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Abstract: This paper studies the H2-norm, or impulse response energy, of fractional transfer
functions of implicit type. The analytical expression of the H2-norm is first derived for an
elementary fractional transfer function of the first kind with a single real pole. Series connection
of such a transfer function with a pure fractional integrator and with another implicit transfer
function of the first kind are then studied. Results developed in the paper are finally used to
derive a criterion to evaluate the quality of an integer order approximation for an implicit type
fractional order model of the first kind.
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1. INTRODUCTION AND MATHEMATICAL
BACKGROUND

Define a fractional transfer function of implicit type as:

F (s) = K

M
∏

i=0

(s+ λ′
i)

ν′

i

/

N
∏

j=0

(s+ λj)
νj , (1)

where K ∈ R is a gain, and where each −λ′
i ∈ C in the

numerator is defined as an s-zero of multiplicity ν′i ∈ R
⋆
+.

Similarly, each −λj ∈ C in the denominator is defined as
an s-pole of multiplicity νj ∈ R

⋆
+. Moreover, to have a

real-valued impulse response of F (s), complex s-zeros and
s-poles must be conjugate, that is: if λi (similarly λ′

i) is

an s-pole (s-zero) of F (s), then λi (similarly λ′
i) is also

an s-pole (s-zero) of F (s). Additionally, numerator order
must be less than denominator order

M
∑

i=0

ν′i <
N
∑

j=0

νj (2)

for the system to be strictly proper. Moreover, the follow-
ing assumptions allow not to have any possible simplifica-
tion in the numerator, in the denominator, and between
the numerator and the denominator: λ′

i 6= λ′
k, ∀(i, k) ∈

{0, 1, . . . ,M}2, i 6= k; λi 6= λk, ∀(i, k) ∈ {0, 1, . . . , N}2,
i 6= k; λ′

i 6= λk, ∀i ∈ {0, 1, . . . ,M} and ∀k ∈ {0, 1, . . . , N}.
Transfer function (1) was first introduced in the litera-
ture by Davidson and Cole in Davidson and Cole (1951)
to model dielectric relaxation in glycerol, propylene gly-
col and n-propanol. It is thus known as Davidson-Cole
transfer functions Khamzin and Popov (2012), Jeon and
Grischkowsky (1998) but can also be denoted as implicit
transfert function. The adjective implicit is introduced to
highligh that the fractional order ν does not directly affect
the Laplace variable s but a polynomial of s. Since David-

son and Cole work, implicit fractional transfer functions
have been used many time to model dielectric relaxations
Khamzin and Popov (2012). But transfer function (1) can
be found in several other fields such as:

- materials Caponetto et al. (2012) in which it is used
to model ionic polymer metal composites materials;

- thermal Nguyen (2013) to model themal behaviour of
wires in automotive application;

- hydrodynamic Tarasov (2005) to describe dynamical
fluid flow in the fractal medium;

- electrochemistry Sabatier et al. (2006) Sabatier et al.
(2013) to model lead-acid and lithium ion batteries;

- bioengineering Sommacal et al. (2006) Melchior et al.
(2012) for rat muscle modelling using fractional mul-
timodels or to take into account thermal transfers
inside lungs;

- signal processing Ortigueira and Trujillo (2012) to
show the link between the fractional derivative and
the Hilbert transform;

- robust control Oustaloup (1995) to define a robust
control strategy.

If transfer function F (s) has no s-zero, it can be written
as a series connexion of elementary transfer functions of
the first and second kind defined as follows.

A transfer function of implicit type of the first kind
involves a single real s-pole:

F1(s) =
1

(s+ λ)ν
, (3)

where λ ∈ R and ν ∈ R
⋆
+.

A transfer function of the second kind involves two com-
plex conjugate s-poles of multiplicity ν:
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F2(s) =
1

(s+λ)ν(s+λ̄)ν
=

1

((s+Re(λ))2+Im(λ)2)
ν (4)

where λ ∈ C and ν ∈ R
⋆
+. Such a transfer function involves

only real-valued parameters in its expended form (4).

Instead of tackling the most general case of implicit
transfer functions defined by (1), this paper studies the
H2-norm of elementary transfer functions of the first kind
and their series connection.

