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Abstract: We consider two competing firms in a competitive industry, modeled as proposed by J. P.
Gould. Assuming that one company is a start-up and the other company is a well-established one with
a dynamic behavior determining the optimum, we take the point of view of the start-up. We propose
a pinning control scheme that makes the solutions of the start-up in capital stock and gross investment
rate approach the solutions of the company determining the desired behavior. The approach is discussed
based on numerical examples. An extension of the proposed control law equips it with the capability to
cope with uncertainties. We interpret our findings from the perspectives of control theory and economics.

1. INTRODUCTION

1.1 Motivation

If one wants to apply control theory to improve the performance
of a business in a competitive industry, one usually uses tech-
niques from optimal control to maximize the value of all future
cash flows. In doing so, the optimum is determined by the cost
functional, which is chosen subjectively. If, in contrast, one
lets the optimum be determined by the performance of another
company, different control theoretical techniques are necessary.

For doing so, we propose a pinning controller that forces the
gross investment rate and the capital stock of a company to
converge to the gross investment rate and capital stock of
another company exponentially.

1.2 Previous Work

To derive our control laws, we utilize the model of a rationally
managed firm in a competitive industry proposed by Gould
[1968], who applied optimal control theory to maximize the
value of all future cash flows. Moreover, for our controller
design procedure, we exploit the QUAD property of the un-
derlying vector field, which has in the past been proposed by
DeLellis et al. [2011, 2009, 2008] for similar problems. Vector
fields with this property are particularly suited to derive pinning
controllers, such as by Grigoriev et al. [1997], Li et al. [2004],
Chen et al. [2007], Porfiri and di Bernardo [2008].

Classical control laws for microeconomical systems are de-
rived with methods from optimal control; a finite-time profit-
maximizing controller was designed by Simaan and Takayama
[1976] considering monopolists. A review on feedback con-
trollers assisting business decisions was written by Morecroft
[1985] and a broad insight on such techniques is given in
Morecroft [2007]. A more dynamics- and less feedback-related
point of view on businesses is elaborated in Sterman [2000].

⋆ Corresp. author: J.M. Montenbruck (jan-maximilian.montenbruck
@ist.uni-stuttgart.de). The authors would like to thank the German
Research Foundation (DFG) for financial support of the project within the
Cluster of Excellence in Simulation Technology (EXC 310/1) at the University
of Stuttgart.

Chen and Chen [2007] have shown how to control the chaotic
behavior of the Cournot-Puu duopoly model. Equilibria and
(optimal) control laws in oligopolies were investigated by Karp
and Perloff [1993].

Recently, analyses of micro- and macroeconomical systems has
been performed through the point of view of complex net-
works; cluster synchronization phenomena have been observed
in stock markets by Basalto et al. [2005]. Similarly, Strogatz
[2001] observed clustering among the largest companies in the
US. Hakansson and Ford [2002] discuss how to cope with the
phenomena and paradoxa arising when coupling companies in
a network. The clustering coefficients of business networks on
bipartite graphs were analyzed by Souma et al. [2003].

1.3 Contribution and Structure of the Document

Previous work has focused on designing controllers by means
of optimal control and on analyzing dynamical phenomena in
coupled businesses. In contrast, we want to couple businesses in
order to design controllers, i.e. we introduce a coupling between
two companies to achieve certain convergence properties for
one of the companies. In doing so, we will achieve strong
convergence properties.

The remainder of the document is structured as follows; in
section 2, we formalize the control problem that we want to
solve. Therein, we introduce the model that we presume for our
controller design procedure. We assume this model to be valid
for both companies. In particular, we will assume one company
to be a well-established, well-running company and the other
company to be a start-up. The desired behavior for the start-
up will thus be given by the behavior of the well-established,
well-running company. We will show that the vector fields of
the models satisfy the QUAD property, which is often assumed
in literature for synchronization and pinning control. In section
3, we present our main result. Subsection 3.1 contains the
controller design procedure using a pinning scheme and the
proof for the convergence properties of the resulting closed-
loop, viz. gross investment rate and capital stock of the start-
up converge exponentially towards gross investment rate and
capital stock of the well-established, well-running company. In
subsection 3.2, we present a method for choosing production

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 10719



quantity and wage such that the proposed control law can be
realized. We discuss the result in section 4 and illustrate it on
a numerical example in section 5. In section 6, we propose
an extension of our main result for coping with uncertainties.
Section 7 concludes the paper.

