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Abstract: In this work, we apply the fast alternating minimization algorithm (FAMA) to
model predictive control (MPC) problems with polytopic and second-order cone constraints.
We present a splitting strategy, which speeds up FAMA by reducing each iteration to simple
operations. We show that FAMA provides not only good performance for solving MPC problems
when compared to other alternating direction methods, but also superior theoretical properties.
Specifically, we derive complexity bounds on the number of iterations for both dual and
primal variables, which are of particular relevance in the context of real-time MPC to bound
the required online computation time. For MPC problems with polyhedral and ellipsoidal
constraints, an off-line pre-conditioning method is presented to further improve the convergence
speed of FAMA by decreasing the complexity upper-bounds and enlarging the step-size of the
algorithm. Finally, we demonstrate the performance of FAMA compared to other alternating
direction methods using a quadroter example.

1. INTRODUCTION

The strength of Model Predictive Control (MPC) is that
it allows constraints on the states and control inputs to
be integrated into the controller design. However, the cost
is that at each sampling time an optimization problem
needs to be solved, which has traditionally restricted MPC
to applications with slow dynamics and long sampling
times. This limitation has given rise to an increasing
interest in the development of new methods to either
improve the on-line computation, driven by the increase
in computational power of hardware and newly developed
optimization techniques, or to approximate the optimum
with a sub-optimal but stabilizing solution.

One technique to reduce the on-line computation is multi-
parametric programming, which pre-computes the solution
for every state off-line, see Alessio and Bemporad [2009]
for more details and references. Zeilinger et al. [2011]
presents a method combining explicit MPC with on-
line computation. However, all explicit and approximate
explicit methods are limited to small-scale problems.

For medium and larger scale MPC problems, on-line com-
putation methods are used. Various approaches have been
proposed to improve the on-line computation time. The
authors in Richter et al. [2012] employ the fast gradi-
ent method introduced in Nesterov [1983] to solve MPC
problems with box constraints on inputs. Efficient imple-
mentations of interior-point methods have been studied
in Wang and Boyd [2010] and Domahidi et al. [2012].
Accelerated gradient methods with dual decomposition are
investigated in Kögel and Findeisen [2011] and in Giselsson
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et al. [2013] in the context of distributed MPC. Ferreau
et al. [2008] and Bartlett and Biegler [2006] present effi-
cient active set methods for MPC.

This work applies accelerated alternating direction meth-
ods for solving MPC problems. Alternating direction
methods offer a powerful tool for general mathematical
programming and optimization and have attracted a lot of
attention in recent years, see e.g. Goldstein et al. [2012],
Boyd et al. [2011] and Combettes and Pesquet [2011]. An
important advantage of alternating direction methods is
that they split a complex minimization problem into sim-
ple sub-problems and solve them in an alternating man-
ner. For instance, for a problem with multiple objectives,
instead of computing the descent direction of the sum of
several objectives, alternating direction methods take a
combination of the descent directions of each objective.
This can save a significant amount of time, in particular
when the objectives have different properties, for instance
a quadratic function and an l1-norm.

A variety of different alternating direction methods exist,
using different assumptions on the problem set-up and
having different properties, see e.g. Goldstein et al. [2012]
and Combettes and Pesquet [2011] for an overview. The
alternating direction method of multipliers (ADMM) has
received most attention recently and was demonstrated to
perform well in practice, e.g. in O’Donoghue et al. [2013],
where it was shown to solve optimal control problems
both rapidly and robustly. However, the convergence rate
of ADMM is only O( 1

k ), and until now no theoretical
complexity bound on the number of iterations has been
shown. The complexity bound is important in the context
of real-time MPC in order to ensure that the optimization
problem can be solved in the available amount of time. An
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accelerated variant of ADMM, namely the fast alternating
direction method of multipliers (FADMM) in Goldstein
et al. [2012], is based on the same assumptions and has
the same convergence rate as ADMM but provides better
performance than ADMM.