1.1 Time domain response of implicit transfer functions
of the first kind

Applying the frequency shift property of the Laplace
transform, it is easy to show that the impulse response
of the elementary transfer function of the first kind (3) is
given by Oustaloup (1995):

f1(t) = L
−1{F1(s)} = e−λt

L
−1{s−ν} = e−λt t

1−ν

Γ(ν)
(5)

where Γ is the Euler Gamma function (A.1). Note the
presence of a singularity at t = 0 for all 0 < ν < 1.

1.2 Stability of implicit fractional transfer functions

Stability of fractional systems was treated in different
contexts (linear, non linear, commensurate, non commen-
surate, time-variant, time invariant, delayed, non delayed,
analytical, numerical) by different authors as presented in
the state of the art by Sabatier et al. (2010) with more
than 20 references on the subject.

The system F (s) is Lp-stable, 1 ≤ p ≤ ∞, if and only if:

sup
u∈Lp,u6=0

‖f ⋆ u‖p
‖u‖p

< ∞ (6)

where ⋆ stands for the convolution product and u(t) the
system input.

Regarding BIBO stability (defined as the L∞-stability) of
a system described by transfer function (1) nothing can
be found in the literature. This may be due to that the
stability condition is similar to classical integer system
stability condition. The stability depends on the sign of
the real part of the pole −λj .

Theorem 1. Transfer function (3) is BIBO stable if the λ
is greater than 0.

Proof. Let 0 < ν < 1, the response of a system of the
first kind to an input u(t) is given by

y(t) =

∫ t

0

1

Γ(ν)
τν−1e−λτu(t− τ)dτ . (7)

It is now supposed that |u(t)| < M and that λ ∈ R, thus:

|y(t)| =
∣

∣

∣

∣

∫ t

0

1

Γ(ν)
τν−1e−λτu(t− τ)dτ

∣

∣

∣

∣

(8)

≤ 1

Γ(ν)
M

∫ t

0

∣

∣τν−1e−λτ
∣

∣ dτ. (9)

As τν−1e−λτ ≥ 0 for 0 ≤ τ ≤ t, we have:

|y(t)| ≤ 1

Γ(ν)
M

∫ t

0

τν−1e−λτdτ . (10)

For any t0 ∈ R+, then

|y(t)|≤ M

Γ(ν)

(
∫ t0

0

τν−1e−λτdτ+

∫ t

t0

τν−1e−λτdτ

)

(11)

and thus given that τν−1 is a decreasing function on R

|y(t)| ≤ M

Γ(ν)

(
∫ t0

0

τν−1e−λτdτ+

∫ t

t0

tν−1
0 e−λτdτ

)

. (12)

In the previous equation and according the Riemann
criterion, the first integral converge as 0 < ν < 1. We
thus suppose that this integral is bounded by a real I0.
The second integral can be computed and thus:

|y(t)| ≤ M

Γ(ν)

(

I0 −
tν−1
0

λ
e−λ(t−t0)

)

. (13)

Hence if λ ≥ 0, |y(t)| is bounded.
Considering now that λ < 0 and that the input u(t) is the
Heaviside function. Hence, y(t) is given by:

|y(t)| = y(t) =
1

Γ(ν)

∫ t

0

τν−1e−λτdτ . (14)

Thus,

y(t)=
1

Γ(ν)

(
∫ t0

0

τν−1e−λτdτ+

∫ t

t0

tν−1
0 e−λτdτ

)

. (15)

As before, we suppose that the first integral is bounded
by a real scalar I0. However, as λ < 0 the second integral
tends to∞ when t tends to∞. Thus there exists a bounded
input such that the output is not bounded for λ < 0. This
complete the proof. �

Remark 2. A general implicit transfer function F (s) (given
by (1)) can always be written as a series connection of
transfer functions (3). As an example consider the function

H(s) =
(s+ λ1)

ν1

(s+ λ2)
ν2

(16)

with N < ν1 < N + 1 and M < ν2 < M + 1, N ∈ N and
M ∈ N. Thus, (16) can be rewritten as:

H(s)=
(s+λ1)

N+1
(s+λ1)

ν1−(N+1)

(s+λ2)
M
(s+λ2)

ν2−M
(17)

with −1 < ν1 − (N + 1) < 0 and 0 < ν2 −M < 1.

Result of theorem 1 can be proved in a different way using
the following theorem.

Theorem 3. A transfer function is BIBO stable if and only
if the L1 norm of its impulse response is bounded.

