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Abstract: This paper develops a systems approach for robust real-time optimal autonomous
driving control system development. An autonomous vehicle control system framework is
proposed to dissect an automotive system into some sub-systems in which physical systems and
control softwares are communicating. To attain robustness, a robust on-road vehicle localization
scheme is proposed applying multi sensor-data fusion with the results of multirate decentralized
state estimation and the clothoidal road model constraint. Control block and control block
topology are proposed to utilize block-wise perception of environment and vehicle localization
and to produce a trajectory command via a virtual lane curve for longitudinal/lateral vehicle
control. To attain real-time control optimality, we apply the multilevel approximate predictive
control developed by the authors. Performance of the proposed autonomous driving control
system is demonstrated through some track test results.

1. INTRODUCTION

Autonomous driving vehicles are said to be the future
of automotive vehicles that provide safety, comfortability,
convenience for drivers. Autonomous vehicles accordingly
become a very important research topic in the automotive
industry.

Autonomous driving control requires much more advanced
control technologies over adaptive cruise control and lane
keeping control which assist the driver’s driving action by
getting the information of road environment and vehicle’s
states. Autonomous driving control thus requires lateral
as well as longitudinal motion control. Many articles
considered lateral control design such as automated lane
change steering control (see e.g. Falcone et al. (2007);
Guldner et al. (1999); Hatipoglu et al. (2003)). It is
however hard to find control designs that consider both
lateral and longitudinal motion control, whilst there has
been so much work on lane keeping/changing control
design. It is our experience that adjusting the longitudinal
velocity according to the vehicle’s yaw rate and/or speed
tends to provide more efficient driving (e.g. lane changing).
Almost no article considers longitudinal velocity control
in the lane changing control. Longitudinal vehicle control
was mostly for intelligent vehicle highway system (IVHS)
(see e.g., Hedrick et al. (1991); Pham et al. (1994)). In
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Pham et al. (1994), combined lateral and longitudinal
control was presented for IVHS. In Rajamani et al. (2000),
integrated longitudinal and lateral control was presented.
Cruise control (see e.g., Ioannou et al. (1993); Möbus et al.
(2003)) is also an interesting vehicle longitudinal control
problem.

Multirate sensing is inherent in autonomous vehicles and
it causes control system design to become challenging.
Recent trends in the lane keeping/changing system re-
search are using vision systems to obtain optical lane
recognition (Dickmanns (2002)) which are slow. Whilst,
other measurements such as the yaw rate and the longi-
tudinal velocity are available at a fast rate through the
vehicle’s electronic control unit (ECU). It is well known
that the performance of a digital control system is limited
by the applied sampling rate. Nonetheless, the approach
of conventional lateral control is to generate a control
command at the same slow rate of the vision processing.
The problem of a slow update rate as well as the time delay
of vision processing systems causes inaccurate control and
undesirable lateral behavior such as oscillatory responses
due to the loss of damping.

Applying predictive control is prospective for real-time
optimality in the presence of various constraints (e.g.
steering angle limit and its rate limit, yaw rate limit,
etc.), provided it can be solved in real-time. No other
control methods can consider such various constraints. In
this regard, the authors proposed an innovative approx-
imate explicit model predictive control (MPC) strategy
applying multilevel approximation scheme (Lee and Chung
(2013)). The scheme achieved a significant improvement of
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computation time and approximation quality over other
approximate predictive control methods. Applications of
MPC to vehicle motion control are very promising and
numerous successful results have been reported so far (see
e.g. Falcone et al. (2007); Li et al. (2010)).

The paper develops an autonomous driving control system
in a systems approach, with robust lane curve estimation
and control performance optimality. We will propose a new
paradigm for autonomous driving control system design,
and develop a set of sub-system modelings. We are to
introduce innovative methods for block-wise perception
of environment around the vehicle and for determining
admissible maneuvering to design trajectory commands.
Robust real-time optimality is to be attained by developing
a robust road lane estimation scheme and by applying
predictive control scheme developed by the authors Lee
and Chung (2013). We are also to demonstrate the perfor-
mance of the proposed autonomous driving control system
through in-vehicle tests and some track test results.

