
A Self-Tuning LQR Approach

Demonstrated on an Inverted Pendulum

Sebastian Trimpe ∗ Alexander Millane ∗∗ Simon Doessegger ∗∗

Raffaello D’Andrea ∗∗

∗ Max Planck Institute for Intelligent Systems, Autonomous Motion
Department, Tübingen, Germany (e-mail: strimpe@tuebingen.mpg.de).
∗∗ Institute for Dynamic Systems and Control, ETH Zurich, Switzerland
(millanea@student.ethz.ch, doessegger.s@gmail.com, rdandrea@ethz.ch).

Abstract: An automatic controller tuning approach is presented that iteratively updates a
linear quadratic regulator (LQR) design such that the resulting controller achieves improved
closed-loop performance. In each iteration, an updated LQR gain is obtained by adjusting the
weighting matrices of the associated quadratic cost. The performance of the resulting controller
(measured in terms of another quadratic cost with fixed weights) is evaluated from experimental
data obtained by testing the controller in closed-loop operation. The weight adjustment occurs
through a stochastic optimization seeking to minimize the experimental cost. Simulation results
of a stochastic linear system show that the self-tuning algorithm can recover optimal performance
despite having imprecise model knowledge. Experiments on an inverted pendulum demonstrate
that the method is effective in improving the system’s balancing performance.

Keywords: linear quadratic control, adaptive control, automatic tuning, balancing systems.

1. INTRODUCTION

The primary purpose of sensor measurements in any feed-
back control system is to provide information about the
state of the dynamic system under control for making
appropriate control decisions. However, sensor data typi-
cally also provides information about the current operating
conditions (such as performance) of the feedback control
system as a whole. Inverted pendulum systems that are
actively kept in balance by a feedback control system
provide a good example: firstly, sensory information about
the pendulum’s state is required for stabilizing the pendu-
lum about its unstable equilibrium. Secondly, the sensor
data reveals how well the control system is doing: large
variations of the pendulum state about the equilibrium
indicate poor balancing performance. In this paper, we
present a self-tuning algorithm that exploits this secondary
use of sensor data by automatically adjusting feedback
gains based on observed performance in experiments.

This work is motivated by the Balancing Cube (see Trimpe
and D’Andrea [2012]), which is a cubic structure being
balanced on one of its corners by six rotating arms, and
essentially represents a 3D multi-body inverted pendulum.
When the cube is balancing, it is not at a perfect standstill,
but exhibits slight motion caused by, for example, sensor
noise or imperfections in the actuation mechanism.

A common way to measure the performance of a control
system is by means of a quadratic cost function such as

J = lim
K→∞

1

K
E

[

∑K−1

k=0
xT
kQxk + uT

kRuk

]

, (1)

with states xk, control inputs uk, weighting matrices Q
and R, and E [·] the expected value. For a linear system

with a known model and perfect state measurements, the
controller that minimizes (1) is the well-known Linear
Quadratic Regulator (LQR), which is a static feedback
controller

uk = Fxk (2)

whose gain matrix F can efficiently be computed from the
system model and the weighting matrices (see Anderson
and Moore [2007], for example). That is, in this ideal
situation, no controller tuning is required.

In practice, however, a system model is typically only
known approximately, and when the gain F is computed
from this approximate model, (2) is no longer the optimal
controller. In this situation, it is desirable to adjust the
controller gain to recover the optimal performance.

The calculation of the LQR gain F depends on (i) the
system model and (ii) the choice of weighting matrices.
Therefore, one has, in principle, two ways of adjusting
the LQR gains: (i) by improving the system model, or
(ii) by modifying the weighting matrices. Approach (i) is
in line with indirect adaptive control, where the adjust-
ment process commonly occurs in two stages: first, model
parameters are identified from sensor data and, second,
the updated model is used to determine a controller, for
example, by solving the LQR problem (see Åström and
Wittenmark [2008], Grimble [1984], Clarke et al. [1985],
for example). In contrast, we pursue a direct approach
according to (ii), where we modify the weighting matrices
directly while leaving the system model unchanged. This
way, a separate system identification step is avoided.

The basic mechanism of the self-tuning LQR approach is as
follows. We introduce a separate set of weighting matrices
Q̄ and R̄, which we use, together with an approximate

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 11281



system model, to compute LQR gains. The performance of
an LQR controller is evaluated by using it in closed-loop
operation on the physical plant and computing the cost
(1) from experimental data. A superordinate optimization
algorithm uses this information to iteratively update Q̄
and R̄ in order to improve the LQR design.

Even though we motivate the self-tuning LQR approach
for the case of a linear process with imprecisely known
parameters, the method may be regarded as a general
approach for automatically tuning static feedback con-
trollers. Essentially, the method can be used whenever
tuning of a controller (2) based on experimental data
is desirable. In addition to the scenario of an imprecise
model, we also discuss the method’s effectiveness in ob-
taining improved static feedback controllers for the case of
imperfect (noisy) state measurements.

