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Abstract: In many future applications, such as pesticide spraying, unmanned aerial systems
(UASs) are expected to operate cooperatively in a swarm configuration. A cyber-physical
framework based on Centroidal Voronoi Tessellations (CVT) has been shown to provide optimal
placement for sensors or actuators and can be used effectively for the control of a diffusion process
such as a pathogen infection. However, previous work did not consider real-world constraints
such as the effect of the UASs health on swarm utilization. While health degradation over time
is inevitable, mismanaged swarms face expedited health degradation from over-utilization of one
UAS over others. In this paper, a novel smart health balancing (SHB) system is implemented
to extend the life of the most heavily taxed UASs and thus extending the life of the entire UAS
swarm. The effectiveness of the proposed system is demonstrated with simulation results.
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1. INTRODUCTION

Unmanned Aerial Systems (UASs) are increasingly be-
ing used for agricultural applications. These agricultural
platforms are expected to fulfill two major roles: decision
support and precision application of pesticides (AUVSI,
2013). While decision support applications rely on remote
sensing strategies, precision application have traditionally
been modeled after manned aircraft operations. Futur-
ists envision that these ‘smart’ UASs will not only re-
place manned crop-dusting operations, but improve per-
formance by providing intelligent targeted application,
spraying only where it is needed and saving both money
and time. This level of precision is envisioned to add up to
significant economic benefits, especially in the U.S. with
nearly 408 million acres of currently operated farmland
(USDA, Economic Research Service, 2011).

The recent trend in the UAS industry has been towards the
development of small unmanned aerial systems (SUASs).
These small platforms are not only cheaper to manufacture
and to operate, they are expected to be the most viable
solution for the FAA to manage (Federal Aviation Ad-
ministration, 2010). While these systems have a number
of advantages such as portability and ease of use, they
suffer from three major drawbacks: limited flight time,
limited payload capacity and limited survivability. These
platforms typically only operate for under an hour, are
significantly limited in payload capacity, and can tolerate
very little adversity before requiring repairs. The common
solution to counter their limitations is to utilize them
in swarms or cooperative operations. By using multiple
UASs, a swarm can service a larger area in a shorter

time than a single larger aircraft, but only if the proper
optimization and control is applied. Unfortunately, while
these cooperative control techniques are effective in coun-
tering the first two major drawbacks, they typically do
not address the health and reliability issues posed by the
third major drawback, the lack of survivability. The health
of a UAS can have significant effects on overall mission
performance and future reliability. In a swarm, a UAS that
sees constant significant use may degrade faster than those
that are used less frequently and may result in permanent
failure reducing future performance. By balancing health
in a cooperative control algorithm, the overall effectiveness
of the swarm may be enhanced.

Coverage control problems have been addressed in liter-
ature for a number of applications including agriculture
(Stark et al., 2013) as well as in many applications such as
forest fire monitoring (Casbeer et al., 2006), nuclear radi-
ation contour mapping (Han et al., 2013) and a multitude
of military uses or persistent surveillance applications. In
each of these scenarios, a single UAS is assumed to be
constrained with limited sensing and communication abil-
ity, necessitating the use of a swarm of coordinated UASs
to accomplish the mission. Cooperative control algorithms
have taken a variety of forms in literature.

In many situations, UAS health degradation may severely
effect both current overall mission performance and de-
crease the performance of future missions. Typically this
issue has been addressed in literature for military ap-
plications or persistent surveillance operations where the
objectives are simply to provide a presence at a location.
In Geramifard et al. (2011), a cooperative control archi-
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tecture is implemented with stochastic risk models to add
intelligence to the UASs to avoid risky behaviors or loca-
tions. Previous work by Bethke et al. (2008) incorporated
fuel usage into the architecture to develop a ‘health-aware’
mission planner with a dynamic programming approach.
This architecture is well-poised for the discrete mission
task orientated approach posed by those authors but is not
well-suited for implementing diffusion process control such
as found in agricultural applications. Other cooperative
control approaches that include health management often
appear in conjunction with enemy damage avoidance and
balancing fuel consumption in those efforts, such as in
Chen et al. (2013) where a model predictive control (MPC)
was developed with a particle swarm optimization to in-
corporate fuel consumption with the potential of enemy
damage.

