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Abstract: Based on dynamical modeling, robust trajectory tracking control of a spherical mobile robot is 

proposed. The spherical robot is composed of a spherical shell and three independent rotors which act as 

the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two 

nonholonomic constraints. The state space representation of the system is developed using dynamical 

equations of the robot’s motion. As the main contribution, a dynamical model based SMC (sliding mode 

controller) is designed for position control of the robot under parameters uncertainty and unmodeled 

dynamics. To decrease the chattering phenomena originated by the sign function, the well-known 

boundary layer technique is imposed on the SMC. The control gains are determined through using 

Lyapanov’s direct method in such a way that the robustness and to zero convergence of the controller’s 

tracking error are guaranteed. Wide range computer simulations are performed to show the significant 

tracking performance of the proposed SMC in particular against parameters uncertainty and white 

Gaussian noises. The simulation results show the significant performance of the designed nonlinear 

control system in trajectory tracking control of the spherical robot even in the presence of parameters 

uncertainty and unmodeled dynamics. 

Keywords: Spherical robot, Nonholonomic System, Sliding mode control, Boundary Layer, Parameters’ 

uncertainty. 



1. INTRODUCTION 

A spherical mobile robot composed of a spherical shell and 

an inner driver mechanism is a new kind of mobile robots, 

which its applications have increased in past two decades. 

The driver mechanism is installed inside the spherical shell to 

generate the robot’s motion. This structure provides a stable 

locomotion and some other advantages rather than the 

traditional types of mobile robots, Suomela et al. (2006). 

Several types of inner driver mechanism have been proposed 

for spherical robots in recently documented researches which 

all of them generate the robot’s motion either by changing the 

gravity center of the spherical shell or by changing the 

angular momentum of the robot. A mobile vehicle, Bicchi et 

al. (1997), a wheeled mass, Halme et al. (1996), four 

unbalanced masses, Javadi (2002) and a two DOF pendulum, 

Zhan et al. (2006) are examples of proposed driver 

mechanisms, which generate the robot’s motion by changing 

the gravity center of the robot. On the other hand, two rotors, 

Bhattacharya (2000), three DOF gyro, Otani et al. (2006) and 

three perpendicular rotors, Azizi (2013) have been designed 

as inner driver mechanism in preceding studies that generate 

the robot’s motion based on the angular momentum 

conservation principle. 

Although, some investigations have been developed on 

spherical robots recently, motion control of these robots is 

still one of the major problem in robotic researches. Since it 

is assumed that the spherical shell rolls on the ground surface 

without any slipping, its motion is subjected to two 

nonholonomic constraints. On the other hand, according to 

Brocket’s theorem (1983), the stabilization of the equilibrium 

points of the nonholonomic systems through time invariant 

state-feedback is not possible. By the way, for the control of 

the spherical robot, Zhao et al. have derived the dynamical 

model of the spherical robot merely for straight line motions 

and therefore, a PID controller has been proposed for the 

robot’s motion on straight line trajectories. The control of the 

spherical robot by uses of a pendulum as a control actuator 

has been developed by feedback linearization method for 

straight line trajectories by Liu et al. (2008). Furthermore, 

trajectory tracking control of the spherical robot on straight 

paths has been investigated using SMC method, Liu et al. 

(2012), adaptive hierarchical sliding mode approach, Yue 

(2013); and also using combined adaptive neuro-fuzzy and 

SMC method, Kayacan et al. (2013).  

The control problem of the spherical robot on curvilinear 

trajectories has been studied using kinematical and simplified 

dynamical model of the robot and some simplifying 

assumptions. Cai et al. have designed a two-state trajectory 

tracking control system for the kinematical model of the 

spherical robot based on shunting model of neurodynamics 

and Lyapunov’s direct method. A SMC has been developed 

for the linearized model of the spherical robot without 

considering the dynamical effects of the inner mechanism by 
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Lui et al. Kayacan et al. (2012) have used fuzzy control 

approach to control the spherical robot’s motion based on 

decoupled dynamical model and by neglecting the transversal 

and longitudinal rotation of the robot. Through neglecting the 

rotation of the spherical shell around the vertical axis and 

based on the dynamical model, simplified tracking control of 

the spherical robot in horizontal plane has been investigated 

using: real-time fuzzy guidance method by Cai (2012), back-

stepping based trajectory tracking by Zhan (2008) and 

constant velocity PD sliding mode controller by Zheng et al. 