Directly tuning the weights of an LQR cost to improve
control performance is also considered by Roberts et al.
[2011], who discuss different parameterizations of feed-
back controllers in the context of reinforcement learn-
ing (one parameterization being through LQR weights).
The authors consider a full parameterization of the LQR
weights, whereas we introduce suitable parameterizations
of the weights to reduce the dimensionality of the learn-
ing/tuning problem. While Roberts et al. [2011] find pa-
rameterization through LQR weights ineffective for im-
proving control performance in their application, we show
in this paper that automatically tuning LQR weights can
be effective indeed: we present a simulation example where
perfect compensation for an imprecise model is achieved
and experiments on an inverted pendulum where balancing
performance improves by about 20% (compared to the
controller designed under the idealizing assumptions of
perfect model knowledge and perfect state measurements).

After introducing notation and summarizing the standard
LQR in the next section as a basis for the development,
the self-tuning LQR algorithm is formalized in Sec. 3.
By means of simulation examples in Sec. 4, we demon-
strate the algorithm’s effectiveness in improving controller
performance for the case of imperfect model knowledge.
Section 5 then presents experimental results of testing the
method on an inverted pendulum system, which represents
a 1D abstraction of the Balancing Cube. The paper con-
cludes with remarks in Sec. 6.

2. NOTATION AND PRELIMINARIES

Var [x] denotes the variance of a vector-valued random
variable x. Where convenient, vectors are expressed as
tuples (v1, v2, . . . ) with dimension and stacking clear from
context. For the data sequence x0, x1, . . . , xK , we write
{xk}

K
k=0, or {xk} if the horizon K is clear from context.

For a symmetric matrix X ∈ R
n×n, we write X > 0 and

X ≥ 0 to mean that X is positive definite and positive
semi-definite, respectively. The trace of a matrix is denoted
by tr(·), and diag(x1, x2, . . . ) denotes the diagonal matrix
with x1, x2, . . . on the diagonal.

Linear Quadratic Regulator (LQR)

Consider the stochastic, linear time-invariant (LTI) system

xk+1 = Axk +Buk + wk, (3)

the static state-feedback controller (2), and the infinite
horizon quadratic cost (1); where xk ∈ R

n is the state;
uk ∈ R

m is the control input; wk ∈ R
n is independent

identically distributed (i.i.d.) process noise with E [wk] = 0
and Var [wk] = Wn; A, B and F are real matrices of
appropriate dimensions; Q ≥ 0 and R > 0 are symmetric
weight matrices; and k ≥ 0 is the discrete-time index. We
generally assume that (A,B) is stabilizable and (A,D)
with Q = DTD is detectable.

For given problem parameters A, B, Wn, Q, and R, the
cost (1) depends on the choice of feedback gain F ; hence,
we often write J(F ) for (1). We denote the quadratic cost
computed over a finite horizon of length K (for example,
from experimental data {xk} and {uk}) by Ĵ = Ĵ(F ); that
is,

Ĵ :=
1

K

∑K−1

k=0
xT
kQxk + uT

kRuk (4)

and J = limK→∞ E [Ĵ ]. If the process (3) is stationary and
the horizon K is long enough, then Ĵ ≈ J .

The controller that minimizes (1) for the system (3) is
the Linear Quadratic Regulator (LQR) given by (2) and a
specific gain F = F ∗ that can readily be computed from
the problem parameters A, B, Q, and R using standard
tools (see Anderson and Moore [2007], for example). For
simplicity, we omit the details of its computation and write

F ∗ = lqr(A,B,Q,R) . (5)

3. SELF-TUNING LQR

In this section, we introduce the controller design problem
and develop the self-tuning LQR approach thereafter.

3.1 Problem Statement

The overall objective is to design a controller for the
stochastic LTI process (3) such that the quadratic cost
(1) is minimized for the situation where the system model
(A,B) is not known, but only an approximate model

Ā ≈ A, B̄ ≈ B (6)

is available for controller design. We refer to (A,B) as the
true system, and to (Ā, B̄) as the nominal model. We first
assume that we have perfect state measurements

yk = xk. (7)

Later, in Sec. 3.4, we address the case of noisy state
measurements. We assume that we have access to data
{yk}, {uk} generated by the true system (3), for example,
from experiments.

The controller that minimizes (1) is the LQR presented in
Sec. 2; that is, the static feedback controller

uk = Fyk (8)

with F = F ∗ as in (5). If the true system (A,B) was
known, we could simply compute this controller. The LQR
gain that is computed with the approximate model (Ā, B̄),

F = F̄ 0 := lqr(Ā, B̄, Q,R), (9)

is, however, not optimal. Though often, the controller (2)
with gain (9) will yield reasonable performance provided
that the discrepancy between (A,B) and (Ā, B̄) is not

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11282



too large. Therefore, (9) serves as the initial design in the
proposed method.

