
On Identifying Envelop Type Nonlinear
Output Error Takagi-Sugeno Fuzzy Models
for Dynamic Systems with Uncertainties

Salman Zaidi, Andreas Kroll

Measurement and Control Department, Faculty of Mechanical
Engineering, University of Kassel, Moenchebergstrasse 7, D-34125,

Kassel, Germany, (e-mail: {salman.zaidi,
andreas.kroll}@mrt.uni-kassel.de)

Abstract: In modeling of a stochastic nonlinear dynamic system from input-output data, it
may be of interest to model uncertainty in the underlying system besides predicting a most
likely or average response of the system. Due to stochasticity in the system behavior, the data
obtained for identification can be considered as one realization of the underlying stochastic
phenomenon. In order to effectively deal with the identification of such systems, it may be
advantageous to repeat the identification experiment multiple times under similar conditions.
The multiple input-output time series generated in this way thus contain information about
stochastic variations within the system. This paper presents one of the possible approaches to
effectively deal with identification in such scenario in the framework of Nonlinear Output Error
(NOE) Takagi-Sugeno (TS) fuzzy models. Based on extended Chebyshev’s inequality for finite
samples, the lower and upper boundaries of the output time-series are obtained using (1-α)
confidence interval (envelops of the response). The proposed identification algorithm provides
a model for predicting the most likely value as well as the boundary models for predicting the
envelops of the output signal. The experimental results for an electro-mechanical throttle shows
the applicability and validity of the proposed approach.

Keywords: Nonlinear system identification, fuzzy modeling, stochastic modeling, uncertainty
modeling, automobile industry.

1. INTRODUCTION

System identification in systems and control theory is con-
cerned with building mathematical models of dynamic sys-
tems from measured input-output data, assuming inputs
and model order to be known. The accuracy of the devel-
oped model is thus highly dependent upon the information
content and quality of the data used for identification. The
identification is carried out in two steps. In the first step,
a model structure with unknown parameters is selected,
and in the next step, the parameters of the model are
determined by using parameter estimation techniques. To
date, several methodologies have been successfully used
for nonlinear dynamic system identification, such as artifi-
cial neural networks [Narendra and Parthasarathy (1990),
Norgaard et al. (2003)], piecewise affine systems [Ferrari-
Trecate et al. (2003), Daafouz et al. (2009)], and Takagi-
Sugeno (TS) fuzzy systems [Takagi and Sugeno (1985)],
to name a few. This paper focuses on TS fuzzy system
identification for nonlinear stochastic dynamic systems.

Owing to its capability of approximating any continuous
function with arbitrarily high precision [Ying (1998)], the
TS fuzzy systems with affine consequents [Babuška (1998),
Kroll (1996), Nelles (2001)] have been extensively used
in fuzzy modeling and control. In TS fuzzy modeling,
the input space is decomposed into a number of fuzzy
subspaces. Each fuzzy subspace is characterized by a

multi-variate membership function and describes the local
behavior of the underlying system by an affine local model.
The global nonlinear behavior of the system is obtained by
smoothly interpolating these local models.