(2011).  

According to the above mentioned literature review, the 

trajectory tracking control in 2-dimentional plane is a major 

problem with the spherical kind of nonholonomic mobile 

robots that should be solved completely. Although, several 

linear and nonlinear control strategies based on the 

kinematical model, linearized model or simplified dynamical 

model of the spherical robot have been introduced in the 

literature, these methods are not practically feasible 

considering highly complicated nonlinear structure of the 

robot’s mathematical model, Kayacan et al. (2013). On the 

other hand, few researchers have focused on design of the 

nonlinear control systems based on full dynamical model of 

the robot without simplifying assumptions. By the way, the 

robustness of the designed nonlinear controller against 

parameters’ uncertainty and noisy measurements is 

significant in practical applications, which have not been 

considered in preceding research works.  

In this paper, the spherical robot comprising of three 

independent rotors is investigated. Using the dynamical 

model of the spherical robot without any simplifying 

assumptions derived by Azizi et al. (2013), the second order 

mathematical model of the robot is obtained in the standard 

affine form. A nonlinear SMC is designed for trajectory 

tracking control of the robot and the boundary layer 

technique is used to remove the chattering phenomena, which 

is originated by discontinuous switching control term in the 

neighbour of the sliding surface. The convergence of tracking 

error to zero and the robustness of the proposed controller are 

proved by Lyapanov’s direct method. Besides, wide range 

computer simulations are performed to assess the tracking 

performance and robustness of SMC against the parameters 

uncertainty and unmodeled dynamics. 
  

2. SPHERICAL ROBOT MODELING 

The schematic model of the spherical robot with three 

independent rotors as the inner driver mechanism is shown in 

Fig. 1. The robot is composed of a spherical shell, three 

rotors and some counter weights to balance the rotors’ 

weight. The driving rotors are connected to the inner surface 

of the spherical shell and rotate by use of three revolute 

actuators. Furthermore, it is assumed that the counter weights 

and other instruments are installed inside the spherical shell 

in such a way that the gravity center of the robot coincides 

with the geometric center of the spherical shell. In this case, 

based on the angular momentum conservation principle, the 

robot’s motion could be controlled by the three considered 

actuators. 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 1. The construction of the spherical robot 

 

2.1 Kinematic Model 

To determine the robot’s position and configuration, three 

coordinate frames are considered. Frame {1} is an inertial 

reference frame. The origin of frame {2} is fixed to the 

geometric center of the spherical shell and the its axes remain 

parallel to the axes of frame {1}. The body frame {3} is fixed 

to the spherical shell and coincides to frame {2} if the 

rotation angles of the robot are zero values. By defining x  

and y  as the components of 2-dimentional position vector of 

the spherical shell with respect to frame {1} and 

3210 ,,, qqqq  as the components of a unit quaternion to 

represent the orientation of the frame {3} with respect to 

frame {2}, the kinematical equations of the robot are 

obtained as follow (Azizi et al.): 
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Where 3

1


 is the angular velocity vector of frame {3} with 

respect to frame {1} and SR  is the radius of the spherical 

shell. Equations (2) and (4) denote one algebraic and two 

differential constraints between the considered position and 

rotational variables. These two differential constraints (4) are 

indeed non-integrable equations, which make the robot a 

nonholonomic system. 
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2.2 Dynamic Model 

Dynamical equations of the robot have been obtained using 

Kane’s method, Azizi et al. (2013), and are rewritten in the 

following form. 
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Where zyx  ,,  are angular velocities of the rotors with 

respect to the spherical shell; zyx TTT ,,  are actuators’ torque 

inputs of control system and  1f  to  6f  are nonlinear 

scalar terms. These terms are highly complicated and are not 

shown here due to the space limitation (see Azizi et al.). In 

(5), there exist none of the components of position vector x  

and y . Therefore, using (5), second time derivative of (2) 

and first time derivative of (4), the mathematical model of the 

spherical robot in terms of all the kinematical variables, could 

be written in the following standard form. 
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Where zyx  ,, are rotors’ angular displacement with 

respect to the spherical shell, 
9Rq  denote the state 

variable vector,   99RqM  is the mass matrix of the 

robot,   9, RqqV   is the vector of Coriolis and centrifugal 

forces,   9RqG  is the vector of gravitational effects and 

9Rτ  is the vector of impressed torque. Since  qM  is a 

nonsingular matrix, the robot mathematical model could be 

rewritten in the following affine form by multiplying both 

side of (8) by
1

M . 

   uqgqqfq   ,  (9) 

Where  qqf ,  is a  19  vector,  qg  is a  39  

distribution matrix and u  is the 3-dimentional torque vector. 
 