In Sharifi et al. (2013), a Centroidal Voronoi Tessellations
(CVT) based framework was utilized for coverage con-
trol and introduced the use of multiplicatively weighted
voronoi partitioning for addressing non-identical health
conditions for sensors. In this work, each UAS was re-
sponsible for sensing and localizing some process. The
use of the multiplicatively weighted regions allowed for
region shaping depending on the health of each UAS’s
sensor. This effort was focused on the sensing of a process,
however, when the objective is to provide control (such
as the spraying of a pesticide) to diffuse an infection, this
approach would not improve performance.

A framework for distributed control of a diffusion process
was introduced in Chen et al. (2007). In that work,
the authors utilized CVTs to solve the optimal actuator
placement for a diffusion process of a partial differential
equation (PDE). The optimality of the actuator placement
provides the best use of control effort, reducing the use of
spraying application and neutralizes the infection in the
fastest time. This framework can be used in an agricultural
application and provide a significant economic gain (Stark
et al., 2013).

In this paper, a swarm of cooperative SUASs are set up
within a cyber-physical framework to optimize spraying
a neutralizing agent over a rapidly spreading diffusion
process, while simultaneously balancing the health of the
fleet to ensure the maximum life of the weakest UAS using
a smart health balancing (SHB) system. In the following
section, the problem statement and the CVT framework
is introduced. The SHB system is described in Section 3.
In Section 4, the proposed smart health system is evalu-
ated through simulations. Finally, concluding remarks are
found in Section 5.

2. PROBLEM STATEMENT

The problem of optimal coverage in the presence of degrad-
ing health can be framed in a cyber-physical system (Chao
and Chen, 2012). In a setting where real-time sensing of
an area is possible, an optimal cooperative control system
for the eradication of an invasive and volatile pathogen is
possible (Stark et al., 2013).

Suppose Ω represents a convex polytope such that Ω ∈ R2,
where a diffusion process can occur. Within this region,
suppose there exists a group of n UASs, denoted as the

set P = {p1, p2, · · · , pn} where pi = (xi, yi), representing
the coordinates of each UASs.

The region with the pathogen within Ω can be described as
ρ(x, y) : Ω→ R+. This diffusion process can be described
by the following partial differential equation (PDE):

δρ

δt
= k

(
δ2ρ

δx2
+
δ2ρ

δy2

)
+ fd(ρ, x, y, t) + fc(ρ̃, x, y, t) (1)

where k is some positive constant system parameter,
fd(x, y, t) represents the pathogen source, fc(ρ̃, x, y, t)
represents the control application for neutralizing the
pathogen, and ρ̃ is the measured sensor data. For con-
venience, ρ is used to represent ρ(x, y).

The group of UASs behave as mobile actuators, each
applying some application control force fc(t) = fc1 +fc2 +
· · ·+ fcn.

The region Ω can be partitioned into n Voronoi diagram
regions such that V = {V1,V2, · · · , Vn}, pi ∈ Vi,Vi∩Vj = ∅
for i 6= k

Vi = {q ∈ Ω||q − zi| < |q − zj | for j = 1, 2, . . . , n, j 6= i}
(2)

where | · | is the Euclidean distance, zi represents a set
of points belonging to Ω and q is any arbitrary point. The
members of the set {zi}ki=1 are referred to as the generators
of each cell Vi.
Given a density function ρ(q̃) ≥ 0 defined in Ω, then for
each Voronoi cell, Vi, the mass centroid zi can be defined
by:

zi =

∫
Vi
qρ(q)dq∫

Vi
ρ(q)dq

. (3)

For controlling a diffusion process, the following objectives
are introduced:

• To control the diffusion of the pathogen
• To neutralize the pathogen as quickly as possible

without over application of control force
• To balance the health and usage of the fleet

To meet the desired control objectives, the following eval-
uation equation is introduced:

κ(ρ,V) =

n∑
i=1

∫
Vi
ρ(q)|q − pi|2dq for q ∈ Ω (4)

such that

|ṗi| < kv, |p̈i| < ka,

n∑
i=1

∫
uspray,i(t)dt < ks, |hi − h∗| < kh

(5)

where ṗi and p̈i represent the first and second-order
dynamics of the UAS, uspray,i represents the neutralizing
control input of actuator i at time t, hi is the health of
the actuator, h∗ is the average health of the all actuators,
and constants kv, ka, ks, kh are strictly positive threshold
constants.
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3. DISTRIBUTED COVERAGE CONTROL WITH
SMART HEALTH BALANCING

Throughout the paper, the UAS is assumed to be a highly
mobile vehicle, capable of moving in any direction and
capable of hovering in place, such as a rotary-wing vehicle
or a blimp. In this assumption, each UAS can be treated
as a virtual particle with second order dynamics,

p̈i = ui, (6)

where ui is the control input of the ith UAS.