By repeating the identification experiment multiple times,
a number of input-output time series can be generated.
The problem then can be posed as to identify a TS fuzzy
model that is capable of predicting not only an average
or most likely response of the system (considering the
variability in all time-series), but to also provide a mea-
sure of dispersion of output values around the predicted
response. There exists some attempts in the literature
regarding the identification of interval dynamic TS fuzzy
systems, e.g., the interval fuzzy model (INFUMA) [Škrjanc
et al. (2005)]. In INFUMA, the optimal lower and upper
bound functions were approximated using linear program-
ming. These bounds were obtained by first considering all
possible extreme variations of parameters of the modeled
function, which gave rise to a family of functions, and
then selecting the minimum and maximum functions out
of that family. Xu and Sun [Xu and Sun (2009)] have
recently proposed an interval TS fuzzy model, in which
the parameters of the consequent parts of the TS fuzzy
rule become intervals by using interval regression analysis.
They assumed the output signal to be in the interval form,
but no explanation was given as how such output values
can be obtained by identification. Another approach can
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be to use the higher type fuzzy sets (uncertain fuzzy sets)
for solving the posed problem. As pointed out by Mendel
[Mendel (2001)], ordinary Fuzzy Sets (FSs), referred to
as Type-1 Fuzzy Sets (T1 FSs), are not fully capable
of handling uncertainties present in real-world problems.
Thus to improve the uncertainty handling capability of
T1 FSs based Fuzzy Logic Systems (FLSs), the author
suggested to use Type-2 Fuzzy Sets (T2 FSs) based FLS
[Karnik et al. (1999)]. In T2 TS FLS, the uncertainties in
systems are translated into uncertain antecedent member-
ship functions and conclusion parameters. However, how
these uncertainties can be determined by identification
is still an open research question. A prediction interval
based interval T2 FLS have been proposed recently by
Khosravi et al. (2012). The prediction interval was created
by considering uncertainty in the model’s output due to
two factors 1) an additive noise term, and 2) the model
variance. However, the variability (the inherent stochas-
ticity in systems) was not addressed in their approach.
Similar to T2 FLSs, the Probabilistic Fuzzy Logic System
(PFLS) was proposed by [Liu and Li (2005)]. The PFLS
has the capability of modeling a system with stochastic
uncertainties. PFLSs use probabilistic fuzzy sets as sec-
ondary fuzzy sets. Again, the criterion for determining the
probability density of primary membership function values
reflecting true uncertainties in data is not clear to date.

This research aims to provide a solution approach to the
posed problem. The presented framework endows the clas-
sical Nonlinear Output Error (NOE) TS fuzzy identifica-
tion technique with the ability to capture the stochastic
variation in the realm of probability theory. Based on
extended Chebyshev’s inequality for finite samples, the
upper and lower output time series based on (1−α) confi-
dence level are constructed, which are termed as boundary
time series in the sequel. These boundary time series
are later used for estimating upper and lower boundary
NOE TS fuzzy models. Whereas, the average response
of the system, which is defined by sample-wise means
of output time series, is obtained by averaging out the
responses of these boundary models. The variability in
reproducing input signals are usually negligible and so is
the case in this research and thus neglected in the proposed
identification approach. An electro-mechanical throttle is
chosen as a case study for identification. The throttle has
been studied extensively by Ren et al. (2012, 2013). It
has shown stochastic behavior due to friction [Zaidi et al.
(2012)]. The results obtained from the throttle case study
has demonstrated that the proposed approach is able to
estimate the mean and boundary time series with high
accuracy as shown by the values of performances indices.

The rest of this paper is organized as follows. The problem
statement is formulated in § 2. The proposed identification
approach is discussed in detail in § 3. Experimental results
on the throttle are recorded in § 4. Finally, the conclusion
and outlook are given in § 5.

2. PROBLEM STATEMENT

The following notations have been used throughout in this
paper to represent different types of variables.

- deterministic scalar : lower case, roman and nor-
mal font letter (e.g. v)

- deterministic vector : lower case, roman and bold
font letter (e.g. v)

- deterministic matrix : upper case, roman and nor-
mal font letter (e.g. V )

- random scalar : lower case, sans-serif and normal
font letter (e.g. v)

- random vector : lower case, sans-serif and bold font
letter (e.g. v)

- random matrix : upper case, sans-serif and normal
font letter (e.g. V)

Consider a Single-Input-Single-Output (SISO) dynamic
system. An extension to Multiple-Input-Single-Output
(MISO) systems is straightforward. Furthermore, Multiple-
Input-Multiple-Output (MIMO) systems can be decom-
posed to MISO systems. Assume that an input signal can
be exactly reproduced in a given experiment (i.e. the input
signal is considered to be deterministic). Application of the
input signal to the system leads to the generation of the
following data in the form of input-output pairs.