We are interested in developing an automatic tuning
method that systematically improves the initial design
(9) by exploiting experimental data {yk}, {uk} obtained
during closed-loop operation of the system. Ideally, we
wish to recover the optimal cost J∗ = J(F ∗) this way,
despite having an inaccurate system model.

3.2 Self-Tuning Through Variation of LQR Weights

In contrast to system identification-based approaches, we
leave the nominal model (Ā, B̄) unchanged, but modify
the weights used in the LQR design directly in order to
obtain controllers that are superior to the initial design
(9). For this purpose, we introduce the design weights Q̄
and R̄ and compute controller gains as

F = F̄ := lqr(Ā, B̄, Q̄, R̄). (10)

The weights Q̄ and R̄ (which are different from the weights
Q and R in the objective function (1)) essentially param-
eterize the feedback gain matrices F̄ that we consider.
The performance of a candidate controller F̄ in terms of
the objective (1) is evaluated by conducting a closed-loop
experiment and computing the cost from experimental
data {yk}, {uk}. In an iterative procedure, the weights
Q̄ and R̄ that achieve minimal cost are sought.

In order to facilitate a dimensionality reduction of the de-
sign problem, we consider parameterizations of the design
weights Q̄ = Q̄(θ) and R̄ = R̄(θ) by a parameter vector
θ ∈ Θ ⊆ R

p. The space Θ of feasible parameter values is
such that the LQR design (10) is well defined (i.e. Q̄(θ) ≥ 0
and R̄(θ) > 0). With these parameterizations, the design
task can then be formalized as the optimization problem

min
θ∈Θ

Ĵ
(

lqr(Ā, B̄, Q̄(θ), R̄(θ))
)

, (11)

where Ĵ is the finite length approximation (4) of (1).

Since the process (3) is affected by process noise, Ĵ is
a random variable and (11) is a stochastic optimization
problem. In principle, any method for stochastic optimiza-
tion can be used to solve (11). Herein, we use the Simul-
taneous Perturbation Stochastic Approximation (SPSA)
algorithm (presented in the next subsection) as a relatively
straightforward and computationally lightweight way to
address (11). The iterative numerical optimization of (11)
constitutes the self-tuning LQR algorithm: in each opti-
mization step i, the parameter vector θi is updated, which
corresponds to an updated controller gain F̄ i through (10).

Remark 1. We reemphasize that the weights Q and R in
(1) remain unchanged. The weights Q̄ and R̄ solely serve
to compute LQR gains, while (1) with Q and R is used
to evaluate the performance of the obtained controllers.
To emphasize this difference, we refer to Q and R as the
performance weights and to Q̄ and R̄ as the design weights.

Remark 2. In general, one cannot expect to recover the
optimal gain (5) by solving (11) since the minimization in
(11) is constrained, firstly, by parameterizing F̄ with Q̄
and R̄ and, secondly, by parameterizing Q̄ and R̄ with θ.
Parameterizing the controller gain by Q̄ and R̄ is useful
because it guarantees that the obtained gain stabilizes
the nominal system (6). The parameterization of Q̄(θ)
and R̄(θ) by θ is helpful to reduce the dimensionality of

the optimization problem. Section 4 presents an example
where it is indeed possible to recover the optimal gain
despite these parameterizations.

3.3 Stochastic Optimization Algorithm

In this section, we address the optimization problem (11),
which is rewritten using Ĵ(θ) = Ĵ(lqr(Ā, B̄, Q̄(θ), R̄(θ)))
(with slight abuse of notation) as

min
θ∈Θ

Ĵ(θ). (12)

The optimization problem at hand has the following char-
acteristics: the objective function Ĵ(θ) is stochastic; func-
tion evaluations are costly (one evaluation requires an
experiment on the physical system); and no gradient infor-
mation is available. Simultaneous Perturbation Stochastic
Approximation (SPSA) is a stochastic optimization tech-
nique that is suitable for this class of problems (see Spall
[2003]).

SPSA is based on forming approximations of the objective
function gradient ∂Ĵ/∂θ from evaluations of Ĵ and updat-
ing the parameter in negative direction of the approximate
gradient. We apply the SPSA algorithm as in [Spall, 2003,
Cha. 7] to (12). Below, we give a brief summary of the
algorithm; for further details and the theoretical under-
pinnings, the reader is referred to the original reference.