In this paper, we propose the use of the fast (accel-
erated) alternating minimization algorithm (FAMA) in
Tseng [1991] and Goldstein et al. [2012], for the solution
of MPC problems offering superior theoretical properties
while providing similar or even better performance. Com-
pared to ADMM, FAMA requires stronger assumptions on
the objectives of the optimization problems, which can,
however, be satisfied by standard MPC problem formula-
tions with polytopic and second-order cone constraints. In
return, FAMA offers a better convergence rate of O( 1

k2 )
and provides complexity bounds on the number of itera-
tions. The main contributions of this work are:

• Second-order cone constraints: In this work, we con-
sider both polytopic and second-order cone con-
straints, which allows for solving, for example, MPC
problems with ellipsoidal constraints.
• Splitting strategy: We present a formulation of MPC

problems that satisfies the assumptions of FAMA and
propose a splitting strategy to reduces each iteration
of FAMA to simple operations.
• Convergence rate: We show that FAMA offers a better

convergence rate ofO( 1
k2 ) compared with ADMM and

FADMM.
• Complexity bound: Complexity upper-bounds on the

number of iterations to achieve a certain solution
accuracy for both primal and dual variables are
derived.
• Preconditioning: For MPC problems with polytopic

and ellipsoidal constraints, we propose an off-line
pre-conditioning method to further improve the con-
vergence speed of FAMA. The method enlarges the
step-size of the algorithm by scaling the polytopic
constraints and reshaping the ellipsoidal constraints.

All properties above are demonstrated for the simulation
example of a quadroter.

2. FAST ALTERNATING MINIMIZATION
ALGORITHM (FAMA) FOR MPC

2.1 Notation

Let f be a strongly convex function. σf denotes the
convexity modulus of f , i.e. 〈p− q, x− y〉 ≥ σf‖x − y‖2,
where p ∈ ∂f(x), q ∈ ∂f(y) and ∂(·) denotes the set
of sub-gradients of the function at a given point. The
operators max, ≤ and ≥ are defined to work on vectors
as well as scalars. For vectors, the operators are defined
to be element-wise. Let C be a matrix. ρ(C) denotes the
largest eigenvalue of CTC. For a positive definite matrix
H, λmin(H) denotes the smallest eigenvalue of H. Let C be
a convex set. The indicator function IC(σ) on C is defined
to be zero if σ ∈ C and infinity otherwise. Let C be a
convex cone. The set C′ = {w | vTw ≤ 0, ∀v ∈ C} denotes
the polar cone of C. The set C? = {w | vTw ≥ 0, ∀v ∈ C}
denotes the dual cone of C. A cone C is called self-dual, if
C = C?.

2.2 Fast Alternating Minimization Algorithm (FAMA)

In Tseng [1991], an alternating direction method called
alternating minimization algorithm (AMA) is proposed.
In this section, we apply the accelerated variant of AMA,
named fast alternating minimization algorithm in Gold-
stein et al. [2012], to MPC problems. Before going into
the details of the algorithm, the difference between FAMA
and ADMM as well as its accelerated variant FADMM (see
Algorithm 8 in Goldstein et al. [2012]) are highlighted.
ADMM and FADMM require the objectives to be convex
functions for convergence, and with this assumption both
algorithms offer the same convergence rate O( 1

k ). In addi-
tion, the convergence of FADMM can only be guaranteed
by integrating the restarting rules proposed in Goldstein
et al. [2012]. FADMM can have a faster convergence rate,
if both objectives are strongly convex. FAMA requires
the stronger assumption that one objective needs to be
strongly convex. In return, it achieves a faster convergence
rate O( 1

k2 ). The second difference is that FAMA provides
a complexity upper-bound on the number of iterations
for a given accuracy, which is useful for real-time MPC
problems, while for ADMM and FADMM such a bound
is not available. The third difference is that ADMM and
FADMM don’t require any condition on the step-size. The-
oretically, any positive step-size guarantees convergence,
however, not any positive step-size results in good conver-
gence speed. The question of how to best tune the step-size
still remains largely unclear and is usually done by trial
and error. FAMA, in contrast, requires the step-size to
be smaller than the reciprocal of the Lipschitz constant
of the gradient of the dual objectives. This condition
simplifies the selection of the step-size. The complexity
bound together with the condition on the step-size allow
for pre-conditioning to speed up the algorithm, which will
be discussed in Section 4. The differences between ADMM,
FADMM and FAMA are summarized in Table 1.