(uj ,yj) := {(ujk, y
j
k)|k = 1, . . . , n} (1a)

(U, Y ) := {(uj ,yj)|j = 1, . . . ,m} (1b)

T j := (uj ,yj) (1c)

T := {T j |j = 1, . . . ,m} (1d)

where ujk ∈ R and yjk ∈ R denote the k-th input-output
sample of the j-th experiment, n is the total number
of samples in one experiment, m is the total number
of experiments, uj ∈ Rn×1 and yj ∈ Rn×1 represent
n dimensional column vectors containing the input and
output time series for the j-th experiment, U ∈ Rn×m

and Y ∈ Rn×m denote the input and output matrices,
T j ∈ Rn×2 concatenates the input and output vectors for
the j-th experiment, and T ∈ Rn×2m represents the entire
time series for all experiments.

Since the input signal is deterministic, upk = uqk and
up = uq for all k and p, q ∈ {1, . . . ,m}. Assuming

variability in yjk, the underlying process can be viewed asm
realizations of a stochastic process at the k-th time instant.
Consequently, each yjk can be seen as the j-th realization of
an independent and identically distributed (i.i.d.) random
variable yk with y = [y1, . . . , yk, . . . , yn] defined on some
probability space (Ω,B,Pr), where Ω is the sample space,
B is the Borel sigma-algebra, and Pr is the probability
measure. Each yk is assumed to be stationary. The i.i.d.
assumption about yk is made by considering the fact that
each experiment can be performed independently of each
other. However, the components of the random vector y are
dependent upon each other through the tapped delay lines
of inputs and outputs defined by the system dynamics.

The objective is firstly to estimate a model that describes
the expected or most likely response of the considered
stochastic dynamics. Secondly, the model should be able to
provide an envelop for the expected spread of the output
values. It is remarked here that the uncertainty could be
modeled differently, e.g. as parametric instead as signal
uncertainty.

3. IDENTIFICATION APPROACH

Assuming a discrete time SISO nonlinear system of the
form:

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3227



y(k) =f(y(k − 1), . . . , y(k − ny),

u(k − τ − 1), . . . , u(k − τ − nu)), (2)

where ny, τ and nu represent the number of lagged output
samples, dead time and number of lagged input samples,
respectively. Observation typically assumes an additional
additive i.i.d. Gaussian measurement noise term, e(k) ∼
N(0, σ2

e), in (2). In case of deterministic input (u) and
stochastic output (y), this system can be represented as a
stochastic process of the form

{yk|yk−1, . . . , yk−ny , u(k− τ − 1), . . . , u(k− τ −nu)}, (3)

and the corresponding conditional densities

Pr(yk|yk−1, . . . , yk−ny, u(k−τ−1), . . . , u(k−τ−nu)), (4)

which can be estimated from T for each time instant k.
They can be visually inspected histograms. Additionally,
normality tests and probability density estimation tech-
niques can be applied for gaining more insight about the
distribution.

In the proposed approach, in order to alleviate the prob-
lem and to formulate a computationally tractable model,
only the upper and lower boundaries of the output time
series are considered for identification which are obtained
by using the extended Chebyshev’s inequality [Chebyshev
(1867)] for finite samples. Chebyshev’s inequality guaran-
tees that no more than 1/t2 of any arbitrary distribution’s
values can be farther than t standard deviations away from
the mean, where t ≥ 1 [Hazewinkel (2001)]. If µyk (finite)
and σyk (finite and non-zero) denote respectively the mean
and standard deviation of the random variable yk, then the
following inequality holds according to Chebyshev

Pr(|yk − µyk | ≥ t σyk) ≤ 1

t2
. (5)

A (1−α) Confidence Interval (CI) of yk can be described by

an interval of the form [ylk, y
u
k ], where Pr(ylk ≤ yk ≤ ylk)

P−→
(1 − α) which indicates convergence in the probabilistic
sense as the sample size goes to infinity. By equating 1/t2

to α and using the argument of the probability density
function defined in (5), the (1 − α) CI of yk can be
formulated as

ylk = µyk −
1√
α
σyk , yuk = µyk +

1√
α
σyk (6)

From (6), the mean of yk can be obtained by averaging ylk
and yuk , i.e.

ymk := µyk =
ylk + yuk

2
(7)

However, µyk and σyk are the mean and standard deviation
of the actual population and thus are unknown. Sample
mean (myk) and sample standard deviation (syk) from the
given sample of size m can be approximated as follows:

myk =
1

m

m∑
j=1

yjk, k = 1, . . . , n (8)

syk =
1

m− 1

m∑
j=1

(yjk −myk)2, k = 1, . . . , n (9)

Chebyshev’s inequality has been extended to cases where
the population mean and variance are not known but are
instead replaced by their sample estimates [Saw et al.
(1984)] and [Kabán (2012)]. According to Kabán, the
resulting inequality is

Pr(|yk −myk | ≥ t syk) ≤ 1√
m(m+ 1)

(
m− 1

t2
+ 1

)
.