The basic mechanism that underlies the SPSA is the
update equation for the parameter θ:

θi+1 = θi − ai gi(θi), (13)

where θi is the parameter vector at iteration i≥ 0, ai > 0
determines the step size, and gi(θi) is an approxima-
tion of the gradient ∂Ĵ/∂θ at θi (superscript notation is
used throughout for i). The gradient is approximated by
computing the difference quotient at two points that are
perturbations of θi along a random direction:









Ĵ(θi+ci∆i,j)−Ĵ(θi
−ci∆i,j)

2ci∆i,j

1...
Ĵ(θi+ci∆i,j)−Ĵ(θi

−ci∆i,j)

2ci∆i,j
p









=: gi,j(θi), (14)

where ci > 0 controls the step size of the gradient
approximation, and ∆i,j is a random perturbation vector
generated from a symmetric ±1 Bernoulli distribution
(each element ∆i,j

ℓ is either 1 or −1 with probability 0.5).
Thus, the gradient approximation (14) requires two cost
evaluations at θi±ci∆i,j . In order to improve the gradient
approximation, we take the average over ng such gradient
computations; that is, gi(θi) =

∑ng

j=1 g
i,j(θi)/ng. Hence,

one SPSA iteration (13) requires 2ng cost evaluations.

The step size sequences ai and ci decay according to ai =
a/(i+1+ ā)α and ci = c/(i+1)γ , where α, a, γ, c>0, and
ā≥0 are tuning parameters. Practical design guidelines for
their selection (which typically need to be adjusted for the
specific problem) are provided in [Spall, 2003, Sec. 7.5.2].

The constraint θ ∈ Θ in the minimization (12) is dealt
with by projecting θi+1 in (13) to the feasible region Θ if
it lies outside. Similarly, θi ± ci∆i,j in (14) are projected
to the feasible region if necessary before evaluating Ĵ .

We typically initialize the SPSA with θ0 such that Q̄(θ0) =
Q and R̄(θ0) = R; that is, we start with the initial design

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11283



(9). The optimization is terminated after a fixed number
of iterations imax, or when the cost Ĵ does not improve
over a number of iterations.

Remark 3. Notice that the SPSA algorithm does not re-
quire the cost Ĵ to be evaluated at a current iterate θi.
According to (14), Ĵ is only evaluated at random locations
around θi. The 2ng cost evaluations at every iteration
provide a rough indication for Ĵ(θi).

3.4 Noisy State Measurements

In this subsection, we briefly discuss how the self-tuning
LQR approach can be used for the case of noisy state
measurements; that is, where instead of (7),

yk = xk + vk, (15)

with vk ∈ R
n i.i.d. noise with E [vk] = 0 and Var [vk] = Vn.

For this case, the LQR is no longer the optimal controller
(which is given by the combination of the LQR with a
Kalman filter as state estimator, cf. Anderson and Moore
[2007]). Despite not being optimal, a static feedback policy
(2) may still be preferable over a dynamic controller for
ease of implementation and low computational complexity.
The self-tuning LQR approach can again be used to find
improved controller gains. In fact, the approach is helpful
even if the true system model is known, since the gain (5)
does not represent the best static gain for the case of noisy
state measurements (see Sec. 4.5 for further discussion).

The only modification to the self-tuning LQR approach
required for noisy state measurements (15) instead of (7)
is that the empirical cost (4) is evaluated with {yk} instead
of {xk}. That is, Ĵ is redefined as

Ĵ =
1

K

∑K−1

k=0
yTk Qyk + uT

kRuk. (16)

Notice that it does not make a difference whether (1) or

limK→∞
1
K
E [

∑K−1
k=0 yTk Qyk + uT

kRuk] is minimized since

E [yTk Qyk+uT
kRuk] = E [(xk+vk)

TQ(xk+vk)+uT
kRuk] =

E [xT
kQxk +uT

kRuk]+E [vTk Qvk] and E [vTk Qvk] = tr(QVn)
is constant.

3.5 The Complete Algorithm

The complete self-tuning LQR algorithm is summarized
in Alg. 1; it is applicable for both cases of perfect state
measurements (7) and noisy state measurements (15).
Algorithm 1 terminates after a fixed number of iterations
imax; of course, other termination conditions can be used
instead (for example, related to the change of Ĵ). For
clarity, we omitted the projection step in lines 7, 9, and
14, which ensures θ+, θ−, θi+1 ∈ Θ.

4. ILLUSTRATIVE EXAMPLE

We illustrate the self-tuning LQR approach in this section
through simulations, where the experiment in line 20 of
Alg. 1 is replaced by simulations of the system (3). The
simulation results highlight, in particular, the potential
of the self-tuning LQR approach to yield the optimal con-
troller F ∗ despite only having access to a perturbed system
model (Ā, B̄). Furthermore, we illustrate the statistical
properties of the underlying stochastic optimization by
carrying out multiple tuning experiments.

Algorithm 1 Self-tuning LQR.