In the following, we show how FAMA can be applied
to MPC to exploit the properties discussed above. We
consider an MPC problem for a system with linear and
time-invariant dynamics, state- and input-constraints in
the form of polytopic and/or second-order cone constraints
and quadratic stage and terminal costs. By eliminating all
state variables and moving the inequality constraints to
the cost in the form of indicator functions, MPC problems
of this class can be reformulated in the following form with
one strongly and one weakly convex objective, suitable for
the application of FAMA.

Problem 2.1.

min
u

uTHu + hTu︸ ︷︷ ︸
f(u)

+

M∑
i=1

ICi(σi)︸ ︷︷ ︸
g(σ)

s.t. Ciu− di = σi, i = 1, · · · ,M.

where u = [uT0 , u
T
1 , · · · , uTN−1]T ∈ RN ·m denotes the

sequence of inputs over the control horizon N and σ =
[σT1 , · · · , σTM ]T ∈ RNσ are auxiliary variables. Ci denote
the constraints on the states and inputs. In this paper, Ci
are given either by the non-negative orthand, i.e., Ci :=
{v | v ≥ 0}, or simplified second-order cone constraints,
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Methods Convergence rate Assumptions Complexity bound Condition on step-size

ADMM O( 1
k
) both objectives convex no no

FADMM O( 1
k
)/O( 1

k2 ) both objectives convex/strongly convex no no/yes

FAMA O( 1
k2 ) one objective strongly convex yes yes

Table 1. Summary of assumptions and properties of ADMM, FADMM and FAMA.

i.e., Ci := {[v1, v2]| |v1|2 ≥ v2}. Note that these cover
all polytopic and second-order cone constraints on u by
involving the affine coupling Ciu− di = σi. Both the non-
negative orthant and the second-order cone are self-dual
cones. This fact will be used in the proof of Theorem 3.6.

Remark 2.2. The matrix H is independent of the initial
state x̄ and the matrix h is a linear function of x̄.

Assumption 2.3. The matrix H is positive definite, i.e.,
H � 0.

Remark 2.4. Assumption 2.3 holds, if a strictly convex
cost on the inputs is chosen and the dynamical system
in the MPC problem is controllable.

Remark 2.5. If Assumption 2.3 holds, the first objective
function f is strongly convex and the convexity modulus
σf is given by the minimum eigenvalue of the matrix H,
i.e., σf = λmin(H).

Remark 2.6. The second objective g(σ) is an indicator
function of a convex cone, which is convex. If Assump-
tion 2.3 holds, which means that the first objective func-
tion f(u) is strongly convex, then all assumptions required
by FAMA (see Tseng [1991] and Goldstein et al. [2012])
are satisfied.

Algorithm 1 Fast alternating minimization algorithm
(FAMA)

Require: Initialize α0 = 1, α1 = (1 +
√

5)/2, λ0 =
λstart ∈ RNσ , and τ < σf/ρ(C) = λmin(H)/ρ(C).
loop

1: for k = 1, 2, · · · do

2: uk = argmin uTHu + hTu−
∑M
i=1 λ

k−1T

i Ciu
3: ûk = uk(αk−1 + αk − 1)/αk − uk−1(αk−1 − 1)/αk

4: αk+1 = (1 +
√

4αk2 + 1)/2
loop

5: for i = 1, · · · ,M do

6: σki = PrCi(Ciû
k − 1

τ λ̂
k
i − di)

7: λki = λ̂ki + τ(di − Ciûk + σki )

8: λ̂k+1
i = λki + (αk − 1)(λki − λ

k−1
i )/αk+1

9: end for
end loop
10: end for

end loop

We apply FAMA to MPC Problem 2.1 resulting in Al-
gorithm 1, where the matrix C is [CT1 , · · · , CTM ]T . The
advantage of the splitting strategy in Problem 2.1 is that
the two objectives f(u) and g(σ) are very easy to minimize
separately. The solution to the unconstrained minimiza-
tion problem in Step 2 can be obtained analytically, i.e.

uk = 1
2H
−1(
∑M
i=1 C

T
i λ

k−1
i − h), where the inverse H−1

can be computed off-line. Step 6 involves basic projections
onto the non-negative orthant and simplified second-order
cone. We denote the projection operation as PrC(·). For
the non-negative orthant, the projection is:

PrC(v) = max{0, v}. (1)

For the second-order cone, the projection is:

PrC([v1, v2]) =


[v1, v2] if |v1|2 ≤ v2
v2+|v1|2

2|v1|2 [v1, |v1|2] if |v1|2 > v2, v1 6= 0

[0, 0] if |v1|2 ≤ −v2.

