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Merid Lješnjanin ∗ Daniel E. Quevedo ∗∗ Dragan Nešić ∗
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Abstract: This paper investigates controllability of discrete-time Networked Control Systems. The
distinguishing feature is that the network imposes scheduling. The network is characterized by a dynamic
protocol and different types of additional processing capabilities, as determined by available technology.
For NCS with general nonlinear plants we present general controllability results. Finally, for NCS with
linear plants we extend ideas motivated by NCS architectures with static protocols to state corresponding
controllability results.

1. INTRODUCTION

A Networked Control System (NCS) is a control system that
uses a network in at least one of its links as a communica-
tion medium. This class of control systems is important due
to its positive impacts on system’s cost reduction, flexibility,
reliability, interoperability and maintenance, e.g., see Moyne
and Tilbury (2007). There are many challenges that lie on the
path of obtaining these positive impacts, some of them being
delays, packet dropouts, sampling, quantization and schedul-
ing. A considerable portion of control research output in recent
years has been generated by addressing these challenges, e.g.,
see Hespanha et al. (2007).

In this manuscript we consider a NCS whose network resources
are shared and we investigate the corresponding scheduling
effects on the controllability of the plant. More precisely, we
investigate whether a controllable plant preserves its control-
lability once the network, which imposes (only) scheduling, is
introduced. One way to address network imposed issues is to
design appropriate NCS architecture. For this, one often uses
additional devices, such as smart actuators or buffers, e.g., see
Lješnjanin et al. (2014); Polushin et al. (2008); Findeisen et al.
(2011); Greco et al. (2012). In this manuscript, we consider
devices located between a network and a controller in feedback
link and a network and a plant in feed forward link; see Fig.
1. We model the network with a (dynamic) protocol, e.g., see
Nešić and Teel (2004b,a), and we assume that the network
possesses different types of additional processing capabilities
which are determined by the choice of devices used (see Defi-
nitions 3, 4, 5, 7).

First, we provide controllability results for the case where a
NCS encapsulates a general nonlinear plant. Then, controlla-
bility results for a case with a linear plant are presented. For the
latter case, we first extend the controllability result from Suzuki
et al. (2011) by showing the existence of a admissible commu-
nication sequence (see Definition 6) so that the corresponding
controllability result holds. Then we use this extension and the
resulting NCS architecture to state the controllability result.
Recently, we have become aware of linear-case results related

to ours, namely Yu and Andersson (2013), Smarra et al. (2012)
and D’Innocenzo et al. (2013). The first reference considers a
NCS with a SISO linear plant and investigates the effects of
the so called blind periods in communication on controllability
(authors do not consider scheduling issues but the correspond-
ing result can be viewed as a special case of our result). The
other two references, respectively, consider Multi-Hop Control
Networks with MIMO and SISO linear plants and present con-
ditions for controllability.

Notation and preliminaries Throughout this manuscript, C
stands for the set of complex numbers, R stands for the set of
real numbers, Z denotes the set of integers and | · | refers to
Euclidean norm. Further, for any p ∈ F, we use the notation
F♦p to refer to a set {v ∈ F : v♦p} where F ∈ {R,Z} and
♦ ∈ {≥, >}. Often, we use a tuple notation to represent a
column vector. A function α : R≥0 → R≥0 is said to be a class
K function (α ∈ K) if it is continuous, zero at zero and strictly
increasing. A function β : R≥0 × R≥0 → R≥0 is said to be a
class KL function (β ∈ KL) if β(·, t) ∈ K for each fixed t and
β(v, ·) is decreasing to zero for each v > 0. Finally, we define
the nth root of unity, where n ∈ Z≥1, as a z ∈ C such that
zn = 1; which is primitive if it is not kth root of unity for any
k ∈ {1, . . . , n− 1}.

2. SYSTEM MODEL

The considered NCS architecture is depicted in Fig. 1. Trans-
mission of the data through the network is assumed instan-
taneous as well as the processing in devices µp and µc. The
corresponding effects of instantaneous transmission and pro-
cessing can be described as jumps in the dynamical model
of the NCS. This motivates us to adopt a sampled-data ap-
proach as documented in Nešić and Teel (2004b,a) and use
two indices to capture time evolution in system variables.
More precisely, the first index refers to discrete time while the
second index is a counter which refers to transmission plus
processing instants. The indices do not evolve independently.
Both are incremented alternatively and can only be incre-
mented by 1. For example, consider a sequence of index pairs
{(0, 0), (0, 1), (1, 1), (1, 2), . . . }; whenever the second index is
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Fig. 1. NCS; c - controller, n - network, p - plant, µ· - processing
device, symbol y denotes the corresponding outputs while
u denotes inputs.