1: initialize θ0 such that Q̄(θ0) = Q, R̄(θ0) = R
2: for i = 0 to imax−1 do ⊲ imax SPSA iterations
3: ai ← a/(i+ 1 + ā)α

4: ci ← c/(i+ 1)γ

5: for j = 1 to ng do ⊲ ng gradient computations
6: draw ∆ from symmetric ±1 Bernoulli distribution
7: θ+ ← θi + ci∆
8: Ĵ(θ+)← CostEvaluation(θ+)
9: θ− ← θi − ci∆
10: Ĵ(θ−)← CostEvaluation(θ−)
11: gi,j(θi)← Equation (14) ⊲ gradient computation
12: end for

13: gi(θi)← Average(gi,1(θi), . . . , gi,ng (θi))
14: θi+1 ← θi − ai gi(θi)
15: end for

16: LQR design: F̄final ← lqr(Ā, B̄, Q̄(θimax ), R̄(θimax ))
17: return F̄final

Function CostEvaluation(θ)

18: LQR design: F̄ ← lqr(Ā, B̄, Q̄(θ), R̄(θ))
19: update state feedback law (2) with F = F̄
20: perform experiment and record {yk}, {uk}

21: return (
∑K−1

k=0
yT
k
Qyk + uT

k
Ruk)/K

For the simulation study, we use a linearized model of a
torque-actuated single-link inverted pendulum, which can
be regarded as an abstraction of the experimental platform
presented in Sec. 5 (problem parameters such as physical
constants, noise properties, etc. are chosen to represent
the true situation). MATLAB files to run the self-tuning
algorithm for the simulation example of this section are
provided as supplementary files with this paper. 1

4.1 A Single-Link Inverted Pendulum

We consider a simple inverted pendulum given by a point-
mass on a mass-less rod that is linked to the ground
through a frictionless joint with one actuated rotational
degree of freedom (DOF). The linearized dynamics about
the vertical, unstable equilibrium are given by

ẋ(t) =

[

0 1
g
ℓ
0

]

x(t) +

[

0
1

mℓ2

]

u(t), (17)

where x(t) = (ϕ(t), ϕ̇(t)) is the system state (ϕ(t) pendu-
lum angle in rad), u(t) is the torque applied to the pendu-
lum (Nm), m = 5.3 kg is the pendulum mass, ℓ = 0.65m
is its length, and g = 9.81m/s2 is the gravity constant.

We discretize (17) assuming a zero-order hold and sam-
pling time of Ts = 1/100 s to get the true system (3) with

A =

[

1.00 0.01
0.15 1.00

]

, B =

[

0.02
4.47

]

· 10−3. (18)

For the process noise variance, we choose Wn = σ2
nBBT

with σ2
n = 0.001. We first treat the case of perfect state

measurements (7), and the case of noisy measurements
(15) is briefly discussed in Sec. 4.5. For this simulation
study, simulations of (3), (18) yield the system trajectories
{yk}, {uk}, which would be obtained from an experiment
in reality (cf. Alg. 1, l. 20). All simulations are performed
over a time horizon of 300 s, which is significantly larger
than the system’s time constants and representative for
the time horizon used in the experiments in Sec. 5.
1 Download at http://www.cube.ethz.ch/downloads or contact the
first author.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11284



·10−4

θ2 θ1

0
10

20

0
10

20

0.8

1

1.2

1.4

1.6

1.8
·10−4

θ2 θ1

0
10

20

0
10

20

0.8

1

1.2

1.4

1.6

1.8

Fig. 1. Visualization of the cost function Ĵ(θ) for the
simulation example. LEFT: cost at each grid point
evaluated once; RIGHT: cost averaged over 100 eval-
uations.

To reflect the situation in reality, we assume that we do not
have the true model (3), but only a nominal model (6) at
our disposal for designing LQR controllers. We represent
our imperfect knowledge of the true model by reevaluating
(17) with mass and length parameters underestimated by
20%. The numerical values for the nominal model (6) are

Ā =

[

1.00 0.01
0.19 1.00

]

, B̄ =

[

0.04
8.72

]

· 10−3. (19)

We seek to design a state-feedback controller that mini-
mizes the cost (1) with Q = 100 I and R = 1.

4.2 Self-Tuning LQR Design

Next, we choose the design weights Q̄(θ) and R̄(θ), and
the SPSA parameters. For the design weights, we consider
a diagonal structure and choose

Q̄(θ) = diag(100θ1, 100θ2), R̄(θ) = 1 (20)

with θ1 ≥ 0 and θ2 ≥ 0 to ensure Q̄(θ) ≥ 0. Negative
parameter values occurring at ll. 7, 9, 14 of Alg. 1, which
would violate a constraint, are set to a small positive
number. The parameters are initialized as θ0=(1, 1) such
that Q̄(θ0)=Q and R̄(θ0)=R.