NOMENCLATURE

{XY Z} inertial coordinate frame
{xyz} local coordinate frame
‘O’ the center of turn (CT)
x a front fixed longitudinal position in {xyz}
y lateral position of the origin of {xyz} to CT
ydes lateral position of the lane center to CT
ẋ = Vx longitudinal velocity at the center of gravity
(CG)
ẏ = Vy lateral velocity at CG of vehicle
ψ yaw, heading, angle of vehicle in {XY Z}
ψdes yaw, heading, angle of the lane center in {XY Z}
β vehicle side slip angle at CG
αf (αr) front (rear) tire slip angle

ψ̇ yaw rate of vehicle
δf (δr) front (rear) steering angle
Cα (Cαf , Cαr) cornering stiffness of (front, rear) tire
Fy (Fyf , Fyr) lateral force on (front, rear) tire
θV tire velocity angle in {xyz}
φ road bank angle
µ Tire-road friction coefficient
R turn radius of vehicle or radius of road
L look-ahead distance
ey = y − ydes lateral position error in {xyz}
eψ = ψdes − ψ heading angle error in {xyz}
N steering ratio
m total mass of vehicle
Iz yaw moment of inertia of vehicle
lf (lr) longitudinal distance: CG to front (rear) tire
lfr = lf + lr wheelbase

PARAMETER DEFINITIONS

a22 = −2Cαf + 2Cαr
mVx

, a23 = −a22Vx,

a24 = −1− 2Cαf lf − 2Cαrlr
mV 2

x

, a′24 = (a24 − 1)Vx,

a42 = −2Cαf lf − 2Cαrlr
Iz

, a′42 =
a42
Vx

, a43 = −a42,

a44 = −
2Cαf l

2
f + 2Cαrl

2
r

IzVx
,

b21 =
2Cαf
mVx

, b′21 = b21Vx, b41 =
2Cαf lf
Iz

.

2. PROBLEM DESCRIPTION

LidarLidar

RadarRadar

IMUIMU

GPSGPS

CameraCamera

...

...

Multi-sensor

Data fusion

Multi-sensor

Data fusion

_x_x
Gcc¡clpGcc¡clp

±d±d

_xd_xd

Lateral

control

Lateral

control

Vehicle

Motion

Vehicle

Motion

Gsc¡clpGsc¡clp
±±

Trajectory

Command

Trajectory

Command

Speed

control

Speed

control

A
rb

it
ra

ti
o
n

A
rb

it
ra

ti
o
n

Fig. 1. Autonomous Driving Control Framework

We are interested in developing a new paradigm for au-
tonomous driving control design and implemenation as
shown in Fig. 1. The framework dissects a complex au-
tomotive system into some accessible cyber-physical sub-
systems (consisting of physical systems and control soft-
wares, with communications between them). The proposed
paradigm has a significant advantage of allowing cyber-
physical systems approach: one can independently deter-
mine each sub-system or control software while just con-
sidering possible high-level communication between them.
One can thus easily apply well developed variety of control
and estimation theories. Seamless integration into vehicles
is quite natural because the communication is already well
defined.

We are thus interested in developing some essential tech-
niques to realize autonomous driving in the proposed
autonomous driving framework. Specifically, we are inter-
ested in developing cyber-physical sub-system modelings,
developing vehicle localization and environment percep-
tion, designing the ‘trajectory command’ and the ‘arbi-
tration’, the ‘speed control’, and the ’lateral control’. For
reliable vehicle localization and environment perception,
we are interested in developing a multirate decentralized
state estimator based multi sensor-data fusion. In regard
to a trajectory command, we are interested in developing
an innovative method that can efficiently describe the
condition of vehicle’s environment in pursue of safest au-
tonomous maneuvering.

3. SUB-SYSTEM MODELING

In order to deal with the autonomous driving control
framework shown in Fig. 1, let us develop a unique set
of cyber-physical sub-system modelings. The figure dis-
sects the automotive system into some sub-systems to
be modeled. By the cyber-physical sub-system modeling
we mean that we model the sub-systems that are either
physical system or cyber-physical: real physical system
motion, (control) softwares, or approximations of con-
cepts/phenomena. We are to develop a high-level vehicle

motion model transfer function from
[
ẋd δd

]T
, the desired

longitudinal velocity and steering angle, to the vehicle pose
in terms of road lane curve tracking error at a look-ahead
distance error. We also develop the cruise control closed-
loop Gcc−clp to describe the high-level longitudinal motion
and the steering control closed-loop Gsc−clp. By combining
them we are to build a high-level vehicle motion model.
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3.1 Lateral Motion Model

In highway driving, it is quite practical to assume steady
state tire deformation, small tire slip angle, and (almost)
constant µFz. In this case, the lateral tire force modeling
becomes simple: the tire lateral force Fy can be approx-
imately represented by tire slip angle α and a constant
cornering stiffness Cαf such that Fy = Cαfα. For large
tire slip angles, we need to introduce more sophisticated
nonlinear tire model such as Pacejka’s magic formula curve
(Pacejka et al. (1987)).