(10)
The corresponding (1− α) CIs and mean of yk defined in
(6) and (7), respectively, can be approximated as

ŷlk = myk − syk

√
m− 1

α
√
m(m+ 1)

(11a)

ŷuk = myk + syk

√
m− 1

α
√
m(m+ 1)

(11b)

ŷmk := myk =
ŷlk + ŷuk

2
(12)

As m → ∞, the sample estimates defined by (8) and
(9) approach the population parameters µk and σk, and
accordingly, the approximated Kabán’s CI and mean de-
fined by (11) and (12) converge to the Chebychev’s CI and
mean defined by (6) and (7). It is noteworthy to mention
here that Chebyshev’s inequality provides conservative or
loose bounds since it does not take into account the un-
derlying distribution of data. Tighter or less conservative
bounds can be obtained by considering either the actual
distribution or by making some assumptions about the
distribution.

Two time series can be constructed from the lower and
upper bounds of the CI defined by (11). From hereon,
these will be named lower and upper bound time series.
The identification data used for estimating these bounding
time series are obtained from (11) as follows

T l := (u, ŷl) = {(uk, ŷlk)} (13a)

Tu := (u, ŷu) = {(uk, ŷuk )} (13b)

The expected values of condition densities defined in (4)
are approximated from the sample means of the output
time series given by (8) and (12)

Tm := (u, ŷm) = {(uk, ŷmk )} (14)

By using T l and Tu for identification, two separate NOE
TS fuzzy models (called boundary models from hereon)
are constructed. There is no need to construct a separate
model from the data defined in (14), as from (12) it is
evident that the mean response can be obtained by simply
averaging the response of the boundary models.

The entire procedure consists of the following steps:

3.1 Experiment design and data generation

The first step for any identification is the design of ex-
periments. The input signal used for identification should
be persistently exciting to excite all the amplitude and
frequency modes of interest [Ljung (1999)]. For capturing
the stochasticity, the experiment are repeated multiple
times to generate multiple time series for identification.
A single time series in this case can be considered as one
realization of the underlying stochastic system.

3.2 Synchronization of time series

The reason for doing this step is to make sure that the
time series are synchronized before carrying out sample-
wise operations. Asynchronism is not assumed due to the
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system behavior, but it can occur due to imperfection
of the data generating and recording mechanism. Cross-
correlation can be used for synchronizing two time series,
which differ by an unknown shift along the time-axis. The
cross-correlation between each pair of output time series
{(yi,yj)|i 6= j|i, j ∈ {1, 2, 3, . . . ,m}} should be examined.
The cross-correlation between yi and yj is defined as

(yi ? yj)[k]
def
=

n∑
r=1

yi[r]yj [k + r], k = 1, . . . , n (15)

from which the shift (kdelay) between them can be calcu-
lated as

kdelay = arg max
k

((yi ? yj)[k]). (16)

3.3 Identification of boundary models

The boundary models are estimated from the data defined
by T l and Tu in (13a) and (13b). The identification
consists of the estimation of lower and upper NOE TS
fuzzy models for T l and T j with set of parameters θl

NOE

and θu
NOE, respectively.

The following approach is used:

(1) Fuzzy clustering by Fuzzy c-means (FCM) [Bezdek
(1981)] in the product space, using the Euclidean
norm, to determine the partitioning into local models.

(2) Simultaneous global identification of local models
using Ordinary Least Squares (OLS) by minimizing
the sum of squared residuals (SSR) for one-step-
ahead prediction (serial-parallel or Nonlinear Auto
Regressive with eXogenous Input (NARX) model).