The SPSA parameters were chosen according to the design
guidelines referenced in Sec. 3.3; except for the parameter
c, which was adjusted to obtain robust gradient approxi-
mations. We chose ng = 2 and imax = 20, which amount
to 80 cost evaluations for the self-tuning experiment.

4.3 Analysis of the Underlying Optimization Problem

Ideally, we would like the self-tuning LQR approach to
result in the LQR gain and cost that we would obtain
if we knew the true model (18): F ∗ = lqr(A,B,Q,R) =
(−67.48,−19.67) and J∗ = J(F ∗) = 9.454 · 10−5.

Figure 1 visualizes the cost function Ĵ(θ) of the optimiza-
tion (11) with parameterization (20). The graphs were
obtained by uniformly griding the parameter space, com-
puting the controller (10) with (20) for each grid point,
and evaluating the cost (4) from simulation data.

The empirical cost of the initial design (9) is Ĵ1000(θ
0) =

1.23·10−4 (average over 1000 evaluations), which is clearly
suboptimal compared to J∗. The minimum is attained at
θ∗ = (20.61, 2.845) with a cost of Ĵ1000(θ

∗) = 9.455·10−5

and corresponding LQR gain F̄ ∗ = lqr(Ā, B̄, Q̄(θ∗), R̄(θ∗))
= (−67.48,−19.67). That is, the minimum cost and as-
sociated gain match those found with access to the true

model. Hence, in this example, there is the potential to
perfectly recover the optimal LQR controller despite im-
perfect model knowledge by choosing Q̄(θ∗) and R̄(θ∗)
in the design (10). Due to the stochastic nature of the
optimization problem (cf. Fig. 1), however, we cannot
expect the optimizer to arrive at the optimal cost J∗ in
a finite number of iterations. Nonetheless, the stochastic
optimizer typically yields a significant improvement over
the initial design as the next subsection shows.

4.4 Self-Tuning Results

We executed the self-tuning LQR algorithm 1000 times
on the problem of Sec. 4.1 with the algorithm settings
described in 4.2. In particular, the algorithm was ter-
minated after a fixed number of imax = 20 iterations.
In order to evaluate the performance of each resulting
controller F̄ final = F̄ 20, we simulated each one 100 times
in closed-loop on the true system (3) and averaged the
obtained costs Ĵ . A histogram of the resulting empirical
costs Ĵ100(θ

20) for the 1000 controllers is given in Fig. 2.

The results show that the self-tuning algorithm resulted in
improved controllers for each run. The median of the 1000
runs is 9.888 · 10−5; that is, in 50% of the experiments we
were within 5% of the optimal cost.

Clearly, we expect the self-tuning algorithm to yield better
results if we are willing to spend more effort in terms of cost
evaluations. For example, for imax=50 and ng=10 (1000
cost evaluations), and all other parameters unchanged, the
median of the final cost Ĵ100(θ

50) is 9.697 · 10−5.

4.5 Noisy State Measurements

If one has noisy state measurements (i.e. (15) instead of
(7)), static state feedback does no longer represent the op-
timal controller structure, but it may still be preferable for
practical considerations. In this situation, the self-tuning
approach can be used to find an improved gain F over the
LQR design (5). This is true even for the hypothetical case
of a perfect model (Ā = A and B̄ = B), since the LQR
design is suboptimal due to imperfect state measurements.
In practice, one typically has a combination of both imper-
fect model knowledge and imperfect state measurements
such as in the experiment discussed in the next section.

5. EXPERIMENTS ON AN INVERTED PENDULUM

We used the inverted pendulum in Fig. 3 as a testbed
to demonstrate the performance of the self-tuning LQR
algorithm in an experimental setting.

C
o
u
n
ts

Ĵ100(θ20)
×10−4

0.95 1 1.05 1.1 1.15 1.2 1.25
0

50

100

Fig. 2. The outcome of 1000 executions of the self-tuning
LQR algorithm on the illustrative example. The thick
dashed and solid black lines represent the cost J(θ0)
of the initial design (9) and the optimal cost J∗.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11285



gravity

ϕ
φ

Fig. 3. The inverted pendulum (left) and an abstraction
as a point-mass system (right) depicting the system’s
two rotational degrees of freedom φ and ϕ.

5.1 System Description and Linear Model

The inverted pendulum (Fig. 3 (left)) can be abstracted as
two rigid bodies linked by revolute joints: the pendulum
body, which is linked to the ground with one rotational
DOF, is kept in an upright position through appropriate
motion of the actuated second body. The second body
(called module) carries sensors, a computer, a motor, and
a battery. Trimpe and D’Andrea [2012] use six of these
modules to balance a cubic structure on any one of its
corners or edges. The system studied here can be regarded
as a one dimensional abstraction of this balancing cube.