larger than the first, it indicates that transmission and processing
has just occurred. Using this, the plant model can be represented
as

xp(i+ 1, i+ 2) = fp
(
xp(i, i+ 1), up(i, i+ 1)

)
,

yp(i, i+ 1) = hp
(
xp(i, i+ 1)

) (1)

where xp(i, i+ 1) ∈ Rdxp is the plant state, up(i, i+ 1) ∈ Rdup
is the plant input and yp(i, i + 1) ∈ Rdyp is the plant output at
discrete time instant i ∈ Z≥0 after transmission and processing
have occurred. The mappings fp : Rdxp × Rdup → Rdxp and
hp : Rdxp → Rdyp are assumed nonlinear where dxp , dup and
dyp are positive integers.

We assume that when (i, i)→ (i, i+ 1) the plant state does not
change, i.e., xp(i, i+ 1) = xp(i, i), ∀i ∈ Z≥1.

2.1 Network Protocols

The considered network is assumed to be error-free, i.e., packet
dropouts do not occur. However, the communication link is
shared among actuator nodes, which imposes scheduling. In
order to address scheduling issues we characterize a network
with a protocol which governs the medium access of each node;
e.g., see Nešić and Teel (2004b,a); Lian et al. (2005). We focus
on dynamic protocols which compare the data addressed to a
node with network internal data, e.g., the corresponding buffer
contents before transmission. Focusing on feed-forward link
(see Fig. 1), data to be transmitted are controller outputs and
the quantity used by the protocol is

e(i, i) , bn(i, i)− yc(i, i) (2)

where yc(i, i) is the controller output and bn(i, i) = gn
(
yc(i, i),

yp(i, i)
)

where gn : Rdup × Rdyp → Rdup . Introduction of
gn captures the fact that some networks can have additional
processing capabilities. For instance, via appropriate gn one can
manipulate which node will be picked; e.g., see Section 3.

Further, a protocol can be described by diagonal matrices
Ψ(·, ·) which contain zeros and ones on its diagonal; see equa-
tions (14), (16) and (17) in Nešić and Teel (2004b) for different
types of protocols. In this manuscript we will focus on the so-
called Try Once Discard protocol (TOD).
Definition 1. (TOD protocol, Nešić and Teel (2004a)). Sup-
pose that there are r ∈ Z≥2 nodes competing for access to
the network. Correspondingly, the error vector is partitioned as
e = (e1, . . . , er). The node j ∈ {1, . . . , r} with the greatest
weighted error at instant (i, i), i ∈ Z≥0 will be granted access.
(It is assumed that the weights are already incorporated into the
model.) If a data packet fails to win access to the network, it is
discarded and new data is used at the next transmission time. If
two or more nodes have equal priority, a pre-specified ordering
of the nodes is used to resolve the collision. More precisely, the
diagonal matrix Ψ(·, ·) is given as

Ψ
(
(i, i), e(i, i)

)
= diag

(
ψ1

(
e(i, i)

)
In1 , . . . , ψr

(
e(i, i)

)
Inr
)

(3)

where i ∈ Z≥0 and Inj are identity matrices of dimension
nj ∈ Z≥1 for every j ∈ {1, . . . , r} with

∑r
j=1 nj = dup and

where

ψj
(
e(i, i)

)
=

{
1, if j = min

(
arg maxj∈{1,...,l} |ej(i, i)|

)
,

0, otherwise.
(4)

for all j ∈ {1, . . . , l}. �

2.2 Processing devices

As mentioned above, in order to design appropriate NCS archi-
tecture one can resort to introduction of extra devices. In this
document we focus on two kinds.

One type of a device will just apply the received value for the
addressed node and zeros to the remaining nodes:

yµ
s
∗ (i, i+ 1) = hµ

s
∗
(
yn,∗(i, i+ 1)

)
(5)

for all i ∈ Z≥0, where ∗ ∈ {c, p} and s alludes to static. The
other type of device will be dynamic. Its output will depend on
the networks output and buffer contents:

yµ
d
∗(i, i+ 1) = hµ

d
∗
(
yn,∗(i, i+ 1), bµ

d
∗(i− 1, i)

)
(6)

for all i ∈ Z≥1, where d alludes to dynamic.