2. PROBLEM STATEMENT

Gould [1968] has proposed the two-dimensional dynamical
system

[

K̇∗ (t)
İ∗ (t)

]

=

[

I∗ (t)− δ ∗ (t)K∗ (t)
(I∗ (t)+ q∗)(r (t)+ δ ∗ (t))−P∗ (t)G∗ (t)

]

(1)

to model the dynamics of a rationally managed firm in a
competitive industry, where K∗ : R+ → R is the capital stock,
I∗ : R+ → R the gross investment rate, δ ∗ : R+ → R the
percentage of capital stock taken as replacement investment,
q∗ ∈ R the ratio between the costs associated with investing
in capital stock and the gross investment rate, r : R+ → R the
instantaneous interest rate, P∗ : R+ → R denotes the product
price, and G∗ : R+ → R is determined by

G∗ =
∂

∂K∗
F∗

(

∂
∂L∗

F∗

)−1

, (2)

where F∗ : R+ ×R×R → R is the production quantity and
L∗ the labor input. G and δ are decision variables. The initial
values of (1) are denoted by K∗ (0) = K∗

0 and I∗ (0) = I∗0 .

Traditionally, (1) is used to derive inputs that maximize certain
cost functionals quantifying the value of the firm by means of
optimal control theory.

We assume that (1) is a well-established, well-running company
and that

[

K̇ (t)
İ (t)

]

=

[

I (t)− δ (t)K (t)
(I (t)+ q)(r (t)+ δ (t))−P(t)G(t)

]

(3)

is a start-up (i.e. we have initial conditions G(t0) = G0 ≪ G∗
0

and I (t0) = I0 ≪ I∗0 for (3)), whose point of view we take. Our
goal is to design inputs δ and G such that the solutions of (3)
converge to the solutions of (1). As G is only a virtual quantity
representing the influence of our production, we will first design
G and later choose F such that

G =
∂

∂K
F

(

∂
∂L

F

)−1

(4)

holds true. In doing so, we assume that the quantities K∗, I∗,
P∗, and δ ∗ are known to the start-up. We are hence interested
in feedbacks C of the form

[

δ (t)
G(t)

]

=C (K∗ (t) , I∗ (t) ,P∗ (t) ,δ ∗ (t)) (5)

and we will consequently design such herein. Note that we
do not want to derive inputs that are to be applied in practice
precisely subject to equations, but rather to derive equations that
provide support in the actual choice of decision variables.

For doing so, let us define the error

E (t) =

[

K∗ (t)−K (t)
I∗ (t)− I (t)

]

(6)

and the error dynamics

Ė (t) =

[

K̇∗ (t)− K̇ (t)
İ∗ (t)− İ (t)

]

= X (E) (7)

and reformulate our design goal to making E go to zero as time
approaches infinity.

For such tasks, i.e. synchronization of trajectories of sys-
tems, certain assumptions are frequently imposed in literature.
Among them is the QUAD condition studied by DeLellis et al.
[2011, 2009, 2008]. Namely, a system ẋ = f (x) is said to be
QUAD(∆,ω), if (a− b)⊤ ( f (a)− f (b))− (a− b)⊤ ∆(a− b) ≤
−ω (a− b)⊤ (a− b) for all a, b, with ∆ some diagonal matrix
and ω some finite scalar. If a system is QUAD, it is particularly
appealing for application of certain control schemes; e.g., the
Lie derivatives of certain Lyapunov functions are easily proven
to be negative definite for QUAD systems.
Claim 1. The system (3) is QUAD(∆,ω) for all ω and ∆ =
∆1 ⊕∆2 satisfying 4(∆2 −ω − r (t)− δ (t))(∆1 −ω + δ (t)) =
1, where ⊕ is the direct sum of matrices.

