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Abstract: This paper deals with the controller of an active orthosis for rehabilitation reasons
of the knee joint. The dynamical model of the system, constituted of the shank and the orthosis
is complex and is considered as unknown in the conception of the proposed controller. The
full security protocol has been carefully applied and we have selected a healthy person for our
experiments. The flexion/extension movements used for our experiments are of sinusoidal form
and are generally applied by therapeutic doctors. The fast terminal sliding mode technique used
in the proposed controller permits a finite time convergence towards zero of the tracking errors
both in position and in velocity. The experimental results are satisfactory and prove clearly the
effectiveness of the proposed approach. As the wearer used can develop a muscular effort, we
have tested the two cases: resistive and assistive effort and we have obtained a good performance
in both cases as has been proven in the stability analysis by the the Lyapunov approach.
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1. INTRODUCTION

Exoskeletons are increasingly developed in the literature
and are designed to solve several problems that may be
encountered by humans. In fact, nobody is immune to
an accident or a pathology causing him a partial/total
impairment of its mobility. One can become paraplegic,
for instance. Exoskeletons can be used to reduce the
degree of dependence regarding to this kind of situations.
They are also used in the field of rehabilitation of lower
and/or upper limbs. Furthermore, exoskeletons can also
be used to improve comfort and assist in various daily
tasks (gardening, carry heavy loads, climb stairs, walk
longer, etc.). An exoskeleton may either concern a part
of the body (arms, knee, pelvis, etc.) or a combination
of many parts (both feet with the pelvis for instance).
Exoskeletons are widely developed in the literature. In
[1], the kinematics, the control and the therapy modes of
the arm therapy robot ARMin are presented. The Tokyo
University of Agriculture and Technology has designed
an exoskeleton to assist its wearer to realize farming
work that is considered as tough [2]. In the context of
military applications, Hercule has been realized to improve
the performances of soldiers [3]. Berkeley University has
recently conceived a lower limb exoskeleton named BLEEX
that helps its wearer to transport important loads [4].
Finally, one can find in [5] a good state of the art on the
exoskeletons and their applications.

In order to allow the exoskeleton to meet the needs of the
wearer, it is necessary to develop a suitable control scheme.
The complexity of the system dynamics, consisting of the
exoskeleton and its wearer, associated with external dis-

turbances, makes conventional controllers inefficient. This
complexity has led researchers to several proposals con-
cerning appropriate controllers. Some control schemes are
based on a preliminary step of identifying dynamic para-
meters of the exoskeleton and its wearer. Other approaches
are adaptive and are dedicated to generic exoskeletons that
can be worn by humans having different morphologies.
One example of such controllers is the neural adaptive
approach. The universal approximation of neural networks
[6] represents one of their advantages. However, neural
approaches require a step of offline learning to avoid unde-
sirable behavior of the exoskeleton during the initialization
phase. One can also find several works dealing of nonlinear
control of exoskeletons [7].

In this paper, we develop and experiment a sliding mode
controller for an actuated orthosis. Sliding mode technique
is widely applied to solve control problems of nonlinear
systems thanks to its robustness for disturbance and model
uncertainty [8]. The conventional sliding mode control
adopts the Linear Sliding Mode (LSM) surface. In this
case, the convergence of system states is only asymptotic.
A nonlinear Terminal Sliding Mode (TSM) surface has
been designed [9] to ensure the finite-time stability. The
Fast Terminal Sliding Mode (FTSM) surface has been
introduced [10] to further reduce the finite-settling-time
by combining LSM and TSM. We use the FTSM version
for our control law synthesis.

The article is organized as follows. In the second section,
we describe the exoskeleton used in our experiments and
formulate the considered problem. The third section is
dedicated to the proposed controller and stability analysis.
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The experimental results and their analysis are given in
the fourth section. We finish the presentation of the paper
with a conclusion and perspectives to this work.

2. ACTIVE ORTHOSIS SYSTEM

The considered system for our experimentations is rep-
resented by a human wearing an orthosis composed of
two jointed segments, upper and lower. The actuator and
the mechanical part are placed on the upper part of the
orthosis. The torque generated by the orthosis permits
to realize flexion/extension movements of the lower part
composed by the shank of the wearer and the lower part
of the orthosis. For security reason, the knee joint is con-
strained by a range of motion between 0 and 2π

3 . In Figure
1, we present the actuated knee joint orthosis of LISSI
laboratory.