.

(2)
The projections in (1) and (2) are computationally cheap
and either reduce to simply a clipping or a scaling opera-
tion.

Remark 2.7. Step 2 and 3 in Algorithm 1 are equivalent

to uk = argmin uTHu + hTu −
∑M
i=1 λ̂

k−1T

i Ciu. By
splitting this step into two steps, uk is expressed as a
function of λk, i.e. uk = 1

2H
−1(CTλk − h). This allows

us to derive the complexity bound on |uk−u?|, which will
be presented in Section 3.

3. COMPEXITY BOUNDS OF FAMA FOR MPC

In this section, we will derive the complexity upper-bounds
on the number of iterations to achieve a certain solution
accuracy for both the primal and dual sequences {uk} and
{λk} generated by Algorithm 1. The complexity upper-
bounds are important for real-time MPC by providing a
certificate that a solution of pre-specified sub-optimality
can be obtained within the available computation time.

3.1 Notation

Let f : Θ → Ω be a function. The conjugate function of
f is defined as f?(y) = supx∈Θ(yTx− f(x)). It holds that
p ∈ ∂f(q)⇔ q ∈ ∂f?(p). If f is a strongly convex function
with the convexity modulus σf , then the gradient of the
conjugate function of f has a Lipschitz constant L(∇f?) =
σ−1
f . We refer to Bertsekas et al. [2003] and Boyd and

Vandenberghe [2004] for details on the definitions and
properties above.

3.2 Fast iterative shrinkage-thresholding algorithm

As shown in Goldstein et al. [2012], FAMA corresponds
to applying the fast iterative shrinkage-thresholding algo-
rithm (FISTA) in Beck and Teboulle [2009] to the dual
problem. We will therefore first introduce the convergence
results for FISTA in the following, which will allow us to
derive an upper bound on the number of iterations for
FAMA. FISTA solves problems of the following form:

Problem 3.1.

min F (z) +G(z), z ∈ Rn. (3)

Note that this is a special case of the general problem
formulation addressed by alternating direction methods in
Goldstein et al. [2012], imposing the additional coupling
z1 − z2 = 0 on the more general objective min F (z1) +
G(z2).
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Assumption 3.2. • F is a continuous convex function
with Lipschitz continuous gradient L(∇F ):

|∇F (z1)−∇F (z2)| ≤ L(∇F )|z1 − z2| ∀z1, z2 ∈ Rn.
• G is a convex function.

The conceptual idea of the fast iterative shrinkage algo-
rithm is to build a linearization and regularization of the
differentiable function part in the objective at each itera-
tion and to apply Nesterov’s acceleration step to achieve
O( 1

k2 ) convergence rate. Lemma 3.3 states the complexity
upper-bound on the number of iterations for FISTA.

Lemma 3.3. (Beck and Teboulle [2009], Theorem 4.4). Let
{zk} be generated by applying FISTA to Problem 3.1. If
Assumption 3.2 holds, then for any k ≥ 1 we have:

J(zk)− J(z?) ≤ 2L(∇F )|zstart − z?|2

(k + 1)2
(4)

where J(z) = F (z) + G(z), and zstart and z? denote
the starting point and the optimizer of Problem 3.1,
respectively.

FISTA cannot directly be applied to Problem 2.1, since
the matrix C is not equal to an identity matrix. However,
as will be shown in Theorem 3.6, the dual of Problem 2.1
satisfies the assumptions of FISTA and applying FAMA
to Problem 2.1 is equivalent to applying FISTA to the
dual. Hence, the complexity bound for FISTA can be
extended to FAMA. Before we present the main results
in Theorem 3.6, we state two lemmas, which will be used
in the proof of Theorem 3.6.