Proof. First, let us rewrite the QUAD condition for system (3),
i.e.
[

a1 − b1
a2 − b2

]⊤ [

a2 − δ (t)a1 − b2 + δ (t)b1
(a2 + q)(r (t)+ δ (t))− (b2 + q)(r (t)+ δ (t))

]

≤

[

a1 − b1
a2 − b2

]⊤

(∆−ωI2)

[

a1 − b1
a2 − b2

]

, (8)

when using the notation a = [a1
a2 ], b =

[

b1
b2

]

. The latter is just

δ (t)(a1 − b1)
2 − (a1 − b1)(a2 − b2)− (r (t)+ δ (t))(a2 − b2)

2

≥−(∆1 −ω)(a1 − b1)
2 − (∆2 −ω)(a2 − b2)

2

(9)
when factoring out. We consequently have

0 ≤(a1 − b1)
2 (∆1 −ω + δ (t))+

(a2 − b2)
2 (∆2 −ω − r (t)− δ (t))− (a1 − b1)(a2 − b2) ,

(10)

which is satisfied with ε = 2(∆2 −ω − r (t)− δ (t)) and 1 =
2ε (∆1 −ω + δ (t)) using Young’s inequality. Equating for ε ,
we arrive at 4

(

∆2 −ω − r (t)− δ (t)
)

(∆1 −ω + δ (t)) = 1. �

3. MAIN RESULT

3.1 Pinning Scheme

As we assume that company (1) does not know what the
start-up is currently working on, and as the start-up cannot
influence the dynamics of company (1), we have to leave δ ∗ and
G∗ untouched. Hence, undirected (i.e. bidirectional) diffusive
couplings are no means to solve the posed problem. Instead,
we will have to use pinning, i.e. applying a certain input to one
node of a network to achieve certain properties for the entire
network. Such techniques have thoroughly been studied for
QUAD Systems, e.g. by Grigoriev et al. [1997], Li et al. [2004],
Chen et al. [2007], Porfiri and di Bernardo [2008]. As such, we
propose the formulæ

C1 (K
∗ (t) , I∗ (t) ,P∗ (t) ,δ ∗ (t)) =

1+
1

K (t)
(−K∗ (t)− I∗ (t)+ I (t)+ δ ∗ (t)K∗ (t)) (11)

C2 (K
∗ (t) , I∗ (t) ,P∗ (t) ,δ ∗ (t)) =

1
P(t)

(

P∗ (t)G∗ (t)+ (I (t)+ q)(r (t)+ δ (t)− 1)−

(I∗ (t)+ q∗)(r (t)+ δ ∗ (t)− 1)+ q− q∗
)

(12)
and compose the control law (5) according to

C =

[

C1
C2

]

. (13)
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We consequently have the following proposition.

Claim 2. Consider the systems (1) and (3) and the feedback (5)
under pinning scheme (11), (12), (13). Then the error dynamics
(7) are uniformly exponentially stable at the origin.

Proof. Consider the Lyapunov function candidate

V (E) =
1
2

E⊤E. (14)

Then we clearly have γ1 ‖E‖σ ≤ V (E) ≤ γ2 ‖E‖σ with σ = 2
and γ1 = γ2 =

1
2 (cf. Khalil [1996]). Letting LX V (E) denote the

Lie derivative of V along the vector field X , where X is given
by (7), we have

LX V (E) = (K∗ (t)−K (t))
(

K̇∗ (t)− K̇ (t)
)

+

(I∗ (t)− I (t))
(

İ∗ (t)− İ (t)
)

(15)

and we substitute (1) and (3) to arrive at

LX V (E) = (K∗ (t)−K (t))
(I∗ (t)− δ ∗ (t)K∗ (t)− I (t)+ δ (t)K (t))+

(I∗ (t)− I (t))
(

(I∗ (t)+ q∗)(r (t)+ δ ∗ (t))−

P∗ (t)G∗ (t)− (I (t)+ q)(r (t)+ δ (t))+P(t)G(t)
)

. (16)