Next, we proceed with the necessary preliminaries needed for
stating the NCS architectures determined by the devices used.
First, we assume that buffers in µd∗ hold their values until new
data arrives, yielding

bµ
d
∗(i, i+ 1) = bµ

d
∗(i+ 1, i+ 1) (7)

for all i ∈ Z≥0. Similarly, we assume that the value of
controller’s output yc does not change during transmission and
processing, thus, yc(i, i) = yc(i, i+ 1), ∀i ∈ Z≥0.

Recall that our interest lies in the controllability of the plant,
hence, the focus is on the feed-forward link.
Remark 1. Note that (7) could be replaced by more com-
plex processing; e.g., see Quevedo and Nešić (2011); Pin and
Parisini (2011); Findeisen and Varutti (2009); Munoz de la Pena
and Christofides (2008); Montestruque and Antsaklis (2004).�

Next, the network output is defined as
yn,p(i, i+ 1) = Ψ

(
i, e(i, i)

)
yc(i, i) (8)

for all i ∈ Z≥0 while the output of processing unit µdp, is given
as
yµ

d
p (i, i+ 1) = Ψ

(
i, e(i, i)

)
yc(i, i) +

(
I −Ψ

(
i, e(i, i)

))
bµ

d
p (i, i) (9)

for all i ∈ Z≥0. Note also that according to (5) we have

yµ
s
p(i, i+ 1) = hµ

s
p

(
yn,p(i, i+ 1)

)
. (10)

As depicted in Fig. 1, we have that up(·, ·) = yµ
∗
p (·, ·). More-

over, for the case when µdp is used bµ
d
p(·, ·) = yµ

d
p(·, ·) = up(·, ·).

Now, given the above, equation (9) becomes

up(i, i+ 1) =

Ψ
(
i, e(i, i)

)
yc(i, i+ 1) +

(
I −Ψ

(
i, e(i, i)

))
bµ

d
p (i− 1, i) (11)

whereas, assuming bn(·) = bµ
d
p(·), e(i, i) in (2) satisfies

e(i, i) = bn(i− 1, i)− yc(i, i+ 1). (12)

2.3 NCS architecture with device µdp

Equations (1)–(2), (6)–(9), (11)–(12), give
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xp(i+ 1, i+ 2) = fp
(
xp(i, i+ 1),

(
I −Ψ

(
i, e(i, i)

))
e(i, i) + yc(i, i)

)
,

e(i, i+ 1) =
(
I −Ψ

(
i, e(i, i)

))
e(i, i),

e(i, i) = e(i− 1, i) + yc(i− 1, i)− yc(i, i+ 1).

(13)

If we now write k for (i, i), then the above yields

xp(k + 1) = fp
(
xp(k),

(
I −Ψ

(
k, e(k)

))
e(k) + yc(k)

)
,

e(k + 1) =
(
I −Ψ

(
k, e(k)

))
e(k) + yc(k)− yc(k + 1).

(14)

2.4 NCS architecture with device µsp

Simple manipulations of equations (1)–(2), (10) and (12) with
assumptions that bn(·, ·) = yµ

s
p(·, ·) and bn(i, i + 1) = bn(i +

1, i+ 1) yields

xp(i+ 1, i+ 2) = fp
(
xp(i, i+ 1), yµ

s
p (i, i+ 1)

)
,

e(i, i+ 1) =
(
I −Ψ

(
i, e(i, i)

))
e(i, i),

e(i+ 1, i+ 1) = yµ
s
p (i− 1, i)− yc(i+ 1, i+ 2).

(15)

Thus, if we write k for (i, i), then

xp(k + 1) = fp
(
xp(k), yµ

s
p (k)
)
,

e(k + 1) = yµ
s
p (k)− yc(k + 1).

(16)

3. CONTROLLABILITY: NONLINEAR PLANTS

Our aim is to investigate the effects of the network on the
controllability of the plant model. We begin by adopting the
following notion of controllability.
Definition 2. (Controllability). The system

x(k + 1) = f
(
x(k), u(k)

)
, k ∈ Z≥0 (17)

where x ∈ Rdx , u ∈ Rdu , dx ∈ Z≥1, du ∈ Z≥1 is said
to be asymptotically controllable to the origin, if there exists
β ∈ KL, such that for any initial condition x, there exists a
nonempty set of semi-infinite length control sequences U(x)
such that for all u∞ =

{
u(0), u(1), . . .