Lemma 3.4. Let C be a convex cone. The conjugate func-
tion of the indicator function of the set S := {v| − v ∈ C}
is equal to the indicator function of the dual cone of C,
i.e., I?S (v) = IC?(v).

Proof. By the definition of a convex cone, the set S is
still a convex cone. Example 7.3.5 in Bertsekas et al. [2003]
shows I?S (v) = IS′(v), where S′ denotes the polar cone of
S. By the definitions of the polar cone and the dual cone,
we know S′ = {w | w′v ≤ 0, −v ∈ C} = {w | w′v ≥ 0, v ∈
C} = C?, and the result I?S (v) = IC?(v) follows.

Lemma 3.5. Let C be the non-negative orthant C := {v |
v ≥ 0} or a second order cone C := {[v1, v2]| |v1| ≤ v2}.
For any v ∈ RNC , the point z = PrC(v)−v satisfies z ∈ C.

Proof. For the non-negative orthant, it is easy to show
that z = PrC(v) − v = max{0, v} − v ≥ 0. For a second-
order cone, we denote z = [z1, z2] and show that |z1| ≤ z2

holds for the three cases in equation (2). For the first case,
it can easily be verified that |z1| ≤ z2. For the second case,
we have:

|z1|2 =

∣∣∣∣v2 + |v1|2
2|v1|2

v1 − v1

∣∣∣∣
2

=

∣∣∣∣v2 − |v1|2
2

∣∣∣∣ ,
z2 =

v2 + |v1|2
2|v1|2

|v1|2 − v2 =
|v1|2 − v2

2
.

Since in this case it holds that |v1|2 > v2, we get |z1|2 ≤ z2.
For the third case, we have |z1|2 = |v1|2 and z2 = −v2.
Since |v1|2 ≤ −v2, we prove |z1|2 ≤ z2.

Theorem 3.6. Consider Problem 2.1. Let {uk} and {λk}
be generated by Algorithm 1, where λk = [λT1 , · · · , λTM ]T

and λi are the Lagrange multipliers associated with the

constraint Ciu− di = σi at iteration k. If Assumption 2.3
is satisfied, then for any k ≥ 1

D(λ?)−D(λk) ≤ 2ρ(C)|λstart − λ?|2

λmin(H)(k + 1)2
. (5)

If λstarti ∈ Ci for all i = 1, · · · ,M , then λki ∈ Ci for all
k ≥ 1 and i = 1, · · · ,M and

|uk+1 − u?|2 ≤ 4ρ(C)|λstart − λ?|2

λ2
min(H)(k + 1)2

, (6)

where λstart and λ? denote the starting point and the
optimizer, respectively.

Proof. Theorem 2 in Goldstein et al. [2012] shows that
applying FAMA to Problem 2.1 is equivalent to applying
FISTA to the dual problem of Problem 2.1. The dual
function of Problem 2.1 is:

D(λ) = −f?(CTλ)︸ ︷︷ ︸
−F (λ)

+ dTλ− g?(−λ)︸ ︷︷ ︸
−G(λ)

= −1

4
λTCH−1CTλ+

1

2
hTH−1CTλ− 1

4
hTH−1h︸ ︷︷ ︸

−F (λ)

+ dTλ−
M∑
i=1

I?−λi∈Ci︸ ︷︷ ︸
−G(λ)

.

F (λ) and G(λ) are both convex, since the conjugate
functions and linear functions as well as their weighted
sum are always convex (conjugate function is the point-
wise supremum of a set of affine functions). By Assumption
3.2, f(x) is strongly convex with σf = λmin(H). By the
property of the conjugate function, a Lipschitz constant of
∇f? is given by:

L(∇f?) = σ−1
f =

1

λmin(H)
.

Then, we get a Lipschitz constant of ∇F :

L(∇F (λ)) = σ−1
f · ρ(C) =

ρ(C)

λmin(H)
.

By Lemma 3.3, it follows that the sequence {λk} generated
by Algorithm 1 satisfies the complexity bound (5).

The second step is to prove that if λstarti ∈ Ci for all
i = 1, · · · ,M , then λki ∈ Ci for all k ∈ N and i = 1, · · · ,M .