Substituting the feedback (5) under the pinning scheme (11),
(12), (13) yields

LX V (E) = (K∗ (t)−K (t))
(

I∗ (t)− δ ∗ (t)K∗ (t)− I (t)+

K (t)−K∗ (t)− I∗ (t)+ I (t)+ δ ∗ (t)K∗ (t)
)

+

(I∗ (t)− I (t))
(

(I∗ (t)+ q∗)(r (t)+ δ ∗ (t))−P∗ (t)G∗ (t)−

(I (t)+ q)(r (t)+ δ (t))+
P∗ (t)G∗ (t)+ (I (t)+ q)(r (t)+ δ (t)− 1)−

(I∗ (t)+ q∗) (r (t)+ δ ∗ (t)− 1)+ q− q∗
)

.

(17)

Simplifying, the latter is just

LX V (E) =−(K∗ (t)−K (t))2 − (I∗ (t)− I (t))2
, (18)

which satisfies LX V (E) ≤ −γ3 ‖E‖σ with γ3 = 1 (cf. Khalil
[1996]). According to Lyapunov’s direct method, hence, the
origin of (7) is uniformly exponentially stable. �

3.2 Choosing Production Quantity and Wage

For the proposed pinning scheme, δ and G have to be chosen
subject to formulæ (11) and (12), respectively. While δ is
a decision variable, G results indirectly from the production
quantity F according to

G =
∂

∂K
F

(

∂
∂L

F

)−1

, (19)

where
K (t)
L(t)

=

(

∂
∂L

F

)−1(W (t)
P(t)

)

, (20)

and W is the wage. Therein, F is often assumed to be homoge-
neous of degree one, i.e. of form

F (t,K,L) = α (t)K +β (t)L, (21)

where β is determined by the labor efficiency (which we cannot
influence) and α is typically determined by production planning
(which we can influence). Also, the wage W can be chosen up
to a certain degree. We would thus want to design α and W ,

such that we arrive at a function F that lets G satisfy (12). For
doing so, we take the production planning formula

α (t) = P∗ (t)G∗ (t)+ (I (t)+ q)(r (t)+ δ (t)− 1)−
(I∗ (t)+ q∗)(r (t)+ δ ∗ (t)− 1)+ q− q∗ (22)

and the formula

W (t) =
K (t)P2 (t)

L(t)
(23)

to determine the wage.

Claim 3. If α and W are chosen subject to formulæ (22) and
(23), then G satisfies (12).

Proof. Taking (21), then
(

∂
∂L F

)−1
= 1

β (t) . Hence, we have

W (t) =
K (t)P(t)β (t)

L(t)
(24)

for the wage, according to (20). Equating with (23), we see that
β (t) = P(t) . (25)

For G, we have

G(t) =
α (t)
β (t)

(26)

when we solve (19) with (21) at hand. Substituting (22) and
(25) into (26), we arrive at

G(t) =
1

P(t)

(

P∗ (t)G∗ (t)+ (I (t)+ q)(r (t)+ δ (t)− 1)−

(I∗ (t)+ q∗)(r (t)+ δ ∗ (t)− 1)+ q− q∗
)

,

(27)

which agrees with (12). �

4. DISCUSSION

We first represent the proposed controller as a classical feed-
back interconnection and interpret its elements accordingly.
The feedback interconnection is depicted in Fig. 1. Therein, one
can see that (1) serves as a (pre)filter or as a reference whereas
(3) is the plant. With this point of view, it is possible to apply
the internal model principle for synchronization to interpret our
results (cf. Wieland et al. [2013]). In practice, however, one
would have to construct a suitable observer to reconstruct K∗,
I∗, P∗, and δ ∗. The block containing (5), (11), (12), and (13) is
both, the computation of the error and the controller itself. The
signals K, I, P, and δ are fed back. (22) and (23) can either be
seen as a separate controller or as the inner part of a cascade,
depending on where we draw our system boundaries.

δ ∗,G∗

(1)
K∗, I∗,P∗,δ ∗

(5),(11)-(13)
δ ,G

(3)

K, I,P,δ

(22),(23)

F,W

Fig. 1. Systems (1) and (3) and the feedback (5) under pinning
scheme (11), (12), (13) together with α and W chosen
subject to formulæ (22) and (23), depicted as a classical
feedback interconnection.

