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Abstract: This paper studies a formation control problem for nonlinear multi-agent systems;
specifically non-holonomic vehicles represented as linear parameter-varying (LPV) models are
of interest here. The objective of this study is twofold. First, we demonstrate the applicability of
a novel approach to distributed control for LPV decomposable systems (Hoffmann et al., 2013).
Second, we investigate different LPV representations of non-holonomic vehicles. We consider
a group of agents in a leader-follower configuration which communicate through a directed
time-varying but diagonalizable interconnection topology, where follower vehicles must achieve
a desired formation and track the path determined by the leader agent. In addition, the leader
vehicle is equipped with an LPV flatness-based controller to track a reference trajectory. The
problem is formulated in terms of linear fractional transformations (LFT) for LPV systems with
the objective of minimizing the closed-loop induced L2 gain. Simulation results with a formation
of non-holonomic discs illustrate the proposed approach.
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1. INTRODUCTION

Swarm robotics has attracted considerable attention from
the control engineering community. Possible applications
areas are terrain recognition, disaster area exploration,
zone surveillance etc. At the same time, decentralized
cooperative vehicle control is currently an active research
area with many recent advances; and it is of interest here,
since the framework it offers, matches at many levels the
real scenario of a group of vehicles acting together.

Mobile robots are typically subject to non-holonomic con-
straints, e.g. wheeled mobile robots, fixed-wing aircraft
etc. Here we illustrate a novel apporach to formation
control for such robots with the example of wheeled mobile
robots, represented by a non-holonomic disk. Difficulty
arises from its underactuated nature, which is a direct
consequence of its non-holonomic characteristic. Differ-
ent control techniques have shown to perform fairly well
in different scenarios, either individually (e.g. Lee et al.
(2001), Chen et al. (2009), Shojaei and Shahri (2012))
or as a group (e.g. Zhai et al. (2010), Sadowska and
Huijberts (2013), Liu and Jiang (2013)). However, most
of the techniques proposed in the literature are purely
non-linear, where the problem often is to find a suitable
Lyapunov function, which is not a straightforward task.
As a consequence, no performance guarantees are offered.

In the light of LPV techniques, e.g. Scherer (2001), which
today are mature and have proved to be reliable in prac-
tical applications, e.g. Gonzalez et al. (2013), it seems
natural to consider the LPV framework for this non-linear
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problem. Few approaches have cast non-holonomic sys-
tems (not necessarily mobile robots) into LPV models, e.g.
Shih and Jeng (1999), dos Reis et al. (2005), Andreo et al.
(2009). The strategy presented in this paper makes use of
different LPV models, which despite of the conservatism
they inherently carry, are attractive for several reasons.

Recently, a novel approach has been proposed in the
framework of distributed control for decomposable LPV
systems (Hoffmann et al., 2013). This methodology can be
used to tackle distributed control problems for non-linear
systems modeled as LPV-LFT systems, where stability
and performance guarantees are ensured for switching
and undirected topologies. Thus, strictly speaking these
policies are not applicable to directed topologies; this issue
will be discussed. This methodology is exploited here and
implemented in simulation studies.

To the authors’ knowledge, only a single LPV forma-
tion control method for non-holonomic vehicles has been
proposed (see Yang et al. (2006)). In there, a polytopic
LPV model is obtained via a linearisation in discrete time
whereas the control problem is solved with a predictive
control technique. Here, the formation control problem
is tackled without linearising, in continuous time and by
employing LPV-LFT models.

The paper is organized as follows. In Section 2, LPV
representations are derived for a non-holonomic vehicle.
In Section 3, a brief review of distributed control for
decomposable LPV systems is provided, based on that a
formation controller is designed. An LPV flatness-based
controller for the leader vehicle is presented in 4. Simu-
lation results are shown in Section 5. Finally, Section 6
concludes the paper.
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1.1 Notation

Standard notation is used throughout the paper. A di-
agonalizable time-varying Laplacian matrix, representing
the interconnection topology of the multi-agent system, is
denoted L (t)∈DN , where DN is the subset of diagonaliz-
able real matrices of dimension N×N and its eigenvalues
are λi(t)∈λ=[λ, λ̄] ∀t and i∈ [1, N ]. An identity matrix of
dimension n is denoted by In. The notation M>0 (M<0)
means a matrix is positive (negative) definite. Time de-
pendence is often dropped, e.g. θ=θ(t). An upper LFT is

denoted by ∆⋆
[
M11 M12

M21 M22

]

=M22+M21∆(I−M11∆)−1M12.