}
∈ U(x) the following

inequality holds∣∣φ(k, x,u∞)
∣∣ ≤ β(|x|, k), ∀k ∈ Z≥0. (18)

In (18), φ(k, x,u∞) refers to solutions of (17) k steps into
the future, starting at initial condition x under the influence of
inputs from u∞. If, furthermore, β

(
|x|, k

)
in (18) can be chosen

as β
(
|x|, k

)
= Me−kλ|x| for some (M,λ) ∈ R>0×R>0, then

(17) is said to be exponentially controllable to the origin. �

Focusing on the plant model, the above definition makes ex-
plicit the fact that for a given xp, there may exist more than
one control sequence which drives the plant state to the origin
satisfying the desired bound. This allows us to study the con-
trollability property of the same plant when the corresponding
inputs and outputs are accessed through a network. The study is
done by examining whether for every xp ∈ Rdxp , the network
allows for realization of at least one sequence in U(xp).

For the purpose of the forthcoming analysis we assume that the
control vector partition corresponds to network nodes, namely

u(k) =
(
u1(k), u2(k), . . . , ur(k)

)
(19)

for all k ∈ Z≥0, r ∈ Z≥1, where for all j ∈ {1, 2, . . . , r},
uj(k) ∈ Rmj , mj ∈ Z≥1 and

∑r
j=1mj = dup .

We proceed by employing Definition 2 for the investigation of
controllability preservation of general nonlinear plants.

With US(x
p) ⊂ U(xp) we will denote a set that consists

of semi-infinite length control sequences from U(xp) which
can be realized by exploiting network processing capabilities,
network protocol and an appropriate processing unit µ∗p ; the
notation US(x

p) alludes to a subset due to the scheduling.
Unlike static protocols, dynamic protocols need not have a
predefined schedule. In fact, values to be sent through a network
have to satisfy a certain criterion defined by the protocol which
is usually fixed, see, e.g., (4).

Now, recall that above we mention additional processing capa-
bilities (apc); see paragraph after (2).
Definition 3. (apc). Suppose that there are r ∈ Z≥2 nodes
competing for access to the network. Correspondingly, the
network buffer vector is partitioned as bn = (bn1, . . . , b

n
r). Then,

there exist δ > 0 such that provided j ∈ {1, . . . , r}, bni (k) :=
ui(k) + δ, ∀i ∈ {1, . . . , r}, i 6= j. �

Note that in Definition 3 we do not explain how j is provided;
this is done in the sequel. The reason we introduce this apc
is that, effectively, it enables us to manipulate the protocol
criterion so that a specific element is picked. We capture this
in the following lemma.
Lemma 2. (Tricking TOD). Consider any u(k) ∈ u∞ ∈
U(xp), k ∈ Z≥0 for some xp ∈ Rdxp . Let the network
be governed by the TOD protocol and let it have apc. Then,
provided j ∈ {1, . . . , r}, uj(k) is chosen for transmission. �

Proof. Let j ∈ {1, . . . , r} be given. Then, according to
apc, for all i ∈ {1, . . . , r}, i 6= j, bni (k) := ui(k) + δ. It
follows that the corresponding error vector (see (2)) e(k) =
(δ, . . . , δ, ej(k), δ, . . . , δ) with ej(k) = 0. Hence, according to
TOD protocol uj(k) is chosen for transmission. �

As promised above, next, we discuss how j ∈ {1, . . . , r} is
provided. First, we concentrate on a special subset of US(x

p)
which is additionally accompanied with appropriate processing
unit µ∗p . More precisely, let us consider set U0

S(x
p) ⊂ US(x

p)
which consists of control sequences where at each time in-
stant a member of the corresponding sequence has at most
one nonzero element. Namely, let u0

∞ = {u0(0), u0(1), . . . ,
u0(k), . . .} ∈ U0

S(x), k ∈ Z≥0. Then, for each k ∈ Z≥0 it
follows u0(k) =

(
0, . . . , 0, u0i (k), 0, . . . , 0

)
, u0i (k) ∈ Rmi ,

where i ∈ {1, . . . , r} for some r ∈ Z≥1 (see equation (19)).
Furthermore, let the processing unit be µsp (see (5)).