The lateral motion model is described in terms of road lane
curve tracking error in {xyz}. Considering expert drivers’
behavior to observe the road at a look-ahead distance while
driving, we describe the lateral motion model in terms of
error at a look-ahead distance error (Fig. 2).
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Fig. 2. Lateral position and velocity errors at the look-
ahead distance point

Considering possible state measurements that may be
conducted via the use of multiple sensors with different
principles, the vehicle lateral motion is described in terms

of the state vector x =
[
xTv xTm

]T
with xv = [eyL ėy eψ]

T

and xm =
[
ψ̇
]
, u = δ

ẋ = Ax +Bu +Bϕϕ+Bφ sinφ

=

[
Av Avm
Amv Am

]
x +

[
Bv
Bm

]
u +

[
Bvϕ

0

]
ϕ+

[
Bvφ

0

]
sinφ

(1)

where ϕ =
[
ψ̇des eψL − eψ

]T
,

Av =

[
0 1 0
0 a22 a23
0 0 0

]
, Am = [a44] , Avm =

−La′24
−1

 ,
Amv =

[
0 a′42 a43

]
, Bv =

 0
b′21
0

 , Bm = [b41] ,

Bvϕ =

[
L Vx
Vx 0
1 0

]
, Bvφ =

[
0
g
0

]
.

A detailed analytical derivation of the model is explained
in (Lee et al. (submitted)).

For the ECU sampling period Tc, one can obtain the ZOH
discrete-time equivalent quadruplet, to (A,B,Bϕ, Bφ),

(Φ,Γ,Γϕ,Γφ) =

([
Φv Φvm

Φmv Φm

]
,

[
Γv
Γm

]
,

[
Γvϕ

0

]
,

[
Γvφ
0

])
.

3.2 Longitudinal Motion Model

Some part of longitudinal motion model are control soft-
wares: The electronic stability control (ESC) control soft-
ware and the cruise control software.

It is usual to design the ESC closed-loop system such that

Gesc−clp =
ẍ

ẍd
=

1

τs+ 1

where τ is typically 0.5 (see e.g. Rajamani (2006)). More-
over, the cruise controller Gcc is in a form of proportional-
integral control. Then, it is immediate to find the closed-
loop cruise control system transfer function

Gcc−clp =
ẋ

ẋd
=

Gesc−clpGcc
s+Gesc−clpGcc

that describes high-level longitudinal vehicle motion. The
vehicle’s front fixed longitudinal position x in {xyz} is
simply an integration: x/ẋ = 1/s.

Remark 1. The longitudinal motion model x/ẋ = 1/s
is independent of the lateral motion model. The lateral
motion model requires ẋ from the longitudinal model.

3.3 Steering System Model

Some part of steering system are also control softwares:
The ‘AFDR control’ and the ‘steering control’ in Fig. 3.
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Fig. 3. Closed loop steering system with Tδ

The AFDR torque control can be expressed as TAFDR =
TA + TF + TD + TR, where TA is the assistant torque
(for driver’s easy steering with steering torque Td + TA),
TF is the friction control (to compensate for mechanical
friction increase due to Td direction change), TD is the
damping control (to attain comfortable damped steering
return with Ts + TD), TR is the return control (to attain
neutral steering position θs = Nδ = 0 when Td = 0).

We describe the steering mechanism as a second order
system. If the driver’s torque Td = 0, then the transfer
function from Tδ to δ can be expressed as

Gstr =
δ

Tδ
≈ 1

N(Iswes2 + Csws)
.