1.2 Problem Description

Consider a leader-follower multi-agent setting, where
N non-holonomic agents communicate through a time-
varying, communication graph with diagonalizable Lapla-
cian L (t). Agents are labeled with i = 1 . . .N , where
i = 1 stands for the leader agent and i = 2 . . .N for
the follower agents. The problem is twofold. (Problem 1)
Follower agents must converge to, and attain a geometric
formation specified by pf = [xf1 yf1 . . . xfN yfN ]

T
, from any

initial position and in the presence of disturbances. (Prob-

lem 2) Given a reference path Γr=[xr(t) yr(t) φr(t)]
T, the

leader agent must track this path.

2. LPV REPRESENTATIONS OF A
NON-HOLONOMIC VEHICLE

As an illustrative example of mobile robots subject to
non-holonomic constraints, this section describes the kine-
matic model and possible LPV representations of a non-
holonomic disk. It is well known, e.g. Lee et al. (2001),
that a mobile robot can be represented by the kinematic
equations of a non-holonomic disk (Fig. 1a)

ẋ = v cosφ ẏ = v sinφ φ̇ = ω, (1)

where the states (x, y, φ) represent the center position and
orientation of the disk on the Cartesian plane, while the
inputs (v, ω) stand for the forward and angular velocities.
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(b) Top view with distance L.

Fig. 1. A non-holonomic rolling disk.

The trajectories along the state space of the disk satisfy
the non-holonomic constraint

ẋ sinφ− ẏ cosφ = 0, (2)

which basically states that motion is only allowed along
the direction of its forward velocity, i.e. lateral motion is
impossible for system (1). Note that if disturbances are
introduced, such a constraint can be violated.

The underactuated nature of the plant is a direct conse-
quence of the non-holonomic constraint (2). For this class

of systems, the number of inputs equals the number of
degrees-of-freedom minus the number of non-holonomic
constraints, i.e. 2= 3−1. It is important to mention that
despite of this constraint the whole state space is still
reachable, only the motion to reach a point is restricted.

2.1 LPV Representation (Follower Agents)

The non-linear equations (1) can be directly represented
by an LPV model just by employing φ as the scheduling
signal. However, a key coupling is lost, since the input
ω does not influence any more the position (x, y), i.e.
v simply becomes a parameter-dependent input signal.
Moreover, since the trigonometric terms in an LFT repre-
sentation are not rational, φ can not be used a scheduling
parameter. By employing the trigonometric terms as LFT
parameters, conservatism is introduced (as the parameter
space covers a complete square, instead of the unit circle
contour), which easily renders the associated LMIs infea-
sible. As will be shown later, a reduced range of φ can
alleviate this problem.

A slightly modified representation of system (1) will be
used (Lawton et al., 2003). The difference lies in the
fact that, instead of (x, y), a point (xL, yL) ahead of the
disk, separated by a fixed and known distance L, is to be
maneuvered (Fig. 1b). The kinematic equations associated
with this point are:

ẋL = v cosφ− ωL sinφ
ẏL = v sinφ+ ωL cosφ

φ̇ = ω.

(3)

Notice that the states (xL, yL) are now influenced directly
by the angular velocity ω. The complexity of the system
has been reduced. As an example, imagine it is desired to
slightly move the point of interest towards the left. System
(1) requires both input signals to achieve such a behaviour,
while system (3) requires only ω to be slightly positive.

The non-holonomic behavior is still present; here given by
the non-integrable constraint

ẋL sinφ− ẏL cosφ+ Lω = 0. (4)

System (3) still contains trigonometric terms, which, as
mentioned before, can lead to infeasibility. Therefore the
coordinate transformation

Tφ =

[
cosφ sinφ 0

− sinφ cosφ 0
0 0 1

]

(5)

is introduced. Transformation (5) provides a more appro-
priate representation. It rotates the reference system x-y
counter-clockwise by a magnitude of φ radians to generate
r-q (Fig. 1b). After it is applied to system (3), it yields

ṙ = v + ωq
q̇ = ωL− ωr

φ̇ = ω .

(6)

The transformed system shows a clear advantage over the
original one. The initial difficulties are not present any
more, i.e. the couplings of the transformed system can
easily be preserved by an adequate LPV representation
and the affine dependence on the variables allows a non-
conservative LFT representation of the system.