(3) Nonlinear optimization (trust-region-reflective algo-
rithm) to minimize SSR for recursive model eval-
uation (parallel or Nonlinear Output Error (NOE)
model). The parameters to be optimized include the
cluster prototypes and parameters of local models.

A TS fuzzy model with multidimensional reference fuzzy
sets [Kroll (1996)] and affine consequents having c rules is
considered. The i-th fuzzy rule can be written as

Ri : IF x IS vi THEN ŷi = fi(x) (17)

with:
Ri: i-th fuzzy rule,
x: the vector of r crisp inputs, x = [x1, . . . , xr]T ∈ Rr×1,
vi: i-th cluster prototype, vi = [v1,i, . . . , vr,i]

T ∈ Rr×1,
ŷi: crisp output of the i-th rule, ŷi ∈ R,

fi: affine conclusion function, fi(x) = a0,i +
r∑

j=1

aj,ixj

In case of NARX nonlinear dynamic systems, x is the
vector of lagged inputs and measured outputs, i.e., x(k) =
[u(k − 1), . . . , u(k − nu), y(k − 1), . . . , y(k − ny)]T , with
r = nu + ny and ŷi = ŷi(x(k)). The degree of fulfillment
for the i-th rule is determined by evaluating the i-th
membership function (MF)

µi(x(k)) =

 c∑
j=1

(
||x(k)− vi||
||x(k)− vj ||

) 2
ν−1

−1 , ν > 1 (18)

where ν is the fuzziness parameter. The final crisp output
is given as the average of outputs of the c rules according

to (17) weighted by their membership values

ŷ(x(k)) =

c∑
i=1

µi(x(k))ŷi(x(k)) (19)

since the MFs defined by (18) are orthogonal, i.e.
c∑

i=1

µi(x(k)) = 1. The algorithm consists of the identifi-

cation of:

(1) Premise parameters, i.e. c cluster prototypes lumped
into v ∈ Rcr×1, v := [vT

1 , . . . ,v
T
c ]T .

(2) c sets of consequent parameters of the local affine
models lumped into a ∈ Rc(r+1)×1, a := [aT1 , . . . ,a

T
c ]T ,

where ai = [a0,i, . . . , ar,i]
T ∈ R(r+1)×1.

The FCM is used for the identification of premise struc-
ture. The cluster prototypes (vNARX) are obtained by min-
imizing the objective function

vNARX := v∗ = arg min
v

(JFCM(X,P,v)) (20)

with

JFCM(X,P,v) =

n∑
k=1

c∑
i=1

µ(x(k))v||x(k)− vi||22 (21)

where X is the input matrix, X := [x(1), . . . ,x(n)]T ∈
Rn×r and P is the partition matrix, P := [µi(x(k))] ∈
Rc×n. It is clear from the objective function that cluster
prototypes are not adjusted to optimally estimate the
input-output behavior of the system.

The consequent parameters (aNARX) are estimated globally
by using OLS (NARX model). Denote Mi ∈ Rn×n, the
diagonal matrix having membership grades µi(x(k)) as
its k-th diagonal element. Define a matrix Xe := [X,1],
where 1 is a unitary column vector in Rn. Moreover, define
X ′ ∈ Rn×kn as X ′ := [M1Xe, . . . ,MkXe]. Then aNARX is
calculated as

aNARX = [(X ′)TX ′]−1(X ′)Ty (22)

The premise and consequent parameters can be lumped
into θNARX ∈ Rc(2r+1)×1 as follows

θNARX := [vT
NARX,a

T
NARX]T . (23)

Good evaluation properties of NOE or parallel models
are important for simulation or for long-range predictions,
e.g., in the context of model-based predictive control
[Jelali and Kroll (2002)]. The matlab function lsqnonlin
was used for determining optimal cluster prototypes and
local model parameters for parallel mode evaluation. This
function uses a trust-region-reflective algorithm based on
the interior-reflective Newton method [Coleman and Li
(1994, 1996)]. Denoting the lumped parameter vector for
NOE model as θNOE ∈ Rc(2r+1)×1, θNOE := [vT

NOE,a
T
NOE]T .