Fig. 1. Actuated knee joint orthosis of LISSI laboratory

2.1 Electrical part

The joint of the orthosis is actuated by a brushless DC
motor (BLDC). A power supply and an adequate electrical
control system (controller in current mode) are used to
provide the regulation for the current in the motor. A
mechanical transmission is used to increase the orthosis
applied torque.

Assumption 1: The time constant of the current control
system is neglectable compared to the mechanical time
constant.

According to regulation system characteristics of the
BLDC motor and the assumption 1, we can write the
following equation:

τa = km i (1)

where i is the electrical current of the BLDC motor, τa is
the applied torque and km is a positive constant.

2.2 Mechanical part

The mechanical structure scheme of the considered active
orthosis is given by Fig. 2. Let θ the angular position
of the knee joint-orthosis in the sagittal plane where 0
corresponds to full knee extension and π

2 rad represents
the resting position.

Fig. 2. Position of the joint orthosis

According to the dynamic fundamental principle of solids
in rotary motion, it comes:

J θ̈ =
�
τi, (2)

with θ̈ is the angular acceleration, J is the total inertia
and τi are the applied torques to the knee-orthosis joint.

Assumption 2: The set of joint applied torques in the
orthosis are formed by: the actuated orthosis torque τa,
the human knee joint torque τk, the gravitational torque
τg, the resistive viscous friction torque τv, the resistive
solid friction torque τs and the disturbance torque τd which
includes all other unmodelled dynamics.

From (2) and the assumption 2, the following dynamic

model is obtained where θ̇ is the angular velocity of the
knee joint-orthosis and g is the gravitational acceleration:

Jθ̈ = τa + τk + τd +mgl cos(θ)� �� �
τg

− kv θ̇����
τv

−kssgn(θ̇)� �� �
τs

, (3)

and kv is the viscous friction coefficient, ks is the solid
friction coefficient, m is the mass and l is the length.

Assumption 3: The parameters {km, kv, ks,m, l, J} are
unknown, bounded and strictly positive constants.

Assumption 4: The torques τk and τd are unknown and
bounded.

2.3 Dynamic model

The following dynamic model of the whole system is
obtained by (1) and (3):

θ̈ = f(θ, θ̇, t) + ϕ u(t) (4)

with u = i is the electrical current control input, ϕ = km
J

and the functions f(θ, θ̇, t) ∈ R is given by:

f(θ, θ̇, t) =
1

J
[mgl cos(θ)−kv θ̇−ks sgn(θ̇)+τk+τd] (5)

According to the assumptions 3 and 4, we can write:
� 1

λ
≤ ϕ

|f(θ, θ̇, t)| ≤ a0 + a1| cos(θ)|+ a2|θ̇| � P (θ, θ̇)
(6)

where a0, a1, a2 and λ are an adequate positive constants.
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One can synthesize the control law forcing the states {θ, θ̇}
of a orthosis to follow the desired trajectory by using the
fast terminal sliding mode technique.

3. SLIDING MODE CONTROLLER DESIGN

Our objective is to design a sliding mode control law for
the actuated orthosis. The controller generates the control
signal u(t) ensuring that the real position θ(t) tracks the
desired one θd(t) in finite-time. This can be done in two
main steps:

• Select the FTSM switching manifold so that the
system in sliding mode guarantees the convergence
to the equilibrium point in finite-time (settling time).

• Determine the control law that guarantees the reach-
ability of the sliding manifold and the appearance of
the sliding mode in finite-time (reaching time).

Assumption 5: The signals θ and θ̇ can be measured or
estimated by embedded sensors.

Assumption 6: The desired position θd is twice differen-
tiable with respect to time.

3.1 Stability analysis

In this section, we use the following lemma to prove the
finite time stability of the proposed controller. This is the
result of the differential inequalities theory [11].