At this stage, attention is restricted to the position (r, q),
i.e. the first 2 equations in (6); orientation φ is disregarded.
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The reasoning is as follows; since the objective is to achieve
a geometric formation, only consensus in (r, q) is required.
Additionally, if a leader agent is to be followed (non-static
scenario), the disks will orientate themselves towards the
leader, just by attaining the formation relative to the
moving leader, i.e. consensus in φ is unavoidable. This will
become clear in Section 5.

An LPV system D(θ) representing the (r, q) dynamics is
[

ṙ
q̇

]

=

[

0 ω
−ω 0

] [

r
q

]

+

[

1 0
0 L

] [

v
ω

]

(7)

A standard LFT-LPV model of system (7) can be derived
by choosing ω as the scheduling parameter, i.e. θ = ω,
and ω ∈ [−5, 5]. This representation will only be used to
solve Problem 1. Also, notice the importance of L 6=0, else
controllability of q is degraded.

2.2 LPV Error Dynamics (Leader Agent)

The leader agent is supposed to track a reference trajec-
tory, thus considering the error dynamics of the system will
be helpful. A linearisation of such an error model will be
used to design an LPV controller, which brings the leader
back to its desired path when disturbances are present.

Consider system (1) and a reference disk governed by

ẋr = vr cosφr ẏr = vr sinφr φ̇r = ωr. (8)

Error signals for states and inputs are

ex=x−xr ey=y−yr eφ=φ−φr ev=v−vr eω=ω−ωr,

with e = [ex ey eφ]
T, eu = [ev eω]

T the error dynamics are
ė = f(e, ue, vr, φr), where

ėx = (ev+vr) cos(eφ+φr)−vr cosφr

ėy = (ev+vr) sin(eφ+φr)− vr sinφr

ėφ = ω − ωr = eω.

An LPV model H(θ) could be derived from these non-
linear equations, which describes the full error dynamics.
However, a Jacobian linearisation is preferred (about e=0,
eu=0). This yields a state space representation

ė ≈ A(t)e +B(t)eu,

where A(t) =
∂f

∂e

∣
∣
∣
∣
e=0
eu=0

and B(t) =
∂f

∂eu

∣
∣
∣
∣
e=0
eu=0

, leading to

[
ėx
ėy
ėφ

]

≈

[
0 0 −vr sinφr
0 0 vr cosφr
0 0 0

][
ex
ey
eφ

]

+

[
cosφr 0
sinφr 0
0 1

][

ev
eω

]

. (9)

Since it is intended to bring the disk to the path Γr, the
linearized error dynamics of system (9) will be stabilized
by an LPV controller, that drives the error between the
actual state and the reference state back to 0.

The model H(θ) in equation (9) can be cast into an stan-
dard LPV-LFT system by employing θ=[cosφr sinφr vr]

T

as the scheduling parameters. A controller can be designed
to stabilize the system about reference trajectories, which
are only restricted to the specified parameter space. The
assumed range of the parameters is given by φr∈π/10[1, 9]
and vr∈ [−1, 1].

3. FORMATION CONTROL (PROBLEM 1)

3.1 Distributed Control of Decomposable LPV Systems

In this section we provide a very brief review of recent
results on distributed control for decomposable LPV sys-

tems, on which the approach proposed here is based. For
a complete description, readers are referred to Hoffmann
et al. (2013).

In the framework of decomposable systems (Massioni and

Verhaegen, 2008), a matrix M̆ ∈ R
Nm×Nn is said to be

decomposable (d), if it can be represented as M̆ = IN ⊗
Md+L⊗M i, where L is an interconnection (i) matrix. We
call an LPV system decomposable, if its system matrices
are decomposable, w.r.t. the same interconnection matrix.

Note that multi-agent systems are a special case of the
decomposable systems framework. In this sense, our multi-
agent setting can easily be represented as a decomposable
LPV system just by considering either the output/input
matrices of the plant/controller as decomposable matrices,
respectively. That is, either agents exchange information
at the output stage or controllers exchange information
at the input stage. Then, it is only necessary to set as 0
the corresponding interconnection matrices, e.g. AKi=0 in
ĂK=IN⊗AKd+L ⊗AKi (see below the general case).