From Step 4 and 5 in Algorithm 1, we know that λki = λ̂ki +

τ(di − Ciuk + σki ) = τ(PrCi(Ciu
k − 1

τ λ̂
k
i − di)− (Ciu

k −
1
τ λ̂

k
i −di)). By the fact that τ > 0 and Lemma 3.5, we can

conclude λki ∈ Ci for all k = 1, · · · and i = 1, · · · ,M .

The last step is to prove inequality (6). From Step 1 in
Algorithm 1 we have:

uk+1 =
1

2
H−1(CTλk − h)

which implies:
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|uk+1 − u?|2

= |1
2
H−1CT (λk − λ?)|2

≤ 1

2λmin(H)
(λk − λ?)TCH−1CT (λk − λ?)

=
2

λmin(H)
[
1

4
λk

T

CH−1CTλk − (
1

2
hTH−1CT + dT )λk

− 1

4
λ?

T

CH−1CTλ? + (
1

2
hTH−1CT + dT )λ?

+
1

2
((λ?)TCH−1CTλ? − λk

T

CH−1CTλ?)

+ (
1

2
hTH−1CT + dT )(λk − λ?)].

Since we know that all Ci are self-dual cones, i.e. C?i = Ci,
Lemma 3.4 implies that the dual function can be simplified
as:

D(λ) = −1

4
λTCH−1CTλ+ (

1

2
hTH−1CT + dT )λ

− 1

4
hTH−1h−

M∑
i=1

Iλi∈Ci ,

and the gradient of the dual function for λi ∈ Ci is :

∇D(λ) = −1

2
C(H−1)TCTλ+ (

1

2
C(H−1)Th+ d). (7)

Since we have shown that λki ∈ Ci for all k ≥ 0 and
i = 1, · · · ,M , we obtain:

|uk+1 − u?|2 ≤ 2

λmin(H)
(D(λ?)−D(λk)

−∇DT (λ?)(λk − λ?)).
By optimality, we conclude:

2

λmin(H)
(D(λ?)−D(λk)−∇D(λ?)(λk − λ?))

≤ 2

λmin(H)
(D(λ?)−D(λk))

≤ 4ρ(C)|λstart − λ?|2

λ2
min(H)(k + 1)2

.

Remark 3.7. Theorem 3.6 can be directly extended to the
MPC problem with positive semi-definite cone constraints,
since a positive semi-definite cone is also a self-dual cone.

Remark 3.8. The proof of inequality (6) is an extension of
the proof in Giselsson et al. [2013] for the case of polytopic
constraints in the context of distributed MPC problems.

4. PRE-CONDITIONING

Pre-conditioning has been observed to offer significant
compuational speedups in gradient based methods in
Richter et al. [2012] and Giselsson [2013]. In this section,
we present a pre-conditioning technique to improve the
performance of FAMA, when applied to MPC problems
with polytopic and ellipsoidal (a special case of second-
order cone) constraints. The idea of the method is to
enlarge the step-size and decrease the complexity bound
of the algorithm by scaling the polytopic constraints and
reshaping the ellipsoidal constraints. It is important to
point out that for the case with only polytopic constraints
the proposed pre-conditioning does not change the original
constraints and thereby the optimal solution, whereas for

the case with both polytopic and ellipsoidal constraints,
the solution is modified since the shape of the ellipsoidal
constraints is redesigned. Feasibility of the solution is
maintained, by choosing the new ellipsoidal constraints as
inner-approximations of the original ellipsoids. If the el-
lipsoidal constraint represents a terminal state constraint,
the proposed pre-conditioning method maintains the sta-
bility properties. Recall the condition on the step-size
τ < λmin(H)/ρ(C) and the complexity bound in Theorem
3.6. The value ρ(C) affects them in the way that the
smaller ρ(C) is, the larger the step-size can be and the
smaller the complexity bound will be. The constraints are
therefore pre-conditioned to reduce the value of ρ(C) and
thereby enlarge the step-size and decrease the positive
constant in the complexity bound in Theorem 3.6. The pre-
conditioning is hence enabled by the existence of upper-
bounds on the step-size and on the number of iterations.
Since ADMM and FADMM do not provide such bounds,
it is unclear how to provide a similar pre-conditioning
method for them. The derived theoretical properties of
FAMA therefore offer significant benefits. They not only
provide a bound on the required on-line computation time,
but also allow for tuning the algorithm and improve its
performance for the particular problem at hand.