Lemma 1: Let V (t) is a C1 (continuously differentiable)
scalar positive-definite function satisfies the following dif-
ferential inequality:

V̇ (t) ≤ −αV (t)− βV γ(t), (7)

∀t ≥ t0, V (t0) ≥ 0,
where α > 0, β > 0 and 0 < γ < 1 are constants. Then,
for any given t0, V (t) checks the following inequality:

V 1−γ(t) ≤ −β
α
+
αV 1−γ(t0) + β

α
exp−α(1−γ)(t−t0),

t0 ≤ t < t1, (8)

and:
V (t) = 0, ∀t ≥ t1, (9)

with the finite time t1 satisfy:

t1 ≤ t0 +
1

α(1− γ) ln
αV 1−γ(t0) + β

β
� t∗. (10)

Proof: Consider the following differential equation:

Ẋ(t) = −αX(t)− βXγ(t), (11)

∀t ≥ t0, X(t0) = V (t0),

where X(t) is a scalar positive-definite function.

It is well known [12] that the solutions V (t) of (7) andX(t)
of (11) satisfies V (t) ≤ X(t) for t0 ≤ t < t1. Therefore we
can write the following inequality:

V 1−γ(t) ≤ X1−γ(t), t0 ≤ t < t1. (12)

Although the differential equation (11) does not satisfy
the global Lipschitz condition, we proceed now to found
its unique solution. This equation can be rearranged as:

X−γẊ + αX1−γ = −β. (13)

By introducing the following variable change:

Y = X1−γ , (14)

its yields:

Ẏ +AY = B, (15)

where:
A = +α(1− γ), B = −β(1− γ). (16)

The general solution of a first-order linear differential
equation (15) is:

Y (t) = exp
−

� t

t0

Adt






� t

t0

B exp

� t

t0

Adt

dt+C





, (17)

with C = Y (t0).Since Y (t) is a positive-definite function
then:

Y (t) =

�
B

A
+
AC −B
A

exp−A(t−t0) if t0 ≤ t < t∗,
0 if t ≥ t∗,

(18)

with:

t∗ = t0 +
1

A
ln
AC −B
−B . (19)

It easy to verify that the above expression of t∗ is the same
one given in (10).

Fig. 3. Finite-time convergence

By using (16), (18) and the change of variable (14), the
following expressions can be written:

X1−γ(t) = −β
α
+
αX1−γ(t0) + β

α
exp−α(1−γ)(t−t0),

t0 ≤ t < t∗, (20)

and:
X1−γ(t) = 0, ∀t ≥ t∗. (21)

Finally, by using the property (12) we can write (8) and
(9).The Fig. 3 shows a graphical representation of the
considered finite-time convergence.

3.2 Switching law selection

Consider the following FTSM switching law [10]:

s � ė+ αse+ βs |e|γs sgn(e), (22)

where αs > 0, βs > 0, 0 < γs < 1 are constants and e is
the tracking error such as:

e � θd − θ.
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The used sliding manifold guarantees the finite-time con-
vergence of the error e via the following dynamic equation:

ė = −αse− βs |e|γs sgn(e). (23)

Let tr be the reaching time to the sliding manifold and
assuming that sliding mode is maintained after this time
i.e.:

s(t) = 0, ∀t ≥ tr (24)

The finite-time convergence of the sliding mode can be
proved by the following Lyapunov function for the sliding
phase:

Vs(t) =
1

2
e2(t), ∀t ≥ tr, Vs(tr) ≥ 0. (25)

Its time derivative is:

V̇s = eė

= e[−αse− βs |e|γs sgn(e)]
= −αse2 − βs |e|1+γs . (26)

The following equivalent equation is obtained from (26) by
replacing e2 and |e| by 2Vs and

√
2Vs respectively:

V̇s = −2αsVs − 2
1+γs
2 βsV

1+γs
2

s . (27)

According to the Lemma 1, since (27) and the accuracy of
the following inequalities:

2αs > 0, 2
1+γs
2 βs > 0,

1

2
<
1 + γs
2

< 1, (28)

then we can write e(t) = 0 for t ≥ ts with ts is the settling
time given by:

ts = tr +
1

2αs(1− 1+γs
2 )

ln
2αsV

1− 1+γs
2

r (tr) + 2
1+γs
2 βs

2
1+γs
2 βs

= tr +
1

αs(1− γs)
ln
αs |e(tr)|1−γs + βs

βs
. (29)

The elapsed time tr will be specified in the next section.

3.3 Sliding mode control

The main objective is to generate control law u(t) to
achieve and maintain the sliding mode s = 0. Thus, the
output θ should track the desired trajectory θd in finite
time, where the trajectory can be an arbitrary function of
time.