From (7),f1(t) is defined by:

f1(t) =
tν−1

Γ(ν)
e−λt. (18)

Using the proof of theorem 1 with M = 1, it is easy to
show that the L1 norm of f1(t) is bounded if λ is greater
than 0.

1.3 Problem formulation

The H2-norm of a transfer function F (s), namely ‖F‖2,
which also corresponds to the impulse response energy, or
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ℓ2-norm of f(t) namely ‖f‖ℓ2 , can be computed either in
the time-domain

‖f‖2ℓ2 =

∞
∫

0

f(t)f(t)dt (19)

or in the frequency-domain using Plancherel’s theorem

‖F‖22=
1

2π

∞
∫

−∞

F (jω)F (jω)dω=
1

π

∞
∫

0

F (jω)F (jω)dω. (20)

Recently Malti et al. (2011) established analytical expres-
sions for computing the H2-norm of fractional transfer
functions of explicit type, i.e. with fractional powers on
the s variable (not on (s + λ)), which requires only the
knowledge of transfer function coefficients and differenti-
ation orders. Further, Lp-norm boundedness conditions
of the impulse response of fractional transfer functions of
explicit type has been established in Malti (2013).

The main concern of this paper is to extend these results to
implicit transfer functions of the first kind. More precisely,
the main objective is to derive analytical expressions of
the H2-norm of elementary transfer functions of the first
kind and their series connection. Hence, these analytical
formulae are given in section 2 for an elementary fractional
transfer function of the first kind. Then, the series con-
nection of such a transfer function with a pure fractional
integrator and with another transfer function of the first
kind is studied in section 3. In section 4, these results are
used to derive a criterion to appreciate the quality of an
integer order approximation of an implicit type fractional
order model of the first kind. Finally, some conclusions are
drawn in section 5.

2. H2-NORM OF A FRACTIONAL TRANSFER
FUNCTION OF THE FIRST KIND

In this section is first derived the analytical expression for
the computation of the H2-norm of an implicit transfer
function of the first kind. Then, the analytical formula of
the H2-norm of such a transfer function in the special case
when ν takes an integer value is deduced. Finally, the H2-
norm computation versus differentiation order is presented
for several values of the s-pole λ.

2.1 Analytical expression of the H2-norm of a fractional
transfer function of the first kind

The first result regarding the computation of the H2-norm
of fractional transfer functions of the first kind is presented
in the following theorem.

Theorem 4. The H2-norm of the stable transfer function
F1(s) defined in (3), is given by:

‖F1‖22 =











∞ if ν ≤ 1

2
B
(

1
2 , ν − 1

2

)

2πλ2ν−1
if ν >

1

2

(21)

where B(., .) is the Euler Beta function whose definition is
reminded (A.3).

Proof. According to (20):

‖F1‖22 =
1

π

∞
∫

0

dω

(λ2 + ω2)ν
. (22)

Define the following change of variable

ω2 = x → dω =
dx

2
√
x
. (23)

Hence,

‖F1‖22 =
1

2πλ2ν

∞
∫

0

x− 1

2 dx

(1 + 1
λ2x)ν

. (24)

Such an integral has been computed by Erdélyi et al.
(1954) and is reported in formula 3.194.3 of Gradshteyn
and Ryshik (2007), (see also (A.4)). Hence, provided ν >
1
2 , one gets (21) which is also equivalent to:

‖F1‖22 =
Γ
(

1
2

)

Γ
(

ν − 1
2

)

2πλ2ν−1Γ (ν)
. (25)

In the other cases, when ν ≤ 1
2 , the integral (24) is

divergent. �

Based on the Stirling asymptotic formula of the Gamma
function (A.2), it can be shown that:

lim
ν→∞

‖F1‖2 =

{

0 if λ ≥ 1

∞ if 0 < λ < 1.
(26)

2.2 Analytical expression of the H2-norm of a fractional
transfer function of the first kind when ν is an integer

It is well known that Γ( 12 ) =
√
π. Moreover, it can be

shown easily that

Γ

(

n− 1

2

)

=
21−2nΓ

(

1
2

)

Γ(2n)
(

n− 1
2

)

Γ(n)
. (27)

Hence, for all integer values of ν = n ∈ N, equations (21)
for ν > 1

2 and (25) reduce to :

‖F1‖22 =
2−2n(2n− 1)!