We now focus on the interpretation of the derived control laws
themselves.
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Taking a look at (11), we find that the percentage of capital
stock taken as replacement investment δ approaches 1 if the
capital stock K approaches infinity, i.e. for very large capi-
tal stocks, one takes the entire capital stock as replacement
investment. Moreover, as (δ ∗− 1)K∗ grows, δ grows, i.e. as
the competing company increases replacement investment, one
increases replacement investment as well. However, if δ ∗ at-
tains the value 1, the value vanishes. The remaining influence
is a diffusive coupling known from classical synchronization
problems (cf. Hale [1997]). In particular, as the difference I− I∗

increases, one increases replacement investment.

Now reconsider (22) and its effect on the production quantity
F . It can be inferred that an increasing product price P∗ and an
increasing capital stock K∗ in the competing company forces
one to increase the production quantity. Again, the remaining
influence is diffusive, i.e. based on differences between values
from (1) and (3). In particular, the diffusive term is İ − İ∗

when PG = P∗G∗ = 1, i.e. the difference in time-derivative of
the gross investment rate between the companies affects the
production quantity positively.

Last, consider (23). If larger labor input L results in the same
values for capital stock K and product price P, then the wage
is decreased. This can be understood such that if larger labor
input does not positively influence capital stock and product
price, then the labor efficiency β has decreased. Lower labor
efficiency does thus automatically decrease wage. In contrast,
if the capital stock of the company increases, wages increase as
well, i.e. the employees participate in the success of their labor
input.

Most of the above relations appear natural to us and it is nice
to find that the constructed controller provides effects agreeing
with our intuitive understanding.

Note that the above considerations are purely theoretical. While
δ may be chosen subject to (11), we do neither expect the wage
to be chosen precisely according to (23), nor the product price
to be chosen precisely according to (25) in practice. Instead,
we aim to derive equations that support the actual choice of
decision variables.

5. NUMERICAL EXAMPLES

To illustrate the effects of the proposed control scheme and to
validate our claims, we simulate four case studies numerically.

We discuss two cases where the dynamics of (1) and (3) are
decoupled, i.e. the classical case, and two cases where the
dynamics of (1) and (3) are coupled according to (5), (11), (12),
(13).

In all of the scenarios, we choose the initial conditions K∗
0 = 15

and I∗0 = 4 for (1), and the initial conditions K0 = 1 and I0 = 2
for (3). The differential equations are solved in MATLAB using
ode45.

Case 1 (δ ∗ = 0, G∗ = 5, δ = 1, G = 5). In the first scenario, we
choose constant values for δ ∗, G∗, δ , and G, i.e. a feedforward
control. The integral curves of (1) and (3) are plotted in the
upper left of Fig. 2. The company (1) is driven by a conservative
strategy and constantly increases capital stock at a low rate. The
start-up (3) chooses a risky strategy that provides increasing
capital stock in the beginning, but then lets the capital stock go
to zero asymptotically until bankruptcy.

Case 2 (δ ∗ = 0, G∗ = 5, δ and G subject to (5), (11), (12), (13)).
In the second scenario, we choose constant values for δ ∗, G∗,
i.e. a feedforward control. The integral curves of (1) and (3) are
plotted in the upper right of Fig. 2. Company (1) is driven by
a conservative strategy and constantly increases capital stock at
a low rate. The start-up (3) chooses the proposed control law
(5), (11), (12), (13) and thus approaches the capital stock of
company (1) exponentially, leading to capital stock growth

Case 3 (δ ∗ = 0, G∗ = 5, δ =−0.5, G= 5). In the third scenario,
we choose constant values for δ ∗, G∗, δ , and G, i.e. a feedfor-
ward control. The integral curves of (1) and (3) are plotted in
the lower left of Fig. 2. Company (1) is driven by a conser-
vative strategy and constantly increases capital stock at a low
rate. The start-up chooses negative replacement investment (i.e.
e.g. selling of machinery) and thus constantly increases capital
stock until it eventually outperforms (1). Note that this scenario
is not realistic as no company has infinite machinery to sell
(cf. Feldstein and Rothschild [1974]). However, it illustrates
that the proposed control law (5), (11), (12), (13) discussed in
Case 2 may provide a performance worse than the optimum.
In other words, in almost all cases it is possible to find open-
loop controls that achieve better performance than the proposed
control law (5), (11), (12), (13). Yet, with the proposed control
law, one introduces feedback to the system and is thus capable
of reacting to disturbances and uncertainties.

