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Abstract: Detecting nonlinearity in experimental data is a key challenge within system
identification. Based on two new models, some aspects of nonlinearity relevant for system
identification are discussed. The models are used to illustrate differences between three different
methods for data-based testing for nonlinearity in dynamical systems. The use of Fourier-based
surrogate data is found to be the most reliable approach for detecting nonlinearity in data from
dynamical systems.
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1. INTRODUCTION

Although all real systems are generally recognized as non-
linear, it is well-known that linear models often render
sufficient descriptions. Since the concept of nonlinearity in-
cludes everything not linear it might further be impossible
to provide general measures of nonlinearity. In practice,
the application at hand will determine whether or not
nonlinear aspects are of interest and in that case, which
aspects are relevant. Although such apparent subjectivity
can make general discussions on nonlinear identification
difficult, the “purposefulness” is inherent for system iden-
tification as it is recognized that “the ‘true system’ is an es-
oteric entity that cannot be attained in practical modeling.
We have to be content with partial descriptions that are
purposeful for our applications” Ljung [1999]. Neverthe-
less, the task of finding “effective data-based nonlinearity
tests for dynamical systems” is still acknowledged to be
one of the key challenge in the field of system identification
Ljung [2010].

What, then, can be considered as essential nonlinear fea-
tures? In the field of nonlinear empirical modeling based
on time series, it is not uncommon to validate a nonlinear
model by comparing an array of nonlinear characteris-
tics, e.g., Lyapunov exponents, fractal dimensions and
topological properties, to the corresponding experimental
estimates (see e.g. Bezruchko and Smirnov [2010]). This
approach is not unproblematic: It is well-known that it
can be difficult to obtain reliable estimates of such char-
acteristics, especially from noisy data (see e.g. Barnard
et al. [2001], Kantz and Schreiber [2004]). In addition, such
measures might be hard to define for input-output systems
and also of secondary interest in system identification.

In order to clarify what might be relevant from a system
identification point of view the present paper discusses
three different approaches for detecting nonlinearity.

(1) The first method has not, to the knowledge of the
author, been presented as a method for detecting
nonlinearity as such. Instead, it has been developed

for the purpose of model validation wherein the resid-
uals of a model are examined for remaining nonlin-
ear correlations. This approach can, however, also
be used for detecting nonlinearity by first fitting an
extensive linear model to data and then examining
the corresponding residuals for nonlinear correlations.
Analyzing residuals for correlations is indeed a reli-
able tool for developing linear models, but the ex-
tension to nonlinear systems is not trivial. Within
the framework of nonlinear modeling, correlations
between different nonlinear terms have subsequently
been suggested in Billings and Woon [1986], Billings
and Zhu [1994, 1995], Mao and Billings [2000], Zhu
et al. [2007]. This approach is attractive in that it
directly addresses the following central question: Are
there nonlinearities in the data captured by the model
or not?

(2) The second method is part of an extensive method-
ology for identification in the frequency domain and
is nicely presented in Pintelon and Schoukens [2012].
Using this approach, nonlinearity can be detected
in data by, in essence, separating the estimate of
the best linear approximation (BLA) of the data in
the frequency domain from what is called “nonlinear
distortion” in addition to the stochastic noise. The
main objective of the approach can be regarded as
finding the best linear approximation of the data.
An estimate of how much of the discrepancy between
model and data is due to, mainly static, nonlinear
transformations is an additional bonus and can thus
be used as a basis for detecting nonlinearity.

(3) The third method utilizes the idea that linear sys-
tems are characterized by auto- and cross-correlation
functions and distributions. The methodology has
recently been developed for system identification by
the present author Waller [2012, 2014], and relies
on the use of Fourier-based surrogate data for dis-
criminating between data that can originate from
linear time-invariant systems and data that can not,
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i.e., the method enables detecting data that cannot
adequately be described by linear models.

The three approaches differ slightly, both in terms of the
theoretical framework and the main objectives. Still, they
all try to answer the fundamental question: Can a better
model be developed by considering nonlinear features? In
the present paper, the different approaches to this question
are compared using simulations of two new benchmark
models.