We propose the following control law:

u = λ{αrs+ sgn(s)[ βr |s|γr + P (θ, θ̇) + |θ̈d|
+(αs + βsΦγs(e))|ė| ] }

(30)

with αr > 0, βr > 0, 0 < γr < 1 are constants and:

Φγs(e) =

�
γs |e|γs−1 if e �= 0
0 if e = 0

(31)

Theorem 1: Under the controller (30), the trajectory of
the closed-loop system (4) can be driven onto the sliding
surface s(t) = 0 in a finite time.

Proof: Consider the following Lyapunov function for the
reaching phase:

Vr(t) =
1

2
s2(t), ∀t ≥ 0, Vr(0) ≥ 0. (32)

The derivative of the switching law (22) is given by:

ṡ = ë+ αsė+ βsγs |e|γs−1 ė
= θ̈d − θ̈ + (αs + βsγs |e|γs−1)ė. (33)

It can be seen from (33) that ṡ contains the term |e|γs−1 ė
which has negative power (γs − 1). Therefore, the sin-
gularity may occur if {e = 0 and ė �= 0}. In fact, this
situation can be done just a passing moment but it can
never be maintained. Furthermore, this configuration does
not contain the equilibrium point e = ė = 0. So let consider
the complementary case {e �= 0 or ė = 0} in the following
of the proof.

By putting (4) in (33) yields:

ṡ = θ̈d + (αs + βsγs |e|γs−1)ė− f(θ, θ̇, t)− ϕ u. (34)

Replacing the control law (30) in (34), one can obtain the
following equality:

ṡ = −f(θ, θ̇, t) + θ̈d + (αs + βsγs |e|γs−1)ė (35)

− λϕ{αrs+ sgn(s)[ βr |s|γr + P (θ, θ̇) + |θ̈d|
+(αs + βsγs |e|γs−1) |ė| ] }

By (35) and (36), the following time derivatives of Vr is
come:

V̇r = sṡ (36)

= s{−f(θ, θ̇, t) + θ̈d + (αs + βsγs |e|γs−1)ė}
−λϕ |s| {P (θ, θ̇) + |θ̈d|+ (αs + βsγs |e|γs−1) |ė|}
−λϕs{αrs+ βr |s|γr sgn(s)}.

From (6), it is easy to verify that λϕ ≥ 1 and:

s
�
−f(θ, θ̇, t) + θ̈d + (αs + βsγs |e|γs−1)ė

�

≤
λϕ |s|

�
P (θ, θ̇) + |θ̈d|+ (αs + βsγs |e|γs−1) |ė|

� (37)

Therefor V̇r satisfies:

V̇r ≤ −λϕαrs2 − λϕβr |s|γr+1 . (38)

The following equivalent inequality is obtained from (38)
by replacing s2 and |s| by 2Vr and

√
2Vr respectively:

V̇r ≤ −2λϕαrVr − 2
γr+1

2 λϕβrV
γr+1

2
r . (39)

By Lemma 1, since (39) and the coherence of following
conditions:

2λϕαr > 0, 2
γr+1

2 λϕβr > 0,
1

2
<
γr + 1

2
< 1, (40)

then the sliding manifold is achieved at the reaching time
tr given by:

tr ≤
1

2λϕαr(1− 1+γr
2 )

× ln 2λϕαrV
1−1+γr

2
r (0) + 2

γr+1

2 λϕβr

2
γr+1

2 λϕβr

≤ 1

αr(1− γr)
ln
αr |s(0)|1−γr + βr

βr
. (41)

This implies that the FTSM is achieved and (24) is
satisfied.
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3.4 Chattering elimination

It is well known that sliding mode control signal is discon-
tinuous in nature on the switching manifold, which induces
a chattering phenomenon [8]. The latter appears as a very
high-frequency oscillation about the sliding surface and
may also act as a source that excites the unmodelled high-
frequency dynamics of the actuated orthosis. To avoid the
effect of this phenomenon, the sign function sgn(s) can
be approximated by the saturation function satδ(s) as
follows:

satδ(s) =

�
sgn(s) if |s| > δ
s/δ if |s| ≤ δ (42)

where δ > 0 is a small positive constant.