Case 4 (δ ∗ = 0.3, G∗ = 5, δ and G subject to (5), (11), (12),
(13)). In the fourth scenario, we choose constant values for δ ∗,
G∗, i.e. a feedforward control. The integral curves of (1) and (3)
are plotted in the lower right of Fig. 2. Company (1) is driven by
a risky strategy that lets its capital stock decay asymptotically.
The start-up (3) chooses the proposed control law (5), (11),
(12), (13) and thus approaches the capital stock of company (1)
exponentially, leading to capital stock growth in the beginning,
but eventually lets capital stock decay asymptotically. This
disadvantage of the proposed control strategy could be coped
with by using the average of multiple companies as a reference.
In this fashion, one could increase robustness against capital
stock decay of single companies.

0 1 2 3 4 5
0

5

10

15

K
,
K
∗

0 1 2 3 4 5
0

5

10

15

0 1 2 3 4 5
0

5

10

15

t

K
,
K
∗

0 1 2 3 4 5
0

5

10

15

t

Fig. 2. Integral curves K (t) (—–) and K∗ (t) (- - -) for systems
(1) and (3) under different choices of δ and G. Upper left:
δ ∗ = 0, G∗ = 5, δ = 1, G = 5. Upper right: δ ∗ = 0, G∗ = 5,
δ and G subject to (5), (11), (12), (13). Lower left: δ ∗ = 0,
G∗ = 5, δ = −0.5, G = 5. Lower right: δ ∗ = 0.3, G∗ = 5,
δ and G subject to (5), (11), (12), (13).

We have illustrated that our control law is not optimal in any
sense. However, it introduces feedback into the system. If we
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choose to apply the control law, we restrict our performance to
the performance of the company (1). Even more, if the perfor-
mance of the company (1) deteriorates, our performance will do
so, too. In the case where the company (1) pursues a conserva-
tive strategy, our control law provided a good performance for
capital growth.

6. A POSSIBLE EXTENSION TO COPE WITH
UNCERTAINTIES

We now want to consider a setup where our estimates (or
measurements) of K∗, I∗, P∗, and δ ∗ are incorrect or somewhat
imprecise. That is, we can only access the perturbed (or uncer-
tain) signals K∗+ K̃ = K′ (t), I∗+ Ĩ = I′ (t), P∗+ P̃= P′ (t), and
δ ∗+ δ̃ = δ ′ (t). Therefore, Instead of (11) and (12), consider

C1
(

K′ (t) , I′ (t) ,P′ (t) ,δ ′ (t)
)

=

1
K (t)

(

I (t)− I′ (t)+ δ ′ (t)K′ (t)− k1
(

K′ (t)−K (t)
))

(28)

C2
(

K′ (t) , I′ (t) ,P′ (t) ,δ ′ (t)
)

=

1
P(t)

(

(I (t)+ q(t))(r (t)+ δ (t))−
(

I′ (t)+ q′ (t)
)(

r (t)+ δ ′ (t)
)

+

P′ (t)G′ (t)− k2
(

I′ (t)− I (t)
))

(29)

with k1, k2 > 0. When k1 = k2 = 1 and K̃ = Ĩ = P̃ = δ̃ = 0,
this just equals (11) and (12) modulo some arithmetics. We can
interpret the tuple (k1,k2) as a gain for the controller. If K̃, Ĩ,
P̃, and δ̃ are not equal to zero, E does not converge to zero
as time approaches infinity. However, we are able to impose
an arbitrarily small positive ultimate bound on E by suitable
choice of (k1,k2).

In the following, let L∞ denote L∞ = { f : R → R|∃c ∈ R :
| f (x) |< c∀x ∈R

+}.