The benchmark models are described in Section 2 followed
by an overview of the methods for detecting nonlinearity in
Section 3. Section 4 presents an assessment of the different
approaches applied to the benchmark models followed by
conclusions in Section 5 .

2. BENCHMARK MODELS

The current study focuses on data-based detection of non-
linearity in dynamical systems. Systems with static, non-
linear transformations of inputs and/or outputs are often
employed in system identification, (see e.g. Pintelon and
Schoukens [2012]). Nonlinear features that are inherently
dynamical by nature, e.g., limit cycles, are seldom studied.
Therefore, this paper focuses on models that are nonlinear
in terms of their dynamic features. The first model uses the
function sin(x) to saturate a state variable in the dynamic
equations:

x(k) = sin(x(k − 1)) + u(k − 1)

y(k) = x(k) + e(k)
(1)

The fundamental question is at what magnitude of x the
approximation sin(x) ≈ x is inadequate in the presence
of noise e(k). Methods for detecting nonlinearity can be
assessed by determining, e.g., a threshold for the norm of
the input u(k) that yields a positive test for nonlinearity.

The second model is inherently dynamic since it includes
a chaotic implementation of the well-known logistic map.
In the setting, the logistic map

z(k) = f(z(k − 1)) = µz(k − 1)(1− z(k − 1)) (2)

with µ = 4 is used as a basis for determining a state
variable observed through a linear filter. In order to create
more challenging tests, the logistic map can be repeated n
times. Expressed in state space this is given by,

x1(k)
x2(k)

...
xn−1(k)
xn(k)

 =


µx2(k − 1)(1− x2(k − 1))
µx3(k − 1)(1− x3(k − 1))

...
µxn(k − 1)(1− xn(k − 1))
µx1(k − 1)(1− x1(k − 1))

 (3)

If a state variable is then downsampled n times, e.g.,

w(k) = x1(nk) (4)

the resulting variable w encompasses all nonlinear features
of the model and is combined with a linear filter to give
the output,

y(k) = ay(k − 1) + w(k − 1) + bu(k − 1) + e(k) (5)

where u(k) is the input and e(k) is noise.

In order to illustrate the purpose of downsampling, the
corresponding recurrence plots for w(k) are provided in
Fig. 1. In the figure, the cases n = 1, . . . , 4 are illustrated
and in order to make the plots more realistic, normally

Fig. 1. Recurrence plots for w(k) with noise for n =
1, . . . , 4.

distributed noise with a standard deviation of 0.05 has
been added to w(k). In the upper left-hand corner, the
well-known phase portrait for the logistic map is clearly
visible, whereas any structure in phase space is difficult to
distinguish in the lower right hand corner. In summary,
the main idea behind the latter model is that increasingly
challenging data sets can be obtained based on the logistic
map by increasing n.

3. METHODOLOGIES FOR DETECTING
NONLINEARITY

3.1 Nonlinear correlations

The estimate of the correlation function between two
variables, α and β, for a data record of length N is denoted
by δNαβ(h). Furthermore, the difference between measured,

y(k), and predicted, ŷ(k), output, defines the residual, i.e.,
the (one-step-ahead) prediction error

ε(k) = y(k)− ŷ(k) (6)

In the linear case, the main focus is on the correlation
between residuals and (past) inputs, δNεu(h), and the auto-
correlation of the residuals, δNεε(h). If the model manages
to explain the underlying data, then δNεu(h) is small for
all h while δNεε(h) is small when h 6= 0. It is well-known,
however, that these correlations only provide reliable es-
timates of linear dependencies. Therefore, a natural ex-
tension might be to study correlations between higher-
order terms, e.g., δNε2(εy)(h), which is a theme developed

in a number of articles Billings and Woon [1986], Billings
and Zhu [1994, 1995]. It was noted, however, that non-
linear features may remain undetected by the approach
of nonlinear correlations, e.g., even simple static nonlinear
transformations of the inputs Mao and Billings [2000]. As a
remedy, it was suggested to also consider re-ordered resid-
uals, outputs and inputs based on the amplitude of the
inputs for different delays. Still, even more powerful alter-
natives called combined omni-directional auto-correlation
functions (ODACFs) of residuals and combined omni-
directional cross-correlation functions (ODCCFs) between
residuals and delayed inputs, are suggested in Zhu et al.
[2007]. As the names indicate, the correlations are no
longer between (simple) nonlinear terms and thus the tests
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no longer indicate the types of nonlinearities present. How-
ever, as a tool for detecting nonlinearities not modeled,
the approach appears to be the most powerful alternative
using correlations. It is further evaluated in Section 4.