The neutralizing spraying actuation force fc(ρ̃, x, y, t) can
be any arbitrary function. In this paper, it is assumed to
be in the form of a PDE, spraying an airborne neutralizing
agent directly underneath the UAS.

The health for each UAS, i, can be represented by hi(t) at
time t. The health function hi(t) can be formulated as:

hi(t) = hi(0)− di(t), (7)

di(t) =

∫ t

0

kdu
2
i dt+ fd,i(t), (8)

such that

ḣi(t) ≤ 0, ḟd,i(t) ≥ 0, hi(t), fd,i(t) ∈ [0, 1], (9)

where hi(0) is the starting health of UAS i, kd is a usage
gain scalar, and fd,i(t) represents external negative effects
on UAS health, for example in the event of a mid-air
collision. In this paper, the health of each UAS degrades
over time as a function of its control effort and any
external damage it may encounter. A UAS directed to
move quickly and change directions rapidly will encounter
a faster health degradation than a UAS that is largely
stationary. Physically speaking, this calculation can be a
combination of remaining fuel and structural health, or
amended to include UAS spraying usage.

The nominal health h∗(t) of the UAS fleet is calculated as
the current average health of all UASs,

h∗(t) =
1

n

n∑
i=1

hi(t), (10)

such that
ḣ∗(t) < 0, h∗(t) ∈ [0, 1]. (11)

It is assumed that each UAS can communicate globally
with other UASs in the region to calculate their respective
Voronoi regions and have access to the global average
health h∗(t). The control of each UAS is accomplished with
a simple P controller modulated by the smart health bal-
ancing (SHB) system which utilizes a simple PD controller.
The control ui(t) can be represented as:

ui(t) = kp · [1 + kh,i(t)] · (pi − zi), (12)

ei(t) = hi(t)− h∗(t), (13)

kh,i(t) = khpei(t) + khd
ėi(t), (14)

where kh,i represents the SHB gain that changes the
movement control of the UAS, ei represents the health

residual between UAS i and the global health average h∗(t)
and khp

and khd
represent the SHB gains.

The desired observation of the SHB system is to maximize
the lifetime t of the vehicle with the lowest health, hi. At
each time step, UAS i calculates its Voronoi region and
calculates its centroid zi in order to construct its desired
location. It then calculates its health and computes the
residual to adjust its control input. The result is that
the less healthy UASs are commanded to move more
conservatively to maximize its flight endurance.

4. SIMULATION RESULTS

The performance of the smart health balancing system
can be demonstrated by maximizing the minimum time
till a UAS death for the swarm of UASs. With the
implementation of the smart health balancing system, the
goal is to keep all the UASs as healthy as possible and to
mitigate disproportional health degradation. In this paper,
four scenarios are presented and examined:

(1) No abnormal health behavior for any UAS in the
swarm,

(2) One UAS suffers from an increase rate of health
degradation,

(3) One UAS initializes at a lower health than the rest of
the swarm,

(4) One UAS suffers from a sudden decrease in health.

Fig. 1. Diffusion control using four UASs in a CVT
framework

These scenarios represent some common expected health
issues. Scenario (1) represents the best case scenario where
no UAS suffers from abnormal health behavior and thus
the SBH is utilized to balance the utilization of each
UAS. Scenario (2) may occur during an engine malfunction
that lowers fuel efficiency. Scenario (3) could represent
a battery that was not fully charged before being used.
Scenario (4) could be a minor component malfunction
such as a structural fracture. In these scenarios, the
health degradation or malfunction does not require an
immediate recovery, but continued operation may impact
future health and performance.

Each of these four scenarios were run with a swarm of four
UASs sent to neutralize a diffusion process in the center of
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a b

Fig. 2. Plot of UAS Health for four UASs with an initial health of hi(0) = 0.80 and normal degradation rate for (a)
Nominal and (b) SHB.

a b

Fig. 3. Plot of the difference between UAS health and mean health for (a) Nominal and (b) SHB.

the region (Figure 1). For each scenario, two simulations
were performed, one without the smart health balancing
system (Nominal) and one with the smart health balancing
system (SHB). The green region in the center represents
the diffusion source. The red circles represent the centroids
of the voronoi regions and the desired UAS positions. The
red lines represent the boundaries between voronoi regions.
The blue circles represent the UAS.