Now, we modify Definition 3 with respect to set U0
S(x

p).
Namely, we extend the corresponding definition to additionally
extract the index of nonzero element or to provide any index if
all elements are equal to zero.
Definition 4. (apc0). Consider U0

S(x
p) ⊂ US(x

p) and suppose
that there are r ∈ Z≥2 nodes competing for network access.
Correspondingly, the network buffer vector is partitioned as
bn = (bn1, . . . , b

n
r). Then, there exist δ > 0 and j ∈ {1, . . . , r} is

the index of the nonzero element of the corresponding control
vector at time k or it is any index otherwise, and bni (k) :=
u0i (k) + δ, ∀i ∈ {1, . . . , r}, i 6= j. �

Finally, equipped with Definition 4 and processing unit µsp
we can state the following lemma related to realization of
sequences from set U0

S(x
p), i.e., up(k) = u0(k),∀k ∈ Z≥0.

Lemma 3. (Realizing sequences from U0
S(x

p)). Consider set
U0

S(x
p) ⊂ US(x

p) and the processing unit µsp. Let the network
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be governed by TOD protocol and let it have apc0. Then, the
sequences from U0

S(x
p) are realizable . �

Proof. Consider any sequence from U0
S(x) ⊂ US(x

p) and an
element of the corresponding sequence at time instant k ∈ Z≥0.
According to apc0, an index j ∈ {1, . . . , r} of the nonzero
element from the corresponding control vector u0(k) or any
index otherwise is picked and bni (k) := u0i (k) + δ, δ > 0,∀i ∈
{1, . . . , r}, i 6= j. Correspondingly, the error vector (see
(2)) e(k) = (δ, . . . , δ, ej(k), δ, . . . , δ) with ej(k) = 0; for
simplicity let j be also the index if all elements of the u0(k)
are equal to zero. Hence, according to TOD u0j(k) is chosen.
Effectively, processing unit µsp receives u0(k) and according to
Fig. 1 and (5) up(k) = yµ

s
p(k) = u0(k), as desired. �

Next, we focus on the Uδ
S(x

p) ⊂ US(x
p) which consists of con-

trol sequences where at each two consecutive time instances the
corresponding members of the corresponding sequence differ
in at most one element. Namely, let uδ∞ = {uδ(0), uδ(1), . . . ,
uδ(k), . . .} ∈ Uδ

S(x
p), k ∈ Z≥0, then for each k ∈ Z≥0 it

follows
∣∣uδ(k) − uδ(k + 1)

∣∣ =
(
0, . . . , 0, |uδi (k) − uδi (k +

1)|, 0, . . . , 0
)

=
(
0, . . . , 0, δi(k), 0, . . . , 0

)
, i ∈ {1, . . . , r}, r ∈

Z≥1, δi(k) ≥ 0. Furthermore, let the processing unit be µdp (see
(6)).

We modify Definition 3 but now with respect to Uδ
S(x

p).
Similarly as above, we extend the corresponding definition to
additionally extract the index of differing element or to provide
any index if all elements are the same.
Definition 5. (apcδ). Let the processing unit µdp be used. Con-
sider set Uδ

S(x
p) and suppose that there are r ∈ Z≥2 nodes

competing for access to the network. The network buffer vector
is partitioned as bn = (bn1, . . . , b

n
r). Then, there exist δ > 0 and

by comparing uδ(k) and bn(k − 1) = bµ
d
p(k − 1), k ∈ Z≥1,

index j ∈ {1, . . . , r} is the index of the differing element or
it is any index if uδ(k) = bn(k). Finally, bni (k) := uδi (k) +
δ, ∀i ∈ {1, . . . , r}, i 6= j. �

Due to the fact that it is possible that yc(0) and bµ
d
p(0) differ

in more than one element, we take a short detour to discuss
how realizations of sequences from the set Uδ

S(x
p) impose

restrictions: If bµ
d
p(0) and uδ(0) differ in more than one ele-

ment, then determination of an index for element to be sent
would have to be specified by some rule. However, by the time
up(k) = uδ(k), the plant state might diverge from the trajectory
that leads to the origin. Hence, without imposing constraint
that at time when up(k) = uδ(k) we have φ(k, xp,uδ∞) =
φ(k, xp, ũδ∞), 1 where k ≥ m, we cannot guarantee con-
trollability. Now we are ready to state the following lemma
which is related to realization of sequences from Uδ

S(x
p), i.e.,

up(k) = uδ(k),∀k ∈ Z≥0.