Examining nonlinear correlations can be viewed as a
special case of using higher-order statistics for detecting
nonlinearities (discussed in, e.g., Choudhury et al. [2008]).
As illustrated in Section 4, even combined ODACFs and
ODCCFs have limited power for detecting nonlinearities.
The use of other higher-order statistics is likely to have
similar limitations. In this paper, the use of higher-order
statistics is illustrated with the use of combined omni-
directional correlation functions in Section 4.

3.2 Nonlinear distortion in the frequency domain

The theoretical framework for detecting nonlinear distor-
tion is based on Volterra-based descriptions thus exclud-
ing many nonlinear dynamical features such as hysteresis,
limit cycles, etc. The method can be useful for a wide vari-
ety of systems but it can also be expected to fail for some
nonlinearities. The main objective in this approach is to
identify the best linear approximation of the system as well
as to estimate the nonlinear distortion in the frequency
domain. The approach relies on the discrete Fourier trans-
form and thus employs assumptions regarding periodicity.
For this reason, as well as for the objective of obtaining
reliable estimates of the best linear approximation and
nonlinear distortion in the spectrum, it is suggested that
specific excitation signals be used, e.g., random phase
multisines consisting of sinusoidal signals of different fre-
quencies, amplitudes and phases Pintelon and Schoukens
[2012]. The necessity of applying such special inputs as
random phase multisines is a recognized limitation, and
this should be noted in comparison to other approaches
that do not require such special inputs. Although appar-
ently a powerful tool for detecting static nonlinearities in
the input, output or feedback terms, the suitability of this
method for detecting dynamic nonlinearities is uncertain.
These limitations are discussed in Section 4.

3.3 Fourier-based surrogate data

Despite some efforts to address the concept of nonlinearity
in data with some measure for nonlinearity (such as the at-
tempts made by, e.g., Small et al. [2001], Choudhury et al.
[2008]) it seems that there is no general consensus regard-
ing such a measure as discussed in Kantz and Schreiber
[2004], Kugiumtzis [2008], Bezruchko and Smirnov [2010]
among others. As an alternative to a measure of nonlin-
earity, it has been suggested within nonlinear time series
analysis that the following question be considered instead:
Can the data be adequately modeled with some linear
time-invariant model with, possibly, non-Gaussian distri-
bution of the signals? Within time series analysis, a well-
established framework for answering this question in a
statistical sense (i.e., with the possibility for a false answer
corresponding to a chosen level of significance) relies on
the use of Fourier-based surrogate data (see e.g. Theiler
et al. [1992], Schreiber and Schmitz [2000], Kantz and
Schreiber [2004]). The use of Fourier-based surrogate data
within system identification and for model validation by
residual analysis, including the MIMO case, is described

in detail in Waller [2014]. The methodology presented in
the article detects nonlinear predictability in multivariate
data, nonlinearities that cannot be adequately captured
by linear, stationary, models. For clarity, a brief summary
of the methodology is provided below.

In order to assess nonlinear predictability of data, the
original data is, by an appropriate measure, compared
to a collection of Fourier-based surrogates. As a measure
for nonlinear predictability, a version of the intuitively
appealing nearest neighbor approach to prediction Lorenz
[1969] is used. With this choice, an explicit fitting of a
model, i.e., a parsimonious description of the data, can be
avoided.