Once we design a steering servo controller Gsc (e.g. feed-
forward and PID control). Then, the closed-loop steering
system transfer function Gsc−clp = δ/δd can be readily
computed. Further, it can be approximately described by

Gsc−clp =
δ

δd
≈ 1

τss+ 1

where τs is typically 0.1 ∼ 0.2 sec (our experimental
observation).
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4. VEHICLE LOCALIZATION

4.1 Multirate to Synchronous Sampling

Sensing in autonomous vehicle is inherently multirate. Let
Tc be the control update period (that is equal to the
sampling period of the vehicle’s ECU, Tecu), Tcam be the
camera-vision processing system’s update period, and Trad
be the radar update period.

Without loss of generality, we assume (can let) Tcam =
RmvTecu and Trad = RmrTecu for some integers Rmv ≥ 1
and Rmr ≥ 1. The vehicle’s yaw rate ψ̇ and longitudinal
velocity Vx are measurable and available from the vehicle
ECU at a sampling rate of 1/Tc.

Let k, kv and kr denote the ECU, the camera, and the
radar update indices, respectively. Then the synchronous
time is represented by

t = kTc = (kv + i/Rmv)Tcam = (kr + j/Rmr)Trad (2)

for k, kv, kr ∈ Z = {0, 1, 2, . . . } and i ∈ Zv =
{0, 1, . . . , Rmv − 1} and j ∈ Zr = {0, 1, . . . , Rmr − 1}.
By (2), we mean that there exist some time index sets
(k), (kv, i), (kr, j) satisfying the time synchronous condi-
tion: e.g. u(k) = u(kv, i) = u(kr, j).

In the next subsections, utilizing the synchronous time,
we are to perform vehicle localization and environment
perception through multi sensor-data fusion at a fast rate
of the vehicle’s ECU using decentralized multirate state
estimation using multirate sensing from the camera-vision
sensor (lane curve and obstacle vehicles at Tcam), the radar
sensor (obstacle vehicles detection at Trad), and the inertia
sensor (yaw rate, speed, etc.).

4.2 Multirate Decentralized State Estimation

Using the model (1), we design a multirate decentralized
state estimator: A state estimator to estimate xm is{

x̄m(k + 1) = Φmx̂m(k) + Γmu(k) + Φmvx̂v(kv, i)

x̂m(k) = x̄m(k) + Llm (ym(k)− Cmx̄m(k))
(3a)

where Llm is the state estimator gain that stabilizes Φm−
ΦmLlmCm. In this case, x̂v are all assumed to be available
from the multirate state estimator for x̂v we are to design.
In order to estimate the state xv, we are to use a multirate
state estimator

x̄v(kv, i+ 1) = Φvx̂v(kv, i) + Γvδ(kv, i) + Φvmx̂m(kv, i)

+ Γvϕψ̇des(kv, i) + Γvφ sinφ

x̂v(kv, i) = x̄v(kv, i) + Llv (yv(kv, 0)− Cvx̄v(kv, 0))
(3b)

where Llv is the state estimator gain to be determined.

Definition 1. A multirate state estimator is referred to as
convergent if it is convergent at some sampling periods.

Admitting that the output measurement yv(·) is available
at each sampling instant kvTcam, we are to make the
multirate state estimator (3b) convergent at the sampling
period Tcam. Now, applying discrete-time lifting (see e.g.
Kranc (1957); Meyer (1992)) leads to

x̄(kv + 1, 0) =
(

ΦRmv
v − ΦRmv

v L̃lvCv

)
x̄(kv, 0)

+

Rmv∑
1

Φnvy(kv, 0).

with a definition of ΦRmv
v L̃lv =

∑Rmv

1 ΦnvLlv. Utilizing a

gain L̃lv that stabilizes ΦRmv
v − ΦRmv

v L̃lvCv, we immedi-
ately compute

Llv =

(
Rmv∑
1

Φnv

)
ΦRmv
v L̃lv

that guarantees the convergence of the state estimator (3b)
at each camera-vision processing update time.

Proposition 1. The decentralized multirate state estima-
tors given in (3) are convergent, if their dynamics show
convergence at some respective sampling periods.

Proof: Skipped due to space limitation.

4.3 Vehicle Localization

Vehicle localization on road is achieved by detecting road
lane marks as a cloithoidal cubic polynomial. The vehicle
motion model in terms of the road tracking error describes
vehicle location on road: Vehicle localization.

The camera and vision processing system can provide a
lane curve equation (see e.g., Dickmanns (2002))

f(x) = co + c1x+ c2x
2 + c3x

3 (4)

on the vehicle coordinate system, at a slow sampling rate of
1/Tcam. Here, ci’s denote the lateral offset, heading angle
error, curvature/2, curvature rate/6, respectively.