Lemma 4. (Realizing sequences from Uδ
S(x

p)). Consider set
Uδ

S(x
p) ⊂ US(x

p) and the processing unit µdp. Let the corre-
sponding network be governed by TOD protocol and let it have
apcδ . If bµ

δ
p (0) and uδ(0) ∈ uδ∞ ∈ Uδ

S(x
p) differ in at most

one element, then uδ∞ is realizable. �

Proof. Consider uδ∞ ∈ Uδ
S(x

p) with bµ
d
p(0) = uδ(0). Next,

consider uδ(k), k ∈ Z≥1. According to apcδ an index j ∈
{1, . . . , r} of differing element between uδ(k) and uδ(k − 1)

1 ũδ∞ =
{
bµ

d
p (0), bµ

d
p (1), . . . , bµ

d
p (k − 1), uδ(k), uδ(k + 1), . . .

}

or any index otherwise is picked and bni (k) := uδi (k) + δ, δ >
0,∀i ∈ {1, . . . , r}, i 6= j. Correspondingly, the error vector
(see (2)) e(k) = (δ, . . . , δ, ej(k), δ, . . . , δ) with ej(k) = 0; for
simplicity let j be also the index if uδ(k) = uδ(k − 1). Hence,
according to TOD protocol uδj(k) is chosen for transmission.

Finally, according to Fig. 1 and (11) up(k) = yµ
d
p(k) = uδ(k)

as desired. �

The results above are rather general. Moreover, due to its
requirement, Lemma 4 is more restrictive than Lemma 3. In
the sequel we will focus on linear plant models.

4. CONTROLLABILITY: LINEAR PLANTS

In this section we consider a special case of (1), namely
xp(k + 1) = Axp(k) +Bup(k),

yp(k) = Cxp(k)
(20)

where A ∈ Rdxp×dxp , B ∈ Rdup×dxp and C ∈ Rdyp×dxp .

4.1 NCS with a linear plant and µdp.

Sufficient conditions for controllability of a NCS with a linear
plant (20), a processing unit µdp and a network which imposes
periodic scheduling are documented in Suzuki et al. (2011). We
use this result in the sequel. We start by providing some addi-
tional notation. A periodic transmission sequences is denoted
by σw =

{
σ(0), σ(1), . . . , σ(w− 1)

}
where w ∈ Z≥1 denotes

the period. Further, for each i ∈ {0, . . . , w− 1} we introduce a
vector σ(i) ∈ {0, 1}dup with 0 denoting corresponding node
not to be updated and 1 denoting corresponding node to be
updated. For simplicity we refer to periodic transmission se-
quences as communication sequences. Next, we define admissi-
ble communication sequences, which means that during period
w every node will be updated at least once.
Definition 6. (Suzuki et al. (2011)). Let the maximum number
of nodes which can be addressed be a b < dup . If for any period
w ∈ Z≥1 the following is satisfied

(1) for each i ∈ {0, . . . , w − 1},
∣∣σw(i)

∣∣ ≤ b;
(2) span

(
σ(0), . . . , σ(w − 1)

)
= Rdup ,

then the communication sequence σw is admissible. �

Notice that an admissible sequence remains admissible if an
element that already exists in the sequence or the element
consisting only of zero values is added to it.

We introduce the communication sequence matrix

E(k, i) =

k∏
j=i

(
I − diag

(
σ(j)

))
, k ≥ i. (21)

The communication sequence matrix polynomial is defined as

G(µ) =

w−1∑
l=0

((
µw−1I + µw−2E(l + 1, l + 1) + · · ·

· · ·+ E(l + w − 1, l + 1)
)
diag

(
σ(l)

))
(22)

with the indeterminate µ. The communication sequence char-
acteristic polynomial is defined as

g(µ) = det
(
G(µ)

)
. (23)

Theorem 5. (Suzuki et al. (2011)-Theorem 1). Consider a NCS
with (20) and a processing unit µdp. Let the corresponding
network impose periodic scheduling with period w ∈ Z≥1. If
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(1) a communication sequence σw is admissible;
(2) the nonzero eigenvalues of matrix A do not coincide with

the zeros of the communication sequence characteristic
polynomial g(µ);

(3) the pair (A,B) is controllable,

then the NCS is controllable. �

Theorem 5 establishes that if we have a controllable plant, a
processing unit µdp and a suitable admissible periodic commu-
nication sequence, then the resulting NCS will be controllable
as well. However, the theorem does not address the existence
of such a sequence. Answering this question is one of the
contributions of the present manuscript.