A general predictive description is given by

ŷ(k) = g(ϕ(k − 1)) (7)

where g(·) is a mapping (the predictive model) from the
regressors, ϕ(k − 1), to the predicted output, ŷ(k), at
sampling k. Although choosing appropriate regressors is a
challenge in system identification, a simple test naturally
requires a simple approach. Consequently, the components
of the regressors are chosen from the set of data, ZN , i.e.,
the N observations of inputs and outputs. The regressor
can thus be expressed

ϕ(k − 1) = (y(k − 1), · · · , y(k − p),
u(k − L− 1) · · · u(k − L−m)) (8)

where p is the order with respect to the output(s), m is
the order with respect to the input(s) and L is the delay(s)
from input(s) to output(s). Given p, m and L, regressors
ϕ(k− 1) corresponding to the observations y(k) are easily
determined from ZN for all k.

The nearest neighbor approach to prediction is based on
finding the regressor ϕ(l−1) which, in some sense, is closest
to ϕ(k − 1), i.e.,

‖ϕ(k − 1)− ϕ(l − 1)‖ < εmin (9)

where εmin is the smallest value for ‖ϕ(k − 1)− ϕ(l − 1)‖
for all l ∈ N , l 6= k. The prediction for y(k) is then given
by

ŷ(k) = y(l) (10)

In order to make the prediction less sensitive for specific
noise characteristics, a collection of nearest neighbors can
be used, resulting in the prediction Kantz and Schreiber
[2004]

ŷ(k) =
1

|Uε(ϕ(k − 1))|
∑

ϕ(l−1)∈Uε(ϕ(k−1))

y(l) (11)

where |Uε(ϕ(k − 1))| denotes the number of regressors
in the neighborhood Uε(ϕ(k − 1)), i.e., the number of
regressors satisfying the criterion ‖ϕ(k−1)−ϕ(l−1)‖ < ε
for all l ∈ N , l 6= k. By varying ε, a suitable number
of neighbors can be found. The extension of the simple
predictive scheme to MIMO systems is trivial.

Surrogate data based on the Fourier transform yield data
with a similar power spectrum and cross-spectrum as the
original data. As such, the surrogates and the original data
will result in similar models within the general family of
linear models,

A(q)y(k) =
B(q)

F (q)
u(k − L) +

C(q)

D(q)
e(k). (12)
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The surrogate data will not, however, contain nonlinear
relations. Thus, surrogate data can be used as a basis to
test whether or not the data can be adequately described
within the family of linear models of (12). Although the
output y for a linear model will follow a Gaussian distribu-
tion if u and e are Gaussian, an observed non-Gaussian dis-
tribution does not necessarily imply that the data justifies
a nonlinear dynamic model. An appealing extension to the
Fourier surrogates is therefore to require that, in addition
to the spectra, the distributions for u and y are similar for
surrogates and original data. For this purpose, there are
two widely spread algorithms resulting in what is known
as the Amplitude Adjusted Fourier Transform (AAFT)
surrogates presented in Theiler et al. [1992] and the It-
erative AAFT (IAAFT) surrogates presented in Schreiber
and Schmitz [1996].

Using surrogates for a statistical test for nonlinear pre-
dictability requires choosing the level of significance. The
result of the test is binary, i.e., on the chosen level of
significance the method either indicates a presence of non-
linearity or it does not. Therefore, the method will not give
any guidance regarding the nature of the nonlinearity and
is only a method for data-based testing for nonlinearity.

For the SISO case, the test for nonlinearity using surrogate
data can be summarized by the following algorithm:

(1) Choose a level of significance, (1 − α), for the dis-
criminative test based on the probability of a false
rejection, α.

(2) Use the set of outputs and inputs y(1) u(1)
...

...
y(N) u(N)

 (13)

and generate a collection of surrogate data, i.e., 2/α−
1 sets for a two sided test: E.g., at least 39 surrogates
for a minimal significance requirement of 95% are
needed.

(3) Calculate predictions of the output using (11) and
regressors

ϕ(k − 1) = (y(k − 1), · · · , y(k −m),

u(k − L− 1) · · · u(k − L−m)) (14)

where m can be varied depending on the dimension
considered for the model to be identified. In addition,
rough estimates of input-output delays are needed.

(4) Compare the variance of the prediction errors for
the original set as well as for all surrogate sets. If
the variance of the prediction error for the output is
smaller (or larger) for the original set than for all
surrogate sets, there is, on the chosen significance
level, statistical evidence of nonlinear features in the
original set.