3. CONTROL SYSTEM DESIGN 

Considering the parameters uncertainty, measurement noises 

and disturbance torques which affect a real spherical robot, 

(8) is completed in the following form, Keighobadi (2012). 

     
    τDqGqG

qqVqqVqMM



  ,,
 (10) 

Where VM, and G  stand for the estimated values of mass 

matrix, centrifugal and Coriolis force vector and gravitational 

force vector, respectively. VM  , and G denote the 

effects of parameters uncertainty and unmodeled dynamics 

which are considered unknown and bounded values and the 

exogenous input vector, D  stands for disturbances and the 

measurements noise effects. According to (10), the affine 

model (9) is completed as: 

         uqgqgqq,fqq,fq .   (11) 

Where  qq,f   and  qg  are unknown but 2-norm 

bounded terms of state variables.  

3.1 Trajectory tracking control system 

To design a robust trajectory tracking control system of the 

spherical mobile robot, the output vector is considered as: 

   T

z

T
dtyxyx   2

3H  (12) 

Where   denotes time integral of the robot’s angular 

velocity around the vertical axis, z. The second time 

derivative of the output vector is obtained as: 

 0 3 1 2 2 1 3 0H
T

x y q q q q q q q q      (13) 

Through substituting yx  ,  and z23  from (11) in (13), the 

control inputs u  appears. Therefore, the system (9) is of 

relative degree two. So, Equation (13) could be written in the 

following form: 
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Where 
33

2

3 ,  RR HH1  are obtained from (9). To 

design the SMC, the sliding surfaces   0tS  is considered 

as follows. 
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Where ~  stands for the tracking error of the corresponding 

output variable and the sliding surface parameters, 

321 ,,   are strictly positive and fixed values. The time 

derivative of the sliding surface vector is obtained as: 
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Where dH  is the vector of the desired outputs and Λ  is a 

diagonal matrix of 321 ,,  . Substituting (14) in (16) leads 

to: 

      HΛHuqHqqHS d21

 ~
, t  (17) 

To achieve prefect trajectory tracking,  tS  should remain 

zero during the robot’s motion. Therefore, considering   0tS  

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4543



 

 

     

 

in (17) and using the nominal model of the robot (9), the 

following equivalent control law is obtained. 

    qqH-HΛHqHu 1d

1

2eq
 ,

~
   (18) 

Furthermore, the tracking error should reach the sliding 

surface in finite time and move along it to the origin. 

Therefore, the whole control input vector is assumed as 

follow. 

seq uuu    (19) 

Where, su  is determined by guaranteeing the global stability 

of the SMC against the uncertainties and unmodeled 

dynamics. Therefore, the following positive definite function 

is considered as a Lyapanov function candidate. 

  SS
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The time derivative of (20) along the system trajectories 

yields: 
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Where    qHqqH 21  ,,   are determined according to 

(11). Substituting equ  from (18) in (21) leads to: 
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Using 2-norm operator  , on (22) results in. 
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To achieve the global asymptotic stability,  tV  must be 

negative. Therefore su  is proposed as follow. 
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Where 21, KK  and 3K  are positive gains which are 

determined such that  tV  become negative. Using (24) in 

(23) leads to: 
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Using the fact that 321 SSS S  in (25), 21, KK  

and 3K  are obtained according to the upper bounds of the 

parameters’ uncertainty and unmodeled dynamics to 

guarantee the stability of the proposed control system. 
 

3.1 Smoothing the control inputs 

Although the switching control law (24) and (31) are robust 

against the parameters uncertainty and unmodeled dynamics, 

the chattering phenomena may also occur due to using 

discontinuous sign function in the sliding control. Chattering 

phenomenon may lead to high frequency control inputs and 

resonance the vibrations of the system’s components and 

therefore should be removed. To remove the chattering 

phenomena the boundary layer technique, is used in this 

paper. Therefore, in the boundary layer of thickness   

around the origin, the sign terms are replaced by linear 

continuous terms as demonstrated in Fig. 2. In this way, the 

smoother control inputs are obtained and the chattering 

phenomena are reduced. The thickness of the boundary layer 

affects the tracking performance and the robustness of the 

controller against uncertainties. Therefore, the thickness of 

the boundary layer is designed in such a way that the 

robustness of the SMC is considerable and the control 

torques are sufficiently smooth. Therefore, us
could be 

rewritten as follow: 
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Fig. 2. Interpolated control inputs inside the boundary layer 
 

