(0) = 31oC, T4(0) = 32oC.

Due to the inherent temperature dynamic coupling of
zones, according to (6), the input ui(t) can be designed
as

ui(t) = Micp[−2α(t)(Ti(t)− Ti,0) + PT (Ti)− Ti(t)].

We choose α(t) = 1
(t+1)0.8 which satisfies (7) and is not

square integrable. The total cost function to be minimized
is F =

∑4
i=1 fi(Ti). It is shown in Fig. 3 that all of the

temperature converges to the global optimum 25.75oC.
Next, we change the temperature set-point of each room
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Fig. 3. Temperature trajectories with set-point T1,0 =
25oC, T2,0 = 25.5oC, T3,0 = 26oC, T4,0 = 26.5oC.

as follows:

T1,0 = 26oC, T2,0 = 27oC,

T3,0 = 32oC, T4,0 = 33oC.

Note that the global optimum is greater than the upper
bound 28oC. According to Theorem 6 we know that the
temperature will converge to 28oC, which is illustrated in
Fig. 4.

6. CONCLUSION

In this paper we have studied the distributed convex
optimization problem with set constraints. Each node is
assigned with a state and all of the nodes are connected
as an undirected graph. Under the proposed algorithm
all the states were shown to asymptotically converge to
the unique optimal value within the set constraint. In
the future, we shall consider the case that different nodes
are subject to different set constraints with nonempty
intersection. Directed communication topology will also be
considered in the future.
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Fig. 4. Temperature trajectories with set-point T1,0 =
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