Clearly, the method can be readily applied to model
validation by substituting outputs y in Eq. (14) with
residuals ε defined in Eq. (6). For the simulations presented
in Section 4, the IAAFT surrogates are used.

Like the frequency domain approach for estimating non-
linear distortion, the approach of Fourier-based surrogates
relies on the discrete Fourier transform and assumes peri-
odicity of the registered signals. If this is not the case, e.g.,

periodic excitation signals are not used, it has been noted
that an end-to-end mismatch, i.e., a “large” jump between
the first and the last value of the data set as well as a jump
between the initial and final direction in the data set, can
lead to artifacts in the surrogate data. However, this can
easily be avoided by choosing a suitable subset of the data
Schreiber and Schmitz [2000].

4. SIMULATIONS

In order to evaluate the three methods for detecting
nonlinearity, two measures are used.

(1) The simple model, Eq. (1), is used with a data
length of N = 5000 and a standard deviation for the
Gaussian noise e as 0.1. The norm of u is the measure
for when nonlinearity is reliably detected, i.e., in ten
independent simulations.

(2) The more challenging example, Eq. (5), is used with
a standard deviation of 0.05 for the Gaussian noise e
and the norm of u as 0.3. The logistic map is down-
sampled between two and four times, i.e., n = 2, 3, 4
and the measure for when nonlinearity is reliably
detected is given by the required length of the data
record 1000 ≤ N ≤ 100000.

These measures are chosen based on the objectives of
system identification: What can be modeled based on the
data? Specifically for nonlinear identification, a key issue
is the assessment of whether the data warrants nonlinear
modeling, i.e., when is a linear model an insufficient
description. In general, larger excitations are believed to
reveal more nonlinear behavior, which is clearly the case
for the model in Eq. (1): Data from the model in Eq.
(1) should only motivate nonlinear modeling for larger
variations in x, thus making the norm of u a simple and
from a control perspective intuitive measure relevant for
detecting nonlinearity.

In addition, it seems reasonable to assume that more
complicated systems, e.g., higher-order chaotic maps, will
require more data to be adequately modeled. Therefore,
it is desirable that a method for detecting nonlinearity
in data reflects this assumption (hence the choice for the
second measure).

It can be noted that the three approaches are different
with respect to the choice of inputs: The frequency domain
approach requires random phase multisines as excitations,
while the other two approaches can be applied with a
variety of inputs. For the method for estimating nonlinear
distortion in the frequency domain, the used norm of
u is the root mean square (rms) value for the random
phase multisines, while the the other approaches use the
comparable standard deviation for normally distributed u.

For the model of Eq. (1), nonlinear distortion in the
frequency domain is detected for urms ≈ 0.3. Applying
the other approaches, i.e., combined omni-directional cor-
relation functions and IAAFT surrogates, nonlinearity is
detected for std(u) ≈ 0.3. With respect to detecting non-
linearity only, the methods thus seem to yield equivalent
results for the model of Eq. (1).

The estimated frequency response function (GBLA) and
the nonlinear distortion (GNL) using an rms of 0.5 for u are
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illustrated in Fig. 2. For the relatively small excitations,

Fig. 2. Estimated frequency function (solid black) for the
model of Eq. (1) with an rms of 0.5 for u, esti-
mated nonlinear distortion (dashed blue) and esti-
mated stochastic noise (dotted red).

the nonlinear distortion is, as can be expected, most
apparent for lower frequencies. Indeed, for the model

x(k) = − sin(x(k − 1)) + u(k − 1)

y(k) = x(k) + e(k)
(15)

the nonlinear distortion is most apparent for higher fre-
quencies when relatively small excitations are used. Inter-
estingly, the nonlinear distortion will be more apparent
over the whole spectrum with larger variations in u. A
possibility to obtain further indications towards the na-
ture of the nonlinearities might therefore be to perform
several experiments with different amplitudes for the ran-
dom phase multisines. As the figure also reveals, valuable
information of the underlying system is obtained thus
illustrating some other merits of the frequency domain
approach. Even though the frequency domain approach
apparently can be useful in many ways, it is also unreliable
when faced with inherently dynamic nonlinearities as the
next example will illustrate.