The two DOFs of the system are parametrized by φ (rad)
and ϕ (rad) as depicted in Fig. 3 (right). The motor
unit implements a velocity feedback controller that tracks
module angular velocity commands uk. An LQR controller
is to be designed (and automatically tuned) that computes
motor commands uk that stabilize the pendulum about the
equilibrium configuration of an upright pendulum (φ = 0)
and downward module (ϕ = 0).

The linearized dynamics of the system about the equilib-
rium are given by

x̃k+1 = Ãx̃k + B̃uk, (21)

Ã =





1 0 0 0
0 0 0 0

−2 · 10−4 −0.001 1.001 0.01
−0.03791 −0.1171 0.1297 1.001



, B̃ =





0.01
1

0.00117
0.1169



,

with state x̃k = (ϕk, ϕ̇k, φk, φ̇k) and sampling time 0.01 s.
The model captures the dynamics of the pendulum includ-
ing the velocity feedback on the motors; for details refer
to Trimpe and D’Andrea [2009].

To compensate for steady-state offsets, we augment the
system with an integrator state zk:

xk+1 =

[

x̃k+1

zk+1

]

=

[

Ã 0
[Ts 0 0 0] 1

] [

x̃k

zk

]

+

[

B̃
0

]

uk. (22)

The model (22) is used as the nominal model (6) for
computing the LQR gains (10). The augmented integrator
state is implemented as a controller state.

All relevant states can be measured on the experimental
platform: ϕk and φk are measured by angle encoders, and
measurements of φ̇k are obtained from rate gyro sensors on
the pendulum body. Measuring the module velocity ϕ̇k is
not required since, by the high-gain assumption of the ve-
locity control loop, we can use the previous command uk−1

as an approximation for ϕ̇k (see Trimpe and D’Andrea
[2009] for details). Since the sensor measurements are
corrupted by sensor noise (especially the rate gyro), we
have the case of noisy state measurements (15).

We expect the self-tuning LQR approach to yield improve-
ments, since 1) we have imperfect state measurements,
and 2) the model (21) is an approximation of the true
dynamics.

5.2 Self-Tuning LQR Design

For the LQR design, we use a modification of the cost (4)
to include weights on state-input cross terms:

Ĵ =
1

K

∑K−1

k=0
xT
kQxk + uT

kRuk + 2xT
kNuk (23)

with Q = diag(1, 1, 1, 1, 0.01), R = 1.5, and N =
(0,−1, 0, 0, 0). Trimpe and D’Andrea [2009, 2012] show
that this non-zero weight on state-input cross terms cor-
responds to penalizing the difference of two successive
input commands (uk − uk−1). They found the resulting
controllers to yield satisfactory balancing performance in
practice, which is why we keep the same structure of the
cost matrices herein. For the self-tuning LQR algorithm,
this modification of the cost function makes no essential
difference; (23) is simply used in place of (4) when evalu-
ating the experimental performance. Also, the LQR gain
for the generalized cost can readily be computed using
standard LQR design tools (such as dlqr in MATLAB).
For the generalized LQR problem, one has the constraint
Q − NR−1NT ≥ 0 in addition to R > 0. The cost
(23) is computed from experimental data. Possible DC
components on state and input trajectories (especially the
integrator state) are removed prior to evaluating (23).

We choose a three dimensional parameterization for the
design weights used in the self-tuning mechanism: Q̄(θ) =
diag(θ1, θ2, θ1, θ2, 0.01), R̄(θ) = θ3, and N̄(θ) = N . With
this parameterization, we allow the optimizer to trade off
the deviation in position states (through variation of θ1),
the deviation in velocity states (θ2), and the control effort
(θ3) with each other. The integrator state, which is non-
physical and its contribution to the overall cost small,
was deemed unimportant and its corresponding weight left
unparameterized.

The SPSA parameters used in Alg. 1 were chosen ac-
cording to the practical design guidelines discussed in
Sec. 3.3, with the exception of a and c. Parameters a and c
were adjusted, following a number of controller evaluations
around the optimization starting point θ0, to give both
robust gradient approximations and a reasonable initial
step length for the optimization parameter. Whenever nec-
essary, the projection of parameters θ /∈ Θ to the feasible
region Θ (i.e. such that Q̄(θ)−N̄(θ)R̄(θ)−1N̄(θ)T ≥ 0 and
R̄(θ) > 0) was done by a subordinate optimization finding
the closest point in Θ in Euclidean distance.

5.3 Experimental Results

This section details the results of an experimental run
of the self-tuning approach on the inverted pendulum
system. The high level portions of the self-tuning LQR
algorithm (controller design and stochastic optimization)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11286



×10−3

SPSA Iteration i

E
x
p
er
im

en
ta
l
C
o
st

Ĵ
(θ
)

0 1 2 3 4 5 6 7

0.9

1

1.1

1.2

1.3

Fig. 4. Evolution of the self-tuning experiment on the
inverted pendulum.