Claim 4. Consider the systems (1) and (3) and the feedback (5)
under pinning scheme (28), (29), (13). If K̃, Ĩ, P̃, δ̃ , q̃, K∗, I∗,
P∗, δ ∗, q∗, K, I, P, δ , q ∈L∞, then for every ξ > 0, there exists
a tuple (k1,k2) such that E is ultimately exponentially bounded
by ‖E (t)‖ ≤ ξ .

Proof. Define the Lyapunov function candidate

V (E) =
1
2

E⊤E (30)

and repeat the first steps from the proof of Claim 2 until (16).
Then, substitute the feedback (5) under pinning scheme (28),
(29), (13) into the Lie derivative of V along X to have

LX V (E) = (K∗ (t)−K (t))
(

I∗ (t)− δ ∗ (t)K∗ (t)−

I′ (t)+ δ ′ (t)K′ (t)− k1
(

K′ (t)−K (t)
))

+

(I∗ (t)− I (t))
(

(I∗ (t)+ q∗ (t))(r (t)+ δ ∗ (t))−P∗ (t)G∗ (t)−

(I (t)+ q(t))(r (t)+ δ (t))+ (I (t)+ q(t)) (r (t)+ δ (t))−
(

I′ (t)+ q′ (t)
)(

r (t)+ δ ′ (t)
)

+P′ (t)G′ (t)− k2
(

I′ (t)− I (t)
))

.

(31)

Next, we replace K′ by K∗+ K̃ and I′ by I∗+ Ĩ. Thereafter, we
arrive at

LX V (E) = (K∗ (t)−K (t))
(

I∗ (t)− δ ∗ (t)K∗ (t)−

I′ (t)+ δ ′ (t)K′ (t)− k1K̃ (t)
)

+

(I∗ (t)− I (t))
(

(I∗ (t)+ q∗ (t)) (r (t)+ δ ∗ (t))−P∗ (t)G∗ (t)−

·· ·

· · · (I (t)+ q(t)) (r (t)+ δ (t))+ (I (t)+ q(t)) (r (t)+ δ (t))−
(

I′ (t)+ q′ (t)
)(

r (t)+ δ ′ (t)
)

+P′ (t)G′ (t)− k2Ĩ (t)
)

+

−k1 (K
∗ (t)−K (t))2 − k2 (I

∗ (t)− I (t))2
.

(32)

Now, using the L∞-property of the signals, we can find overes-
timates ζ1, ζ2 > 0 such that

LX V (E)≤−k1 (K
∗ (t)−K (t))2 − k2 (I

∗ (t)− I (t))2+

|K∗ (t)−K (t) |ζ1 + |I∗ (t)− I (t) |ζ2. (33)

Introducing θ1, θ2 ∈ (0,1), we can instead write

LX V (E)≤−k1 (1−θ1)(K
∗ (t)−K (t))2−

k2 (1−θ2)(I
∗ (t)− I (t))2 − k1θ1 (K

∗ (t)−K (t))2

−k2θ2 (I
∗ (t)− I (t))2 + |K∗ (t)−K (t) |ζ1 + |I∗ (t)− I (t) |ζ2.

(34)

From the latter relation, we can see that

−k1θ1 (K
∗ (t)−K (t))2 − k2θ2 (I

∗ (t)− I (t))2 +

|K∗ (t)−K (t) |ζ1 + |I∗ (t)− I (t) |ζ2 ≤ 0 (35)

implies LX V (E)≤−γ3‖E‖σ with γ3 = min(k1,k2). Condition
(35) holds, if

|K∗ (t)−K (t) |ζ1 ≤ k1θ1 (K
∗ (t)−K (t))2

,

|I∗ (t)− I (t) |ζ2 ≤ k2θ2 (I
∗ (t)− I (t))2 (36)

hold true. This can be simplified to

ζ1

k1θ1
≤ |K∗ (t)−K (t) |,

ζ2

k2θ2
≤ |I∗ (t)− I (t) |. (37)

If thus E exceeds the bounds provided by (37), we have
LX V (E) ≤ −γ3‖E‖σ with γ3 = min(k1,k2). Therefore, the
bounds provided by (37) form an attractive, invariant set. More-
over, the bounds can be shrunken arbitrarily by appropriate
choice of the tuple k1 and k2, which proves the assertion. �

The existence of (k1,k2) for every ξ > 0 is referred to as
practical stability of E at the origin. In this light, the latter
result bares similarities with the results obtained for practicaly
synchonization by Montenbruck et al. [2013a,b]. Thus, we
know that we can render the influence of the uncertainties
arbitrarily small if we tune our gains up high enough. We want
to illustrate this on an example.