We start by noticing that if an admissible sequence is extended
so that it remains admissible, then the order of the resulting
polynomials in (23) increases accordingly. Next, we concen-
trate on the effects to the roots of the corresponding polyno-
mials. However, before we provide some insight, notice that
simple calculations yield

G(µ) = diag
(
P1(w, µ), . . . ,Pdup (w, µ)

)
where

Pi(w, µ) = µw−1

w−1∑
l=0

σi(l) + µw−2

w−1∑
l=0

σi(l)

l+1∏
j=l+1

(1− σi(j)) + · · ·

+ µ

w−1∑
l=0

σi(l)

l+w−2∏
j=l+1

(1− σi(j)) +

w−1∑
l=0

σi(l)

l+w−1∏
j=l+1

(1− σi(j))

∀i ∈ {1, . . . , dup}. Note that the “minimum-length” communi-
cation sequence is the standard basis for Rdup .

To gain some insight into the effects of enlarging the length
of an admissible communication sequence in the way de-
scribed above, we provide Table 1. One should notice that
the “minimum-length” communication sequence (first row) and
communication sequences formed by adding elements consist-
ing only of zero values to the “minimum-length” communica-
tion sequence (second, fourth and seventh row) have roots on
a unit circle. In fact, by adding (0, . . . , 0)’s to the “minimum-
length” communication sequence, for each i ∈ {1, . . . , dup},
we generate polynomials Pi(w, µ) =

∑w−1
j=0 µ

j . Such polyno-
mials have all roots on a unit circle. However, if n is an odd
number, then the corresponding polynomial will always have
one root at −1. On the other hand, in the theory on cyclo-
tomic polynomials, it is a well known fact that if n = p − 1
where p is an odd prime number (any prime number other
than 2 which is the unique even prime), then the roots of the
corresponding polynomial will correspond to the pth primitive
roots of the unity (see Riesel (1994), page 306). More precisely∑p−1
j=0 µ

j = µp−1
µ−1 with all roots being distinct for each such p.

Now, before stating our first extension of Theorem 5 we modify
Definition 3 so that it periodically provides indices provided in
admissible communication sequence.
Definition 7. (apcσw ). Suppose that there are r ∈ Z≥2 nodes
competing for access to the network. The network buffer vector
is partitioned as bn = (bn1, . . . , b

n
r). Let an admissible commu-

nication sequence σw be provided. Then, there exist δ > 0 and
at time instant lk where l ∈ {0, . . . , w} and k ∈ Z≥0, the index
j ∈ {1, . . . , r} is an index of a nonzero element from σw, and
bni (k) := yci (k) + δ, ∀i ∈ {1, . . . , r}, i 6= j. �
Theorem 6. Consider a NCS with a linear plant (20) and a
processing unit µdp. Let the network be governed by the TOD

protocol and let it have apcσw . If the pair (A,B) is controllable,
then the NCS is controllable.

Proof. Consider A ∈ Rdxp×dxp and recall that for a given
w ∈ Z≥1, the polynomial

∑w−1
j=0 µ

j , indeterminate µ, has all
roots on the unit circle. The corresponding matrix either has
no eigenvalues on the unit circle or finitely many. If A has no
eigenvalues on the unit circle, then w ≥ dxp . Otherwise, there
exists a finite number of odd prime numbers for which roots
of the corresponding polynomial coincide with the eigenvalues
of A. However, since there are infinitely many odd prime num-
bers, there exists an odd prime number w for which roots of
the corresponding polynomial do not coincide with the eigen-
values of A. We proceed with adding (0, . . . , 0) elements to
the “minimum-length” communication sequence so that the re-
sulting length of the new admissible communication sequence
equals to w. We denote this new sequence with σw. It follows
that all conditions of Theorem 5 are satisfied. Hence, the NCS is
controllable. Now, according to apcσw , at time instant lk where
l ∈ {0, . . . , w} and k ∈ Z≥0, the index j ∈ {1, . . . , r} is an
index of a nonzero element from σw, and bni (lk) := yci (lk) +
δ, δ > 0,∀i ∈ {1, . . . , r}, i 6= j. Correspondingly, the er-
ror vector (see (2)) e(lk) = (δ, . . . , δ, ej(lk), δ, . . . , δ) with
ej(lk) = 0. Hence, according to TOD, ycj (lk) is chosen for
transmission. Finally, according to Fig. 1 and (11), up(lk) =

yµ
d
p(lk) = yc(lk), as desired. �

Remark 7. Results in Suzuki et al. (2011) implicitly require
that condition from Lemma 4 is satisfied (see (4) in Suzuki et al.
(2011)). This appears very restrictive unless special control
sequences are considered for which appropriate devices exist;
see Section 3. �

4.2 NCS with a linear plant and µsp.

We recall that, at each time instant, processing unit µsp applies
the received value to the addressed node and zero values to the
remaining nodes. Thus, we are considering control sequences
from the set U0

S(x
p), xp ∈ Rdxp ; see Section 3. This means

that the requirement as in Lemma 4 is not needed, making the
forthcoming results less restrictive than Theorems 5 and 6.
Corollary 1. Consider a NCS with (20) and a processing unit
µsp. Let the corresponding network impose periodic scheduling
with a given period w. If

(1) a communication sequence σw is admissible;
(2) the nonzero eigenvalues of matrix A do not coincide with

the zeros of the communication sequence characteristic
polynomial g(µ);

(3) the pair (A,B) is controllable,

then the NCS remains controllable. �

Proof. The proof follows the same lines of the proof of
Theorem 5 in Suzuki et al. (2011). Note that u(t) =
diag(σc(t))u`(t) which impacts equations from (9) to (40) in
the following way Dc(·, ?) := diag

(
σc(·)

)
). �

Using the same ideas as in Theorem 6 we state
Corollary 2. Consider a NCS with (20) and a processing unit
µsp. Let the corresponding network be governed by the TOD
protocol and let it have apcσw If the pair (A,B) is controllable,
then the NCS is controllable. �
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w σw G(µ) {µ|g(µ) = 0}

2 {(0, 1), (1, 0)}
[
µ+1 0
0 µ+1

]
{−1}

3 {(0, 1), (0, 0), (1, 0)}
[
µ2+µ+1 0

0 µ2+µ+1

]
{−0.5± i0.86}

3 {(0, 1), (0, 1), (1, 0)}
[
µ2+µ+1 0

0 2µ2+µ

]
{−0.5, 0,−0.5± i0.86}

4 {(0, 1), (0, 0), (0, 0), (1, 0)}
[
µ3+µ2+µ+1 0

0 µ3+µ2+µ+1

]
{−1,±i}

4 {(0, 1), (0, 1), (0, 0), (1, 0)}
[
µ3+µ2+µ+1 0

0 2µ3+µ2+µ

]
{−1, 0,±i,−0.25± i0.66}

4 {(0, 1), (0, 1), (0, 1), (1, 0)}
[
µ3+µ2+µ+1 0

0 3µ3+µ2

]
{−1,−0.33, 0,±i}

5 {(0, 1), (0, 0), (0, 0), (0, 0), (1, 0)}
[
µ4+µ3+µ2+µ+1 0

0 µ4+µ3+µ2+µ+1

]
{−0.81± i0.56, 0.31± i0.95,−0.62±

i0.51, 0.37± i0.8}

5 {(0, 1), (0, 1), (0, 0), (0, 0), (1, 0)}
[
µ4+µ3+µ2+µ+1 0

0 2µ4+µ3+µ2+µ

]
{0,−0.74, 0.12± i0.81,−0.62±

i0.5, 0.37± i0.8}

5 {(0, 1), (0, 1), (0, 1), (0, 0), (1, 0)}
[
µ4+µ3+µ2+µ+1 0

0 3µ4+µ3+µ2

]
{0,−0.81± i0.59, 0.31± i0.95,−0.16±

i0.55}

5 {(0, 1), (0, 1), (0, 1), (0, 1), (1, 0)}
[
µ4+µ3+µ2+µ+1 0

0 4µ4+µ3

]
{0,−0.25,−0.81± i0.59, 0.31± i0.96}

Table 1. Communication sequence matrix polynomials for different periodic sequences and roots of the
corresponding polynomials for a second ordered system; permutation of added elements, adding (1, 0)

instead of (0, 1), or adding both where possible, does not generate new polynomials.

Proof. The proof differs from the proof of Theorem 6 only in
the fact that instead of Theorem 5, Corollary 1 is used and in
the last line instead of yµ

d
p , yµ

s
p is used. �

5. CONCLUSIONS

This manuscript considers a NCS where the network is char-
acterized by a dynamic protocol and different types of addi-
tional processing capabilities. First, NCS with general nonlin-
ear plants were considered and it was shown that the corre-
sponding plant stays controllable if an appropriate processing
device is chosen and the network has appropriate additional
processing capability and dynamic protocol; e.g., TOD pro-
tocol. Next, NCS with linear plants were considered and the
corresponding controllability result from Suzuki et al. (2011) is
extended.
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