For the approach of nonlinear correlations, nonlinearity
is most clearly detected by the combined ODCCF and
illustrated in Fig. 3. In the figure, 95% confidence intervals
for “small” correlations, i.e., approximately for |δ| <
1.94/

√
N Billings and Woon [1986], are included as dashed

lines. Clearly, the remaining correlation is most apparent
for h = 2.

For the more challenging example, Eq. (5), the method for
estimating nonlinear distortion fails, even for the standard
logistic map, i.e., n = 1. This case is also illustrated in in
Fig. 4 and the nonlinear distortion cannot be distinguished
from the stochastic noise. The empirical analysis thus
confirms the theoretical foundation of the approach, i.e.,
it is unreliable for detecting dynamic nonlinearities. The
results for all three approaches based on the simulations
are summarized in Table 1.

As the table indicates, the frequency domain approach
of estimating the nonlinear distortion clearly fails for the
chaotic map. The approach of combined ODCF:s seems
reliable for smaller n (i.e., low-order models) but struggles

Fig. 3. Combined ODCCF (solid blue) for the model
of Eq. (1) using a standard deviation of 0.3 for u.
Approximate 95% confidence intervals for “small”
correlations are included (dashed red). The remaining
correlation is clearly most apparent for h = 2.

Fig. 4. Estimated frequency function (solid black) for the
model of Eq. (5) with the logistic map repeated only
once (n = 1) and an rms of 0.5 for u, estimated nonlin-
ear distortion (dashed blue) and estimated stochastic
noise (dotted red).

Table 1. Required length of data record
(1000 ≤ N ≤ 100000) for detecting nonlinear-
ity as a function of iterations (n) of the logistic

map of Eq. (5).

Method
n

2 3 4

Nonlinear distortion Fails Fails Fails
Combined ODCFs N = 1000 N = 50000 Fails
IAAFT surrogates N = 1000 N = 5000 N = 100000

for models of higher orders and fails when n = 4. For
n = 3, the nonlinearity is only, and barely, detected by the
combined ODACF for h = 1 which is illustrated in Fig. 5.
The use of IAAFT surrogates, however, seems very reliable
even for the higher-order models. It can be noted that in
many cases it might not be realistic to use such long data
segments, thus providing further support for the use of
surrogate data. In addition, the results indicate that even
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Fig. 5. Combined ODACF (solid blue) for the model of
Eq. (5) with n = 3 and N = 50000. Approximate
95% confidence intervals for “small” correlations are
included (dashed red). The remaining nonlinear cor-
relation is barely detected for h = 1.

modestly complex systems, e.g., the logistic map repeated
four times (n = 4), is not easily modeled based on data in
the presence of noise.

In summary, the approach that uses Fourier-based surro-
gates clearly seems to be the most reliable alternative for
a variety of systems if used only as a means for detecting
nonlinearity in data from dynamical systems.

5. CONCLUSIONS

This paper introduces two nonlinear models designed for
evaluating data-based testing for nonlinearity in dynami-
cal systems. The models were used in an empirical analysis
of three different approaches for testing for nonlinearity:

(1) The use of combined omni-directional correlation
functions.

(2) To estimate nonlinear distortion in the frequency
domain.

(3) The use of Fourier-based surrogate data.

The analysis shows that the different methods have dif-
ferent merits and seem comparable for easier models if
used only for testing for nonlinearity. For more inherently
dynamical nonlinearities, the approach of estimating non-
linear distortion in the frequency domain can clearly fail.
For increasing complexity, e.g., higher-order chaotic maps,
the approach using correlation functions is also unreliable
and the approach of surrogate data is clearly superior to
the other approaches. Similar results have also been noted
for an array of examples found in the literature Waller
[2014]. It should, however, be noted that these results
are based solely on empirical analysis. Further study is
required in order to develop a theoretical foundation that
might provide greater insight, e.g., which classes or types
of nonlinear models will be detected.

Still, based on empirical analysis the methodology that
uses Fourier-based surrogates seems to be a very powerful
data-based nonlinearity test for dynamical systems and
can be seen to often outperform alternative approaches.

As such, the method may be of great general value in the
field of system identification.
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