For robust road lane detection, we apply multirate multi-
sensor data fusion using the multirate decentralized state
estimation Cvx̂v in (3b) and the nonholonomic constraint
on the clothoidal road model - slowly varying curvature
κ = 6c3VxTc + 2c2. By fusing these informations, we
obtain an optimal road lane curve estimation in the case
of intermittent faulty lane detection.

We first use x̄v(kv, i) in (3b) to obtain a lane curve
prediction at time (kv, i): c̄1 = ēψ(kv, i), the heading angle
error prediction, c̄3 = c3, c̄2 = κ̄/2 with a curvature
prediction κ̄ = 6c̄3VxTc + 2c2, and c̄0 = ēyL(kv, i)− c̄1L−
c̄2L

2− c̄3L3. These coefficients can be used to build a lane
curve prediction f̄(x).

It is our observation that the cubic polynomial lane curve
f(x) in (4) is very sensitive to the errors in the coefficients
c2 and c3. By this we mean that erroneous detections
of c2 and c3 by the camera-vision sensors may cause
a fishtail curve to occur. In this regard, we need to
evaluate reliability of a detection of lane curve using the
Mahalanobis distance (see e.g. Thrun et al. (2006))

d2Mf
(f̄ , f) =

([
c̄2
c̄3

]
−
[
c2
c3

])T
R−1f

([
c̄2
c̄3

]
−
[
c2
c3

])
(5)

where Rf denotes an error covariance matrix associated
with the lane curvature and its rate. A lane curve detection
is reliable and can thus be used, provided dMf

(f̄ , f) in (5)
is less than a pre-specified threshold value. Otherwise, it
is considered as a faulty lane curve detection that cannot
be used.

Now, we can use x̂v(kv, i) in (3b) to estimate the lane
curve at time (kv, i): ĉ1 = êψ(kv, i), the heading angle error
estimation, ĉ3 = c3, ĉ2 = κ̂/2 with κ̂ = 6ĉ3VxTc + 2c2, and
ĉ0 = êyL(kv, i)− ĉ1L− ĉ2L2− ĉ3L3. These coefficients can

be used to build a lane curve estimation f̂(x).
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5. ENVIRONMENT PERCEPTION

For autonomous driving, perception of environment (other
vehicles around), in addition to on-road vehicle localiza-
tion, must be used in producing a trajectory command.
This section is dedicated to describing an innovative way
to describe the results of environment perception and to
determine a trajectory command utilizing it.

5.1 Control Block for Block-Wise Environment Perception

As far as we are concerned with safest driving, we are
interested in determining risk-free environment rather
than acceptable risk through a complex risk assessment to
determine quantitative or qualitative value of risk related
to lane keeping/changing.

In order to describe the results of environment perception
in a block-wise manner, just determining risk-free or not,
we propose a simple block-wise environment perception
method referred to as Control Block (Fig. 4).

Assumption 1. Perception of environment in such a block-
wise manner is available so as to determine the condition
of each sub-block.

It should be noted that Assumption 1 just requires a
simplest risk assessment. If an obstacle vehicle is already
in, just entering, or expected to move into a sub-block
(in the very short future), then the sub-block becomes
red. Such a simple block-wise condition determination
via environment perception is a very simple yet efficient
risk assessment to determine admissibility of lane keep-
ing/changing. In reality, as far as we are concerned about
safest driving, quantitative or qualitative value of risk
related to lane changing appears to be useless. By this we
mean that we are simply interested in risk-free situation
that leads to safest driving.

fxgfxg

fygfyg

xx

(1;¡1)(1;¡1) (0;¡1)(0;¡1) (¡1;¡1)(¡1;¡1)
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(¡1;1)(¡1;1)(0;1)(0;1)(1;1)(1;1)

x
d

x
d

Fig. 4. Control block consists of 3×3 sub-blocks.

The control block, consists of 3×3 sub-blocks in {xyz}
is simply a block-wise description of the environment of
the vehicle: The origin sub-block B(0, 0) is taken by the
vehicle, and the other sub-blocks are either vacant or (pos-
sibly) taken by surrounding vehicles. The (red-colored)
occupied sub-blocks are taken by arounded vehicles. The
(green-colored) admissible sub-blocks, among the vacant
sub-blocks, are candidate targets the vehicle can move
into. Some admissible sub-blocks (yellow-colored) can only
be reached via detour sub-blocks.