×10−3

E
x
p
er
im

en
ta
l
C
o
st

Ĵ
(θ
)

Initial Controller Final Controller

0.9

1

1.1

1.2

1.3

Fig. 5. Tests of the controller resulting from the self-
tuning experiment on the inverted pendulum. The bar
diagram shows the costs of ten evaluations of the final
controller F̄ final, in comparison to ten experiments
with the initial design F̄ 0.

were run on a desktop workstation, while the real-time
code implementing the controller (8) ran on a single-board
computer on the module. The experiment was terminated
after a fixed number of imax=6 iterations (24 cost evalu-
ations/balancing experiments) and, θ was initialized such
that Q̄(θ0) = Q, R̄(θ0) = R and N̄(θ0) = N .

Fig. 4 shows the cost evaluations over the experimental
run of the self-tuning algorithm. Note that per iteration
i, four cost function evaluations occur (two per gradient
approximation). Accordingly, the figure shows four bars
centered around each iteration number. Each of these
evaluations is generated by a parameter value which is
perturbed from the current iterate θi (see Remark 3).
The average of the four bars can be regarded as an
approximation of the cost at θi, and the graph shows a
general downward trend in controller cost. Superimposed
on that trend are the effects of stochastic noise in the
controller evaluations.

In order to quantify the outcome of the self-tuning experi-
ment, the resulting final controller F̄ final was evaluated ten
times in balancing experiments which were separate to the
learning process. The resulting costs Ĵ are shown in Fig.
5, in comparison to ten evaluations of the initial controller
F̄ 0. The average of the ten evaluations is 9.48e−4 for the
final controller, and 11.7e−4 for the initial controller, which
corresponds to a cost reduction of 19%.

6. CONCLUDING REMARKS

The self-tuning LQR approach presented in this paper
mimics a process often conducted by the designer of an

LQR controller: the weighting matrices of the quadratic
cost function underlying the design are varied iteratively
such that the controller’s performance in experiments on
the physical plant improves. The presented approach is a
general tuning method that is applicable (in principle) in
any practical situation where one seeks to automatically
tune a static feedback controller. As an example where
tuning is useful, we consider the situation where the
model of a linear process to be controlled is known only
approximately. For this case, we show through simulations
that the self-tuning approach can potentially recover the
optimal LQR cost and gain (i.e. the ones that would
be obtained with perfect model knowledge), and thus a
separate system identification step can be avoided. The
effectiveness of the self-tuning LQR approach was also
demonstrated in an experimental setting on an inverted
pendulum.

A drawback of the current tuning method is the critical
dependence of its performance on the parameters for the
SPSA optimizer, which is an inherent feature of this op-
timization technique (Spall [2003], for instance, gives only
rough guidelines for the choice for parameters, which typ-
ically have to be adapted for a specific problem). Further-
more, the optimizer only takes the latest cost evaluations
into account for making a controller update (instead of
the entire history of cost evaluations). For these reasons,
function approximation techniques that successively form
an estimate of the entire cost function Ĵ(θ) may be an
attractive alternative to stochastic optimization and thus
an interesting subject for future investigations.

REFERENCES

B. D. O. Anderson and J. B. Moore. Optimal Control:
Linear Quadratic Methods. Dover Publications, Mine-
ola, New York, 2007.

K. J. Åström and B. Wittenmark. Adaptive Control.
Dover, 2nd edition, 2008.

D. W. Clarke, P. P. Kanjilal, and C. Mohtadi. A gen-
eralized LQG approach to self-tuning control – Part I.
Aspects of design. International Journal of Control, 41
(6):1509–1523, 1985.

M. J. Grimble. Implicit and explicit LQG self-tuning
controllers. Automatica, 20(5):661–669, 1984.

J. W. Roberts, I. R. Manchester, and R. Tedrake.
Feedback controller parameterizations for reinforcement
learning. In IEEE Symposium on Adaptive Dynamic
Programming And Reinforcement Learning, pages 310–
317, April 2011.

J. C. Spall. Introduction to Stochastic Search and Opti-
mization: Estimation, Simulation, and Control. Wiley,
2003.

S. Trimpe and R. D’Andrea. A limiting property of
the matrix exponential with application to multi-loop
control. In Proc. of the 48th IEEE Conf. on Decision
and Control and 28th Chinese Control Conf., pages
6419–6425, Shanghai, P.R. China, December 2009.

S. Trimpe and R. D’Andrea. The Balancing Cube: A
dynamic scuplture as test bed for distributed estimation
and control. IEEE Control Systems Magazine, 32(6):48–
75, December 2012.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

11287