λ2n−1
(

n− 1
2

)

((n− 1)!)
2 . (28)

This equation can further be established by using the early
work by Aström (1970).

2.3 H2-norm computation for different values of the
differentiation order and of the s-pole

The H2-norm of F1(s) in (3) with different values of λ is
plotted in figure 1. The H2-norm tends to ∞ as ν tends
to 1

2 . On the other side, if 0 < λ < 1, then the H2-
norm tends to ∞ as ν tends to ∞, otherwise if λ ≥ 1
the H2-norm tends to 0. Moreover, when ν is an integer
the transfer function (3) reduces to a rational one. Hence
analytical formulae established since the early work by
Aström (1970), and implemented in the norm method of
the dynamic system class tf in Matlab, are applied to
compute the H2-norm when ν = 1 and ν = 2 (respectively
represented by the squares and the diamonds in figure 1).
These values show to coincide with (21).

3. H2-NORM OF SOME SERIES CONNECTION OF
FRACTIONAL TRANSFER FUNCTION OF THE

FIRST KIND

Result of previous section is now extended to handle the
series connection of a fractional transfer function of the
first kind, firstly with a pure fractional integrator and then
with another implicit transfer function of the first kind.
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Fig. 1. The H2-norm squared ‖F1‖22 versus differentiation
order ν, for different values of λ.

3.1 H2-norm of a fractional transfer function of the first
kind cascaded with a pure fractional integrator

The H2-norm of the series connection of a fractional
transfer function of the first kind and a pure fractional
integrator is given in the following theorem.

Theorem 5. The H2-norm of the stable transfer function
F1(s) defined in (3), cascaded with a pure fractional
integrator of order µ > 0, namely,

F̃1(s) =
F1(s)

sµ
=

1

sµ (s+ λ)
ν , (29)

is given by:

∥

∥

∥
F̃1

∥

∥

∥

2

2
=











∞ if ν+µ≤ 1

2
or µ≥ 1

2
B
(

1
2−µ, ν+µ− 1

2

)

2πλ2ν+2µ−1
if ν+µ>

1

2
and µ<

1

2

(30)

Proof. According to (20):

∥

∥

∥
F̃1

∥

∥

∥

2

2
=

1

π

∞
∫

0

ω−2µdω

(λ2 + ω2)ν
. (31)

Using the change of variable (23) leads to,

∥

∥

∥
F̃1

∥

∥

∥

2

2
=

1

2πλ2ν

∞
∫

0

x−µ− 1

2 dx

(1 + 1
λ2x)ν

. (32)

As before, the solution of (32) is given by formula 3.194.3
of Gradshteyn and Ryshik (2007). Hence, provided ν +
µ > 1

2 and µ < 1
2 , one gets (30). �

3.2 H2-norm of two cascaded fractional transfer functions
of the first kind

The series connection of two fractional transfer functions
of the first kind is now considered.

Theorem 6. Let F12(s) resulting in the series connection
of two transfer functions of the first kind:

F12(s) =
1

(s+ λ1)
ν1 (s+ λ2)

ν2
. (33)

The H2 norm of F12 is given by (34) (see at the top of the
next page).

Proof. According to (20):

‖F12‖22 =
1

π

∫ ∞

0

dω

(ω2 + λ2
1)

ν1(ω2 + λ2
2)

ν2

(35)

Using once again the change of variable (23), one gets

‖F12‖22 =
1

π

∫ ∞

0

x− 1

2 dx

(x+ λ2
1)

ν1(x+ λ2
2)

ν2

(36)

Such an integral is reported in formula 3.197.1 of Grad-
shteyn and Ryshik (2007) then provided ν1+ν2>

1
2 , one

gets (34). �

4. APPLICATION

Results developed in the paper are now used to derive
a criterion to evaluate the quality of an integer order
approximation of an implicit type fractional order model
of the first kind.

Such a model denoted F1(s) as given in equation (3) can
be approximated by an integer order model using sev-
eral methods. Using the well-known recursive poles-zeros
method Oustaloup (1995), F1(s) can be approximated by
the integer order transfer function:

F̄N (s) = C0

N−1
∏

k=1

(s+ z̄k)

/

N
∏

k=1

(s+ λ̄k) (37)

where C0 ∈ R is a constant and where z̄k ∈ R and λ̄k ∈ R

denote respectively the zeros and poles of F̄N (s). N ∈ N

is the number of poles in the approximation.