Consider N identical LPV systems and associated con-
trollers that communicate through L (t), and together
form the decomposable LPV systems P(Θ) and K(Θ),
respectively,
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ĂK B̆K

Θ B̆K

y

C̆K

Θ D̆K

ΘΘ D̆K

Θy

C̆K

u D̆K

uΘ D̆K

uy












xK

wK

Θ

yP




 ,

wK

Θ = ΘKzK

Θ
︸ ︷︷ ︸

K(Θ)

where all signals and matrices are of appropriate dimen-
sions. The plant parameter block ΘP = diag(ΘP

1 . . .Θ
P

N)
contains the scheduling parameters θi(t) according to Θ

P

i =
(θi1Ir1 . . . θinθ

Irnθ
), where θi = [θi1 . . . θinθ

]T ∈ θ ⊂ R
nθ∀t,

and ri denotes the individual parameter repetition. Note
that all N subsystems in the weighted plant P(Θ) are
assumed to have identical dynamics, while their local
scheduling vectors θi can take different values.

The interconnection L (t) in P(Θ) is inherited by K(Θ).
The closed-loop system M(Θ) follows from the inter-
connection (under certain assumptions, (Hoffmann et al.,
2013)) between P(Θ) and K(Θ), and is represented as





ξ̇
zΘ
z



 =





Ă B̆Θ B̆p

C̆Θ D̆ΘΘ D̆Θp

C̆p D̆pΘ D̆pp





[
ξ
wΘ

w

]

,

wΘ = ΘzΘ

(10)

where again all signals and matrices are of appropriate
dimensions. The block Θ=diag(Θ1 . . .ΘN) contains plant
and controller parameters, where Θi=diag (ΘP

i ,Θ
K

i ). It is
not assumed ΘP

i =ΘK

i , however Θ
K

i depends also on θi.

After some transformations (Hoffmann et al., 2013) are
applied to system (10), and since L (t) is symmetric (thus
diagonalizable), it is possible to decompose (10) into N

subsystems of the form Gi(θi)=Θi⋆
[
Gλ

11 G
λ
12

Gλ
21 G

λ
22

]

, with
[
Gλ

11 G
λ
12

Gλ
21 G

λ
22

]

=

[
Gd

11 G
d
12

Gd
21 G

d
22

]

+ λi

[
Gi

11 G
i
12

Gi
21 G

i
22

]

, (11)

where λi is the i-th eigenvalue of L (t). Thus, M(Θ) can
be cast as a single subsystem with LFT dependence on
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Θi, and affine dependence on λi. The following theorem
gives analysis conditions for stability, performance and
robustness (Hoffmann et al., 2013).

Theorem 1. System (10) is stable with induced L2 gain
less than γ, ∀θi∈θ and for symmetric switching interaction
topologies represented by L (t), if there exist X > 0, and
Π=ΠT that satisfy

[
∗
∗

]
T






Π 0 0

0 0X

X 0
0

0 0 -γ 0

0 1/γ










Gλ
11 G

λ
12

I 0

Gλ
21 G

λ
22



 < 0, ∀λi ∈ λ

[ ∗ ]
T

Π

[
I
Θi

]

> 0, ∀θi ∈ θ.

Proof. See Hoffmann et al. (2013). �

Theorem 1 represents an extended and condensed version
of the bounded real lemma for decomposable parameter-
dependent systems where the full block S-procedure
(Scherer, 2001) is exploited. Since the complexity of the
problem is reduced to a single-agent level, the controller
synthesis conditions follow from standard LPV techniques.
To render the problem finite-dimensional, the multiplier Π
must be structured, typically as a D or D-G scaling, e.g.
Wu and Dong (2006).

3.2 Distributed Controller Design

This section presents a solution to Problem 1. Since
Problem 1 and Problem 2 are independent, to this end
it is not assumed that the leader is moving.

Consider N disks of type (7). Absolute position informa-
tion is assumed in system (7), but it becomes relative
after it passes through L (t). That is, availability of global
information is not strictly required, since only relative
information is to be used. In this sense, each disk has
attached a reference system to its center position, and,
due to the transformation Tφ, it is orientated towards
its direction of motion. From this reference system the
position of the neighbour disks is seen.

Since the leader agent does not receive information from
other agents (otherwise it is not a leader), the distributed
formation controller will have no effect on the leader.
Agents are supposed to achieve the formation specified
by the formation reference pf (given with respect to x-y).
Since the leader agent does not receive information, the
formation is relative to it, thus w.l.o.g. xf1 = 0, yf1 = 0.
The objective is to obtain a distributed LPV controller
which performs this task.

D̂(θ)K̂(θ)L̃ (t)

Ŵe(s)

Ŵu(s)

F̂ (s)

zu

ze

w

z

−

p̃f ef

ê v, ω

p d

M(Θ)

Fig. 2. Formation control problem configuration.