Each sub-block has a width of a lane and a height of
minimum safe platoon driving distance (described by
the tip-to-tail headway position x). Let x in {xyz} be
a minimum tip-to-tail headway position representing a
distance from the tip of the vehicle to the tail of leading
block added to the longitudinal distance from the center
of gravity to the tip (Fig. 4). With a longitudinal velocity
of ẋ, the position x in {XY Z} can be reached in a tip-
to-tail headway time τx. The headway time is time taken
by the vehicle to cover the headway distance. By keeping
a constant headway position x, the velocity set point ẋd

can be kept constant. Increasng/descreasing the headway
position x, with a fixed headway time τx, leads to a
corresponding velocity set point adjustment.

5.2 Control Block Topology for Trajectory Command

In order to determine if a candidate target sub-block is
admissible, we propose a method referred to as Control
Block Topology.

Definition 2. In a case of moving from B(0, 0) to a target
sub-block B(it, jt) (simply noted as B(0, 0) → B(it, jt)),
we define a maneuvering sub-block set B([0 : it], [0 : jt])
where [0 : it] ([0 : jt]) denotes ascending/descending
integers to it (jt) and ([0 : it], [0 : jt]) denotes a set of
finite combinations of such ascending/descending integers.
Further, in a case of moving B(0, 0) → B(id, jd) →
B(it, jt), we define a maneuvering sub-block set B([0 :
id], [0 : jd]) ∪ B([id : it], [jd : jt]).

Remark 2. The maneuvering sub-block set B([0 : it], [0 :
jt]) consists of finite combination of ascending/descending
integers to it(jt).

Definition 3. In terms of the control block, a maneuvering
in which the (edges and vertices of) origin sub-block
B(0, 0) never invade red sub-blocks in its maneuvering sub-
block set is defined as risk-free maneuvering.

The following proposition addresses risk-free (never invad-
ing red sub-blocks) maneuvering (lane keeping/changing).

Proposition 2. A sub-block B(it, jt) is admissible, if the
set B([0 : it], [0 : jt]) includes no red sub-block. Further, if
the set B([0 : id], [0 : jd]) ∪ B([id : it], [jd : jt]) includes no
red sub-block, the sub-block B(it, jt) becomes admissible
via an admissible detour sub-block B(id, jd).

Proof: Skipped due to space limitation.

Now, a target sub-block, B(it, jt), for possible lane change
is determined through the control block topology in Propo-
sition 2. We then need to design a trajectory command for
the controller we are to design.

For longitudinal maneuvering, a headway position xd is
given to move into B(0, jt).

For lateral maneuvering, we introduce a Virtual Lane
Curve (VLC) that passes through the center of the target
sub-block B(it, jt):

fvlc(x) = f(x) + evlcy

where evlcy is the lane curve offset to the lane change
direction from the lane curve at B(0, 0).

Remark 3. The virtual lane curve at the target sub-block
B(it, it) introduced for lane change from the origin sub-
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block B(0, 0) naturally becomes the real lane curve as the
target lane is taken by the vehicle.

The trajectory command is given in terms of the state
reference described by

xd =
[
evlcyL ėry e

vlc
ψ 0

]T
(6)

where ėry denotes a desired decay rate of error associated
with the VLC. By determining ėry, one can adjust the
lateral position error decay rate,

Assigning a target sub-block B(it, jt) is equivalent to giv-
ing (xd,xd), a set of desired headway position and desired
lateral pose error, that leads the vehicle to the target sub-
block. By assigning a target/detour sub-block, a variety of
autonomous driving scenarios can be realized: lane keeping
with cruising, lane changing with cruising, lane changing
with passing/being-passed-by other vehicles.

6. CONTROL DESIGN

The ‘Trajectory Command’ in Fig. 1 computes a reference
set for vehicle maneuvering: a set of desired headway
position and desired lateral pose error. Given a trajectory
command (xd,xd), the ‘Speed control’ and the ‘Lateral
control’ determine (ẋd, δd): The ‘Speed control’ generates
a desired longitudinal velocity ẋd that is to be applied to
the cruise control closed-loop Gcc−clp, whilst the ‘Lateral
control’ generates a desired steering angle δd that is to be
applied to the steering control closed-loop Gsc−clp. The
role of the ‘Arbitration’ in Fig. 1 includes determination
of possible lateral control mode change.