Figures 2 and 3 depict results from the first scenario, where
each UAS initializes at the same health level and the health
of each UAS degrades normally with its motion. Figure 2a
plots the health of each UAS during the neutralization
swarm control without the smart health balancing. In this
simulation, UAS 4 drops faster than the rest and hits an
arbitrary health threshold at hi(t) = 0.4 at time step 318.
In Figure 2b with smart health balancing, the same UAS
extends its life and does not reach the threshold until time
step 361, representing a 13% increase in life.

It can be seen in Figure 3a that without the smart health
balancing, the disparity in UAS health diverges over time,
whereas in Figure 3b, the disparity is bounded and satisfies
|hi−h∗| < kh requirement set in eq. 5. Even though there
is nothing wrong with any of the UASs, the addition of the
smart health balancing extends the lifetime of the swarm.

The results are further pronounced in the remaining three
scenarios. Figure 4 shows the health of each UAS under
consistent initial health with UAS 4 having a degrada-
tion rate double that of the other UAS. In the Nominal
scenario, the first UAS to degrade to hi(t) = 0.4 health
occurs after 210 time steps. After smart health balancing
is applied the system requires 283 time steps. This is a
represents a 35% increase in survival time for the mission.

Figure 5 shows the health of each UAS for scenario (3).
While UASs 1-3 start at hi(0) = 0.8, UAS 4 initializes at
h4(0) = 0.6. In the Nominal simulation (Figure 5a), UAS
4 degrades to hi(t) = 0.4 after 211 time steps. After smart
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a b

Fig. 4. Plot of UAS Health for four UASs with an initial health of hi(0) = 0.80 and double degradation rate for UAS 4
for (a) Nominal and (b) SHB.

a b

Fig. 5. Plot of UAS Health for three UASs at hi(0) = 0.80 and UAS 4 at h4(0) = 0.60 for (a) Nominal and (b) SHB.

health balancing is applied the same system survives to
284 time steps before reaching the threshold (Figure 5b).

Figure 6 shows the health of each UAS under equal initial
health and health degradation rates under scenario (4).
At time step 250, UAS 4 simulates receiving damage mid
flight by applying fd,i(t) = 0.3 at t = 250. In the Nominal
simulation (Figure 6a), UAS 4 degrades to death (hi(t) =
0) after 363 time steps. After smart health balancing is
applied (Figure 6b) the UAS survives to 411 time steps.

Nominal SHB

Scenario (1) 318 361
Scenario (2) 210 283
Scenario (3) 211 284
Scenario (4) 363∗ 411∗

Table 1. Time for first UAS to reach hi(t) =
0.4. ∗ denotes time till UAS death, hi(t) = 0

The results from all four scenarios can be seen in Table 1.
In all four scenarios, the addition of the smart health
balancing increases the minimum time till death of the
weakest UAS by a significant margin with only minimal
adjustments to the existing framework. The SHB ensures
that the swarm is capable of operation for a longer period
of time and prevents prolonged disproportional wear.

5. CONCLUSION

Ensuring the reliability of UAS in the field is vital to pro-
moting UAS as a viable option for autonomous diffusion
control applications. In real-world applications, the UASs
are likely to experience a wide variety of environments
and conditions that will negatively affect performance and
lifetime. In commercial operations, swarm robustness and
reliability is a vital aspect, especially in agricultural envi-
ronments where usage can be frequent in harsh conditions.
It can be seen that through the application of smart health
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Fig. 6. Plot of UAS Health for four UASs with an initial health of hi(0) = 0.8 and a 0.3 health impact for UAS 4 for
(a) Nominal and (b) SHB.

balancing to each UAS, the entire UAS swarm is more
robust to variations in health, caused by any number of
very plausible scenarios. The system can better react to
unforeseen damage from collisions, mechanical failure, or
insufficient maintenance. The method of team and indi-
vidual health aware motion control can also be applied to
systems of UAS with different performance capabilities,
that is, the heterogeneous drone team, which cab be in-
vestigated in future research efforts.
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