The overall system used for the formation control is
shown in Fig. 2, where a mixed sensitivity approach is
proposed to tune the formation error and reduce the
control effort. Where p = [r1 q1 . . . rN qN ]T and p̃f is

the transformed formation reference. The interconnection
error signal passes then through a filter stage (first-order
low pass filter with cutoff frequency at 100 rad/s) that is
necessary to ensure solvability of the problem (Hoffmann
et al., 2013). The objective of this filter is to move the
interconnection L to the states.

All the hatted systems in Fig. 2 are in the form of, e.g.

F̂ (s)=IN⊗F (s), where F (s) represents a single subsystem,
i.e. interconnection between subsystems is only present
trough L (t) (as is typical in multi-agent systems). An

augmented laplacian L̃ (t)=L (t)⊗I2 is defined to match
the signal dimensions.

Theorem (1) provides analysis conditions for the closed
loop system M(θ) at a single-agent level, thus it can
be seen as a standard LPV-LFT problem. Based on
that, the methodology in Scherer (2001) was used to
synthesize a controller at the single-agent level, which
becomes distributed when it is placed at the network level.
Notice that synthesis of this robust control scheme against
changes in the topology needs to consider only the two
extremes of the polytope formed by λ.

Theorem 1 covers only symmetric switching topologies,
thus rigorously speaking guarantees of stability and per-
formance are lost for directed topologies, which is the case
for a leader-follower setting. However, as will be shown in
Section 5 the formulation approach has been concluded to
be reliable, possibly due to the inherited conservatism.

The following filters were used to tune the sensitivity and
control sensitivity

We = diag(W1, W1) Wu = diag(W2, W2)

W1 =
s/3 + 0.1

s+ 0.001
W2 =

s/5 + 2

s+ 1× 104
.

A constant quadratic Lyapunov function is obtained by
minimizing the induced L2 norm of the mapping from w
to z. The achieved bound was of γ = 36.0.

4. TRAJECTORY TRACKING (PROBLEM 2)

Problem 2 is considered in this section (trajectory tracking
problem). Given a disk modeled as in Eq. (1), and a path

defined by Γr = [xr(t) yr(t) φr(t)]
T
, it is desired that the

actual disk trajectory converges to the given reference, i.e.

lim
t→∞

(x(t), y(t)) = (xr(t), yr(t))

In order to solve the above problem, the configuration
in Fig. 3a is proposed, where an LPV and flat control
combination is used.

Flat
Contr.

Leader
Disk

LPV
Contr.

−

d

v ωvr ωr

ev eω

−e

x y φ

xr yr φr

(a) Flat + LPV control.

H(θ)K(θ)

W̄e(s)

W̄u(s)
zu

ze

− eu

d

e

(b) S/KS mixed sensitivity.

Fig. 3. Control strategy for the leader agent.

The objective of the LPV controller is to ensure robustness
against disturbances. On the other hand, the flat controller
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is intended to provide the appropriate inputs to track the
reference path.

Flat control (see Fliess et al. (1995)) is relatively simple
when proper flat outputs are found. Since there are only
two control inputs, only two flat outputs can be found for
this rolling disk. Here are used

z1 = x, z2 = y.

It is straightforward to show that the following input
signals track any given reference for the above flat outputs

vr =
√

ẋ2
r + ẏ2r , ωr = tan−1 (ẏr/ẋr) . (12)

It is important to mention that the computation of refer-
ence signals depends on several factors, such as initial and
final position and velocity, actuator saturation violations,
etc. The computation of adequate reference signals xr(t)
and yr(t) is out of the scope of this note. It is assumed
that proper reference signals are provided.

The control methodology used to synthesize the LPV con-
troller is well-known and can be found in Scherer (2001).
A classical S/KS mixed sensitivity design is employed
(Fig. 3b) by means of a constant Lyapunov function.
The induced L2 performance obtained is γ = 57.1. The
weighting filter used to shape the sensitivity and control
sensitivity functions are

W̄e = diag(Wex , Wey , Weφ) W̄su = diag(Wev , Weω )

Wex =
s/5 + 0.01

s+ 1×10−4
Wey =

s/5 + 0.01

s+ 1×10−3
Weφ =

s/5 + 0.01

s+ 0.008

Wev = 20
s+ 100

s+ 1×105
Weω = 200

s+ 100

s+ 1×106

5. SIMULATION RESULTS

In this example, a network of N=5 agents is studied. The
agents communicate according to the different topologies
shown in Fig. 4, where an arrow indicates flow of infor-
mation from tail to head. That is, head -agent receives
position of tail -agent. The topology switches randomly
every 4 seconds. Although the communication matrix is
not symmetric it is always assumed to be diagonalizable,
which is the case for (a) to (e). This can be controlled in
simulations, but in real applications one must rely on this
assumption. However, experiments have shown successful
results for non-diagonalizable interaction topologies, which
suggest the approach has some degree of conservatism.
New theoretical results have been obtained in this direc-
tion (Hoffmann et al., 2014).