Therefore, consider the setup with δ ∗ = 0, G∗ = 5 of Cases 1-3
from previous section. We introduce bounded uncertainties of
random type. In particular, we set K̃ = 10rand, Ĩ = 5rand,
P̃ = 3rand, and δ̃ = 2rand, where rand denotes a function
generating a random variable from the interval [−1,1] at every
time step. We simulate this scenario using the feedback (5)
under pinning scheme (28), (29), (13) at two different gains,
one of which is (k1,k2) = (0.5,0.5), and one of which is
(k1,k2) = (3,3). For both cases, the integral curves of (1) and
(3) are plotted in Fig. 3.

Case 1 ((k1,k2) = (0.5,0.5)). In the first scenario, we choose
control gains lower than the nominal gains (1,1). The integral
curves of (1) and (3) are plotted in the left of Fig. 3. The
company (1) is driven by a conservative strategy and constantly
increases capital stock at a low rate. The start-up (3) receives
uncertain measurements of the states of (1) but is capable of
increasing capital stock and converging into an ξ -neighborhood
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Fig. 3. Integral curves K (t) (—–) and K∗ (t) (- - -) for systems
(1) and (3) subject to the feedback (5) under pinning
scheme (28), (29), (13) for different choices of control
gains (k1,k2) and random disturbances K̃, Ĩ, P̃, δ̃ ∈ L∞.
Left: (k1,k2) = (0.5,0.5). Right: (k1,k2) = (3,3).

of K∗, that appears to be large when compared to the magnitude
of capital stock.

Case 2 ((k1,k2) = (3,3)). In the second scenario, we choose
control gains higher than the nominal gains (1,1). The integral
curves of (1) and (3) are plotted in the right of Fig. 3. The
company (1) is driven by a conservative strategy and constantly
increases capital stock at a low rate. The start-up (3) receives
uncertain measurements of the states of (1) but is capable of
increasing capital stock and converging into an ξ -neighborhood
of K∗, that appears to be small when compared to the magnitude
of capital stock.

We have illustrated that the proposed control scheme is, by
construction, able to cope with uncertainties. Even in presence
of inexact measurements of the states of (1), our company may
practically stabilize the error E at the origin. That is, if the
uncertainties and the states remain bounded (in the L∞-sense),
for any arbitrarily small but positive upper bound ξ , we can
choose control gains (k1,k2) such that the error E is ultimately
bounded by ξ . In the simulated scenarios, we were able to cope
with relatively large uncertainties at comparatively low gains.

7. CONCLUSIONS

Using the the model of a rationally managed firm in a compet-
itive industry proposed by Gould [1968], we set up a scenario
of two competing companies, one of which was assumed to be
well-established, well-running and one of which was assumed
to be a start-up, whose point of view we took. Instead of using
the model to derive optimal (possibly open-loop) inputs, we
decided to construct controllers that force the capital stock and
gross investment rate of our company to converge to the capital
stock and gross investment rate of the other company, therefore
letting the other company define our desired performance. By
exploiting the QUAD property of the vector field of the underly-
ing model, we were able to construct a pinning controller that
exponentially stabilized the difference between the companies
at the origin. Thereafter, we showed how to choose production
quantity and wage such that our control law can be realized. We
consequently illustrated possible advantages and disadvantages
of the proposed approach in numerical examples. It turned out
that the proposed control law is disadvantageous if the capital
stock of the well-established company decays. This may be
coped with by using the average of multiple companies as a
reference. Last, we described how it is possible to cope with
uncertainties in the described setting, attesting the practicality
of the control law.
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