4. EXPERIMENT RESULTS

In order to validate the proposed strategy, we implemented
the control law on a PC equipped with a dSpace DS1103
PPC real-time controller card, using Matlab/Simulink and
dSpace Control Desk software. The purpose of the test is
to ensure the good performance of the actuated orthosis to
help therapists apply their rehabilitation program in good
conditions. The experiment considers a healthy subject
being 40 years old, weighing 73kg and measuring 1.78m.
Fig. 4 shows our experimental setup.

Fig. 4. Experimental setup

Table 1 gives the physical characteristics of the used
orthosis.

Parameter Value Unit

J 0.4 Kg.m2

kv 1 N.m.s.rad−1

ks 0.6 N.m

m.g.l 5 N.m

Table 1. Physical parameters of the orthosis

The sampling time has been fixed to 10−3 sec. The real
position is measured by incremental encoder. A low pass
first order filter is used to reduce measurement noise of the
angular position. The controller parameters are fixed at:
αs = 0.1, βs = 0.1, γs = 0.5, αr = 10, βr = 1, γr = 0.5,
a0 = 2, a1 = 1.5, a2 = 0.5, λ = 2, δ = 0.1. The considered
desired trajectory is of the following form:

θd(t) = 1.5 + 0.5 cos(t− 1.1) (43)

The initial conditions are:

θ(0) = 1.46 rad, θ̇(0) = 0 rad/ sec . (44)

By (43) and (44), the tracking errors and the switching
law at t = 0 sec are:

e(0) = 0.26 rad
ė(0) = 0.45 rad/ sec

�
=⇒ s(0) = 0.52 (45)

This allows us to calculate the theoretical reaching and
settling time inequalities based on (41) and (29):

tr ≤ 0.42 sec, ts ≤ 8.04 sec, (46)

with the inequality of the settling time ts is computed by
considering |e(tr)| ≤ |e(0)|.
In order to evaluate the robustness performances of the
proposed approach, the subject exerts a resistive {τk.τa <
0} and the assistive {τk.τa > 0} muscular effort in
harmony with the orthosis movement.

Remark: The magnitudes of the disturbance torques ap-
plied by the subject are not measurable. The only available
information is the torque direction. This is sufficient to
know the resistive or assistive nature of the effort.
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Fig. 5. Measured and desired trajectories

The figures 5 shows the measured and the desired position
and velocity trajectories. From these figures, we see the
good tracking of the trajectories despite the disturbances
applied by the subject. The measured trajectories faith-
fully follow the desired ones even with the resistive or
assistive human efforts.

To show the reaching and settling times, we present in
Fig. 6 the evolution of the switching law s and tracking
error e during the beginning of the experiment. We notice
that with a consideration of the convergence at ±5%, the
reaching time tr = 0.2 sec and the settling time ts = 7.5 sec
which are consistent with the theoretical inequalities (46).

Fig. 7 presents the tracking error trajectory in the phase
plane {e, ė}. We observe the reaching and the sliding
phases of the close loop system. The tracking error is
quite similar to that imposed by the sliding surface in
the sliding phase. The difference between them is justified
by the approximation of the sliding mode system by the
saturation function (42).

The real current control signal u is shown in Fig. 8. We
notice the good electrical control in both cases with the
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considered disturbances. The control energy increases if
the disturbance torque is resistive and decreases if other-
wise. The control is correct and feasible in practice. The
high excitation of the power electrical system is discarded
thanks to the chattering phenomenon elimination.

5. CONCLUSION

An efficient controller that ensures convergence towards
the performances desired by the wearer of the ortho-
sis, has been developed. Two steps summarize the pro-
posed approach. The first step consists of selecting the
FTSM switching manifold so that the system in sliding
mode guarantees the convergence to the equilibrium point
in finite-time. Then we determine the control law that
guarantees the reachability of the sliding manifold and
the appearance of the sliding mode in finite-time. From
theoretical point of view, the system controlled by our
approach, is stable according to the Lyapunov formalism.
Concerning the experiment results, we note that all applied
flexion/extension movements have been realized smoothly
regarding the actuator and the wearer felt at ease. In
other hand, the proposed controller responded correctly
to resistive and assistive muscular efforts applied by the
wearer. For future works, along with the heavy security
protocol, we plan to apply the proposition in real case of
rehabilitation of the knee joint.
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