Consider the discrete-time linear time-invariant system
xt+1 = Axt + But, where xt and ut denote the state
and input at time t. Let X and U be the state and input
constraints and K be a linear control law, such that A +
BK is stable.

Definition 4.1. (Positive invariant (PI) set): A set S ⊆ Rn
is a positively invariant set of system xt+1 = Axt+BKxt,
if Axt +BKxt ∈ S and Kxt ∈ U for all xt ∈ S.

In order to simplify the notation, we assume that Prob-
lem 2.1 only has two constraints, a polytopic constraint
C1u− d1 ≥ 0 and an ellipsoidal constraint |C2u− d2| ≤ 1.
We consider the more difficult set-up, where the ellipsoidal
constraint originates from a state constraint |Ext−e| ≤ 1,
with E � 0. Since xt can be represented by a linear
combination of the control sequence u and the initial state
x̄, i.e., xt = M1u + M2x̄, it follows that C2 = EM1 and
d2 = e − EM2x̄. Note that ellipsoidal constraints on the
input would directly be of the right form.

We introduce two positive-definite matrices P1 and P2,
P1 to scale the polytopic constraints P1Ciu − P1d1 ≥ 0
and P2 ∈ RnC2

×nC2 to reshape the ellipsoidal constraint
|P2C2u−P2d2| ≤ 1, where nC1

and nC2
denote the number

of rows of the matrices C1 and C2, respectively. P1 is
set to be a diagonal matrix. The goal is to minimize
ρ(C), where C = [CT1 , C

T
2 ]T , which can be achieved by

minimizing the condition number of C by the following
minimization problem (see Chapter 3.1 in Boyd et al.
[1994]). Let W1 = PT1 P1 and W2 = PT2 P2.

Problem 4.2.

min
α,W1,W2

α

s.t. µI �
[
CT1 CT2

] [W1 0
0 W2

] [
C1

C2

]
� αI,

W1 � 0, W2 � 0,

where µ is equal to the minimum eigenvalue of CTC. By
setting W2 to be a positive definite diagonal matrix, the
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pre-conditioning does not modify the polytopic constraint.
However, it changes the ellipsoidal constraint on xt to be
|P2Ext−P2e| ≤ 1. In order to guarantee that the solution
given by the pre-conditioned problem is still a sub-optimal
and feasible solution to Problem 2.1, the pre-conditioned
ellipsoid is scaled to provide an inner approximation of
the original ellipsoid. Problem 4.3 computes the maximum
such inner approximation. The first LMI constraint in
Problem 4.3 guarantees that the new scaled ellipsoidal
constraint | 1βP2Ext− 1

βP2e| ≤ 1 is contained in the original

constraint |Ext − e| ≤ 1, (see Chapter 8.4.2 in Boyd and
Vandenberghe [2004]). Note that after solving Problem 4.2,
the matrix P2 in Problem 4.3 is not an optimization
variable but a constant.

Problem 4.3.

min
β,ω

β

s.t.

−ω + 1 0 0
0 ωI β(P2E)−1

0 β(P2E)−1 (ETE)−1

 � 0,

ω ≥ 0.

Since xt = M1u +M2x̄, the new constraint on u is set to
be | 1βP2C2u− 1

βP2d2| ≤ 1.

In the case that the ellipsoidal constraint has to be an
invariant set, which is generally the case for quadratic
terminal sets in MPC, an additional invariance condition
has to be imposed on W2 in Problem 4.2. We exemplify
this procedure for an ellipsoidal constraint originating
from an invariant ellipsoidal state constraint of the form
Xf = {xN |xTNPxN < 1}, where P � 0. Invariance of the
pre-conditioned ellipsoid can be ensured by enforcing the

following constraint (A + BK)TP
1
2
T

W2P
1
2 (A + BK) −

P
1
2
T

W2P
1
2 � 0 in Problem 4.2, which can be written as

an LMI by using Schur complements. Note that in the
case of a terminal set, if the state and input constraints X
and U are polytopic sets, then the inner approximation in
Problem 4.3 can be relaxed by only requiring the scaled
new ellipsoid to be contained in X ∩KU. To summarize,
all properties of the original MPC controller, such as
invariance and stability of the closed-loop system, are
maintained under the proposed pre-conditioning.