A standard Laplacian is used to represent the interconnec-
tions in Fig. 4, where λ= [0, 5] ∀t. For formation control
purposes we use the distance L = 0.1, but for reference
tracking, the central position of the leader is used.

11111

22222 33333

44444 55555
(a) (b) (c) (d) (e)

Fig. 4. Leader-follower topologies with 5 vehicles.

The follower agents initially are provided with a square
formation reference, which changes at t=120 s to a line for-

mation reference, given by pf1 =1/2[0 0, -1 1, 1 -1, 1 1, -1 -1]T

and pf2 = 1/4[0 0, 0 1, 0 2, 0 -2, 0 -1]T, respectively. The in-
tended path to be followed by the leader agent, as well
as by the followers, is supposed to be defined to lay in
the parameter range of the scheduling parameters of the
leader vehicle. However, in Fig. 5 one can see how those
parameters evolve for a curved path, and clearly φr violates
the assumption given in Section 4. Symmetry is exploited
and when φr < 0, a rotation of 180 deg is performed, which
leads again φr to range in the assumed parameter space.

0

8

-4 -3

0

0 50 100 150 200
-0.4

0

3 0.5

  

4

0 50 100 150 200 0 50 100 150 200

xr
yr

φr

vr
ωr

Time [s]

Fig. 5. Path parameters of trajectory to track.

Agents start at challenging initial conditions (0, -2, 0),
(2, -1, π/2), (-3, -2, π), (3, -2, -π/2), and (-1, -2, -π/2). More-
over, disturbances are introduced during the evolution of
the trajectory. At time t̂ = 65 s, agent 1 is affected by
dy =−2σ(t− t̂), and at t̂=150 s, agent 4 is perturbed by

dy = dx=−2σ(t− t̂), where σ(t) is the unit step function.
Disturbances are low-pass filtered through (0.01s+ 1)−1.

In Fig. 7 the simulation, which runs for 200 s, is depicted.
Colors are taken from Fig. 4 and the black dot indicates
(xL, yL), while the white dot depicts for (x, y). Some
observations can be made. The effect of the disturbance
on the leader is propagated to the follower through the
interconnection, and in an attempt to keep the formation,
they move in the direction of the disturbance, however
the leader agent quickly returns to the path. On the other
hand, the disturbance introduced to the follower agent 4
is not seen by agent 2. This indicates that at that moment
topology (c) is active. Furthermore, as expected, proper
orientation of the followers disks occurs just by attaining
the formation relative to the leader.

In Fig. 6, we observe in the upper plot that the leader
vehicle successfully converges to the desired path and
effectively rejects disturbances. Additionally, in the lower
plot we conclude that formation is effectively achieved.
The small peaks are due to changes in the topology,
whereas large peaks are caused by the reference change
and disturbance introduction.

An animation is available at
www.tuhh.de/~soam2066/others/Animation_IFAC14.pdf
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Fig. 6. Error signals: leader states and formation.
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Fig. 7. Formation control and reference tracking (solid
black line). Vehicles point towards the black circle.

6. CONCLUSIONS

In this paper a new control strategy for a formation control
and path following problem of a group of non-holonomic
vehicles is presented. The solution of the problem is pro-
posed to be solved in two stages, by separating the leader
from the followers. The main problems are analysed by
considering different LPV models in LFT representation
for the non-holonomic vehicles. The proposed scheme for
formation control only requires a feedback signal contain-
ing a transformed vector position, although knowledge of
the orientation is also required to perform such transfor-
mation. Simulations have shown the successful application
of this approach where the overall system maintains the
formation in the presence of disturbances and changes in
the topology and tracks the desired reference path. The
LPV distributed control synthesis method used, shows
several attractive properties such as being a systematic
design while ensuring a level of performance and stability
as is typical in induced L2 control. Although the results
are promising, stability and performance guarantees are
strictly lost in a leader-follower setting, since the approach
in Hoffmann et al. (2013) is valid only for undirected
switching topologies. The approach proposed here has
been extended in Mendez G. and Werner (2014) based on
Hoffmann et al. (2014), where a second-order consensus
problem is studied for directed and switching topologies
and all guarantees are valid.
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