6.1 Longitudinal Speed Control

The ‘Speed control’ in Fig. 1 generates a desired longitu-
dinal velocity ẋd that is to be applied to the cruise control
closed-loop Gcc−clp.

For longitudinal speed control design, we propose a map
to generate a velocity set point trajectory

ẋd = ẋ+ sat

(
fvx(xd − x)

γxTc

)
γxTc (7)

where γx > 0 is a design constant to limit the rate of
change in longitudinal velocity such that

∣∣ẋd − ẋ∣∣ < γxTc.

A simple form of fvx(·) is surely (xd−x)/τx. The velocity
command ẋd becomes an input to the cruise control
closed-loop Gcc−clp. The desired longitudinal velocity ẋd

is expressed in terms of the desired and current headway
positions.

6.2 Lateral Control

The ‘Lateral control’ in Fig. 1 generates a desired steering
angle δd that is to be applied to the steering control closed-
loop Gsc−clp.

For lateral control, we apply model predictive control
(MPC) to generate a desired steering angle δd which
becomes an input to the steering control closed-loop. The
reference trajectory for MPC is determined as

r(k + i) = e−ηiCxd(k), i = 0, . . . , Np − 1 (8)

where Np is the prediction horizon and η > 0 is a design
constant.

For real-time optimality of the lateral controller, we are to
apply the multilevel approximate model prediction control
for real-time optimality (see Lee and Chung (2013)). The
predictive control scheme attains optimality the advantage
of the predictive control while significantly saving comput-
ing time. Details are not given here due to space limitation.
The interested readers are referred to the reference.

7. IMPLEMENTATION AND TESTS

The autonomous driving control system is implemented
for in-vehicle tests on a test vehicle (Hyundai Tucson). The
high-level commands ẋd, the velocity set point, and δd, the
desired steering angle, generated from the ‘speed control’
and ‘lateral control’, respectively, in Fig. 1 are injected into
the in-vehicle cruise controller as a velocity set point and
the in-vehicle EPS system as a value aided function torque
input, both thru the CAN communication. By this, the
proposed autonomous driving control system is seamlessly
integrated into the test vehicle with modification for
implementation being minimized.
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Fig. 5. Frame sequence in road lane curve estimation
simulation: a fishtail curve by the camera-vision mea-
surement error is corrected.

First, road lane curve estimation scheme is tested. A frame
sequence in Fig. 5 demonstrates that the cubic polynomial
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Fig. 6. Lane change experiment with a scenario of
B(0, 0)→ B(−1, 0)

curve is very sensitive to the errors in the coefficients c2
and c3: even±10% random errors cause such a problematic
fish tail curve. We find that some intermittent camera-
vision measurement errors/failures can be corrected by
considering the vehicle motion and the clothoidal road
model constraint.

We then conducted an autonomous lane changing exper-
iment on a vehicle performance test track. As a safest
lane change scenario, we tried a lane change at a vehicle
speed of 30m/s on straight road lane with obstacle vehicles
taking their sub-blocks B(0,−1), B(1, 0), and B(0, 1) in
the control block (Fig. 4). By applying the control block
topology, an admissible target sub-block B(−1, 0) is de-
termined for lane change. The predictive lateral controller
with a reference trajectory (8) and the longitudinal speed
controller in (7) are applied. The result of lane change
experiment with a scenario of B(0, 0)→ B(−1, 0) is shown
in Fig. 6. The VLC is introduced at about 4.3s. Lane
crossing occurs at about 7s. Lane change completes in 5.5s.

8. CONCLUSIONS

A systems approach has been proposed for autonomous
driving control system development and implementation.
The proposed autonomous driving control system frame-
work dissected an automotive system into some sub-
systems with communications between them being con-
siderred such that systematic control system designs can
be accomplished. The proposed control block and control
block topology used block-wise perception of environment
and vehicle localization to produce a trajectory command
via a virtual lane curve for longitudinal/lateral vehicle
control. As shown through an application, the proposed
autonomous driving control system and its design methods
allow a systematic autonomous driving control design to

be accomplished in a systems approach, well developed
variety of control and estimation theories can be easily
applied with readiness for seamless implementation.
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