4. COMPUTER SIMULATION 

The performance of the designed trajectory tracking control 

system against the parameters’ uncertainty and unmodeled 

dynamics is investigated by computer simulations. The 

nominal values of the robot’s physical parameters are used 

according to table 1. It is assumed that the mass, the radius 

and the moment of inertia of the spherical shell are not 

exactly known and therefore, the corresponding nominal 

values together with upper bound of their uncertainties are 

used in the SMC system. Furthermore, to consider the effects 

of unmodeled dynamics and measurements noises, the 

measured values of the simulated state variables are gathered 

with Gaussian white noise. 

To assess the trajectory tracking performance and robustness 

of the SMC against parameter uncertainty and measurements 

noises, a circular reference trajectory in x-y plane is 

considered as follow. 

   2cos .2 ; 2sin .2d dx t y t    (26) 
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Table 1: Nominal values of the robot’s parameters 

Parameter Nominal Value Uncertainty 

SM  kg9  SS MM %10  

SR  m55.  SS RR %20  

 3,2,1ili  m35.  - 

SI  2

1.815 0 0

0 1.815 0 .

0 0 1.815

kg m

 
 
 
  

 
SS II %10  

 3,2,1iM ir  kg1  - 

rI  2

0.05 0 0

0 0.05 0 .

0 0 0.1

kg m

 
 
 
  

 
- 

 

It is assumed that, the middle ring of the spherical shell 

should roll along the desired reference path. Therefore, the 

desired trajectory of angular velocity of the spherical shell 

around the vertical axis is considered as: 

2 2

2 2

3 30.2 ; 0
d dS

z d z d

C C

x yV

R R
  


     (27) 

Where 
SV  and 

CR  denote the velocity of the geometric 

center of the spherical shell and the curvature radius of the 

trajectory, respectively.  Considering the following initial off-

tracks in the state variables and using suitable controller gains 

as    1 2 3 3 3 3K K K  , the thickness of boundary layer 

as, .4   and  2,2,2diagΛ , the simulation results are 

obtained as shown in Figs. 3 to 8. 
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Fig. 3. Tracking error along x direction  

 

5. CONCLUSION 

In this paper, robust trajectory tracking control of a 

nonholonomic spherical mobile robot with three independent 

actuators has been investigated. The state space model of the 

robot has been obtained using the dynamical equations of 

robot and the two nonholonomic kinematical constraints 

without any simplifying assumptions. For purpose of 

trajectory tracking control of the robot, nonlinear SMC has 

been designed. Using the dynamical modelling as the design 

base of the nonlinear SMC, all the inertial, Coriolis and 

centrifugal effects are considered in the control actions. 

Using Lyapanov’s direct method in design and analysis of 

SMC, the global stability of the control systems and the 

convergence of tracking errors to zero have been obtained. 

Furthermore, by use of boundary layer technique, the 

discontinuous switching terms of the SMC have been 

replaced by linear continuous terms to decrease the chattering 

effects. 
 

 
Fig. 4. Tracking error along y direction  

 
Fig. 5. Robot circular trajectory in x-y plane 

 

Fig. 6. Control torque, xT  for tracking of circular trajectory  

 

Fig. 7. Control torque, yT for tracking of circular trajectory  

 

Fig. 8. Control torque, zT  for tracking of circular trajectory  
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Through computer simulations, the trajectory tracking 

performance of the proposed SMC has been shown. Owing 

the global stability and the robust nature of the SMC, the 

accurate tracking performance has been obtained through 

considering large position and velocity off-tracks, large 

parameters uncertainty and 3% white Gaussian noises on 

measured state variables of the robot. The results show that 

the robot could track the desired position and velocity 

trajectory as well as the angular velocity of shell around the 

vertical axis in the existence of parameters’ uncertainty and 

noisy measurements. Therefore, due to the stability and the 

robustness, the proposed SMC systems could be implemented 

on the spherical robot in real world applications. 

Furthermore, the capability of the designed SMC in control 

of the angular velocity of the robot around the vertical axis 

could be extended to achieve full trajectory tracking together 

with complete attitude control of the robot in feature works. 
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