Remark 4.4. Since the matrices C1, E and M1 are inde-
pendent of the initial state x̄, the computation of the pre-
conditioning matrices P1 and P2 and the parameter β can
be performed off-line.

Remark 4.5. The pre-conditioning method introduced in
this section can be easily extended to the case with more
than two constraints and with ellipsoidal input constraints.

5. NUMERICAL EXAMPLE

This section illustrates the theoretical findings of the
paper and demonstrates the performance of FAMA for
solving MPC problems. We consider a quadroter model,
see Mellinger and Kumar [2011], which is driven by four
independently controlled rotors. In this experiment, we use
a cascaded control structure and design an MPC controller
to control the derivative of the height of the quadroter,
the roll, pitch and yaw angles and the derivative of these
angles, i.e x = [ż, α, β, γ, α̇, β̇, γ̇]T . The resulting linearized

and discretized dynamics are defined by xt+1 = Axt +
But. The state of the system is subject to constraints on
the maximum angle, maximum angle velocity as well as
maximum velocity in the z direction - these constraints
are mainly chosen to ensure validity of the linearized
model and have been specified as: |ż| ≤ 1m/s, |α| ≤ 10◦,

|β| ≤ 10◦, |α̇| ≤ 15◦, |β̇| ≤ 15◦ and |γ̇| ≤ 60◦. The input
constraint is 0 ≤ u ≤ 1. The horizon of the MPC controller
is set to N = 25. The terminal state xN is subject to a
positive invariant ellipsoidal terminal constraint.

In the simulation shown in Fig. 1, we collect 1000 randomly
sampled initial states in the set {x̄|[−0.5m/s,−5◦,−5◦,
−60◦,−5◦/s,−5◦/s,−30◦/s]T ≤ x̄ ≤ [0.5m/s, 5◦, 5◦, 60◦,
5◦/s, 5◦/s, 30◦/s]T } and compare the proposed FAMA
algorithm (red line), as well as the FAMA algorithm
with pre-conditioning presented in Section 4 (black line),
against ADMM (green line) and FADMM (blue line) for
solving the MPC problem with these 1000 initial states.
The step-size for FAMA is set to 0.99 ∗ λmin(H)/ρ(C),
while for ADMM and FADMM it is set to the best value
obtained by manual tuning. Performance is measured by
the percentage of samples, for which |uk − u?|/|u?| < δ
after k iterations. In Fig. 1a, δ is set to 10−4 and in Fig.
1b to 10−6. In both cases, FAMA with preconditioning
shows the best performance, fastest convergence speed
and good accuracy after few iterations. FAMA without
preconditioning converges more slowly but still faster than
ADMM and FADMM. Fig. 1b shows that the solution
accuracy given by ADMM and FADMM is inferior to
FAMA. They achieve a solution accuracy of δ = 10−6 in
1000 iterations for only 10% of the samples.

Fig. 2 illustrates the sequences |uk+1 − u?|2 (solid lines)
generated by Algorithm 1 with (black lines) and without
(red lines) the pre-conditioning method and the corre-
sponding complexity upper-bounds in (6) (dotted lines)
for the initial state x̄ = [−0.5, 10◦,−10◦, 60◦, 10◦/s, 10◦/s,
30◦/s]T . The complexity bounds are approximated by set-
ting λstart = 0 and assessing |λ∗| by sampling. It can be
clearly seen that the pre-conditioning method improves the
convergence speed of the algorithm and reduces the com-
plexity upper-bound. However, as the number of iteration
k increases, the complexity upper-bound of Algorithm 1
with pre-conditioning appears to be less tight.

6. CONCLUSION

In this paper, the alternating direction method FAMA
was proposed for solving MPC problems with polytopic
and second-order cone constraints. An efficient splitting
strategy simplifying of the computation at each iteration
was presented. Upper-bounds on the number of iterations
for a certain accuracy for both primal and dual variables
were derived, which have enabled the proposition of a
preconditioning method to improve the convergence speed.
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