It is obtained by the minimizing the SSR of NOE model
with the input vector x(k) = [u(k−1), . . . , u(k−nu), ŷ(k−
1), . . . , ŷ(k − ny)]T as follows

θNOE := θ∗ = arg min
θ

1

n

n∑
k=1

(y(k)− ŷNOE(θ, k))2 (24)

The starting value of θ is chosen to be equal to θNARX.
The identification is performed on the two boundary time
series T l and Tu to provide two boundary models with
parameters θl

NOE and θu
NOE, respectively.
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4. EXPERIMENTAL RESULTS

The identification of an electro-mechanical throttle with
friction, shown in Fig. 1, is presented as a case study.

Fig. 1. Typical electro-mechanical throttle and its technol-
ogy scheme [Ren et al. (2012)]

The collected open-loop data shows that the output sig-
nal has randomness due to the presence of uncertainties,
mainly due to friction. A multisine signal, having the
length of n = 1000 samples was chosen as the input
signal. This phase optimized multisine signal was so pa-
rameterized that the throttle moves within its operation
range [Ren et al. (2012, 2013). The sampling time was
1 milli second. The experiment was repeated 80 times to
obtain m = 80 time series for identification. The input
and output time series are shown in Fig. 2 and in Fig. 3,
respectively. The observed spread (standard deviation) of
output values have time varying characteristics which is
shown in Fig. 4.

Fig. 2. Input time series (80 experiments)

Fig. 3. Output time series with extended Chebyshev’s In-
equality based CIs and mean curves (80 experiments)

For identification of the throttle, u(k − 1), y(k − 1) and
y(k − 2) were used as regressors. The FCM parameters
were selected as c = 4 and ν = 1.2. For having a
parsimonious model, the value of c was selected based on
the knee point of JNOE (objective function containing SSR

Fig. 4. Instant-wise standard deviation of output time
series

of NOE model), after which no considerable improvement
in model performance was observed. The value of ν was
selected based on the range suggested by Kroll (2011).
The value of α was selected to be 5% (for 95% CI). The
data were split into parts 1) identification data which is
used for identification 2) test data which is solely used
for checking model performance for unseen data. The
first 90% of data (1-9 sec.) were used for identification
and the remaining 10% (9-10 sec.) for testing the model.
The results for identification and test data are shown in
Fig. 5. The performance indices of Variance Accounted For
(VAF), Root-Mean-Square Error (RMSE) and Maximum
Absolute Error (MaxAE) were chosen for assessing model
quality and were given by (25), (26) and (27), respectively.
Their values are given in Table 1.

VAF =

(
1− variance (y − ŷ)

variance (y)

)
100% (25)

RMSE =

√√√√√ n∑
k=1

(y(k)− ŷ(k))

n
(26)

MaxAE = max
k

(|ŷ(k)− y(k)|) (27)

Fig. 5. Reference and model time series for identification
and test data

5. CONCLUSION AND OUTLOOK

The experimental results obtained from the throttle case
study show that the proposed model is able to provide
the boundary models with good accuracy, where the upper
and lower bound time series were obtained using (1−α) CI
based on extended Chebyshev’s inequality for finite sample
sizes. The most likely response was inferred by averaging
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Table 1. Modeling Performance of Upper
Bound (UB), Lower Bound (LB) and Mean

Time Series

Identification data Test data

VAF in % 99.96 99.63
LB time series MaxAE in ◦ 1.11 1.23

RMSE in ◦ 0.34 0.52

VAF in % 99.95 99.69
UB time series MaxAE in ◦ 2.59 1.12

RMSE in ◦ 0.37 0.40

VAF in % 99.98 99.91
Mean time series MaxAE in ◦ 1.28 0.46

RMSE in ◦ 0.25 0.19

out the responses of these boundary models. The presented
approach for building boundary models maybe considered
as a first attempt to model the uncertainty observed in
output time series in signal by only considering the CIs of
output time series. Translating the observed uncertainties
in signal space into parameter uncertainties in parameter
space and investigating ways to incorporating them in
modeling using Type-2 FLS based system will be the topic
of future research.
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