Using partial fraction decomposition, transfer function
F̄N (s) also writes:

F̄N (s) =

N
∑

k=1

ak
s+ λ̄k

(38)

where ak ∈ R.

In order to evaluate the quality of such an approximation,
let us consider the block diagram of figure 2.

u(t)
F1(s)

F̄N (s)

F̃N (s)

ε(t)+

−

y(t)

ȳ(t)

Fig. 2. Block diagram of output error

Same input u(t) is applied to transfer functions F1(s)
and F̄N (s), leading to outputs denoted y(t) and ȳ(t)
respectively. Output error ε(t) = y(t)− ȳ(t) is studied.

Transfer function between u(t) and ε(t) is given by:

F̃N (s) = F1(s)− F̄N (s) (39)

Computing H2-norm of F̃N (s) allows to appreciate the
quality of the approximation according to the following
property given in Zhou et al. (1996):

‖F̃N (s)‖2 = sup
‖u(t)‖2=1

‖ε(t)‖∞. (40)
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‖F12‖22 =















∞ if ν1 + ν2 ≤ 1

2
λ−2ν1

1 λ1−2ν2

2

2π
B

(

1

2
, ν1 + ν2 −

1

2

)

2F1

(

ν1,
1

2
; ν1 + ν2; 1−

(

λ2

λ1

)2
)

if ν1 + ν2 >
1

2

(34)

where 2F1 (a, b; c, z) is the Gauss hypergeometric function defined in (A.5). Functions in (34) can be easily numerically
evaluated with softwares such as Matlab, Mathematica or Maple. This remark also holds for functions in (21) and (30).

Indeed, last formula indicates that maximum value of the
approximation error ε(t) in response to any input u(t) of

unitary energy is ‖F̃N (s)‖2. According to equation (20),

the calculation of ‖F̃N (s)‖22 leads to the following integral:

‖F̃N (s)‖22 =
1

π

∫ ∞

0

(

1

(jω + λ)ν
−

N
∑

k=1

ak
s+ λ̄k

)

×

(

1

(jω + λ)ν
−

N
∑

k=1

ak
s+ λ̄k

)

dω.

(41)

Developing the integrand of equation (41) integral, and
noting that the integral of the sum is equal to the sum of
the integrals, one has to solve 3 kinds of integrals.

The first type of integral is:

1

π

∫ ∞

0

1

(jω + λ)ν(jω + λ)ν
dω (42)

which is the purpose of the paper (see (22) and its solution
given by (21)).

The second kind of integral is:

a2k
π

∫ ∞

0

1

(jω + λk)(jω + λk)
dω (43)

which is the squared H2-norm of a first order rational
transfer function of static gain ak and s-pole λk. The
analytic expression of this H2-norm can be deduced from
equation (28) for n = 1, multiplying the latter result by
the scalar factor a2k.

The remaining terms are given by integrals of the form:

Ikl =
akal
π

∫ ∞

0

1

(jω + λk)νk(jω + λl)νl

dω

= (j)νl−νk
akal
π

∫ ∞

0

1

(ω+(−jλk))
νk (ω+jλl)νl

dω.

(44)

Last expression is similar to (36). Thus, using formula
3.197.1 of Gradshteyn and Ryshik (2007), the analytical
expression of (44) is expressed as:

Ikl=























∞ if νk + νl ≤ 1

j
akalλ

1−νl

l

πλνk

k

×B(1, νk+νl−1)

×2F1

(

νk, 1; νk + νl; 1 +
λl

λk

)

if νk + νl > 1

(45)

Based on equations (21), (28) and (45), the analytical ex-

pression of H2-norm of F̃N (s) can be determined. Thanks
to this result, and given that the H2-norm of F1(s) can
be also determined using (21), the relative error between
H2-norm of implicit fractional order model and its integer
order approximation, namely

ǫ(N) =
‖F1(s)− F̄N (s)‖2

‖F1(s)‖2
=

‖F̃N (s)‖2
‖F1(s)‖2

(46)

can be obtained analytically.

For different values of N , that imposes the number of poles
and zeros involved in the integer order approximation,
Figure 3 shows the influence of N on the relative error
when λ = 1 and ν = 0.75. Value of ǫ(N) gives a
numerical criterion to appreciate formally the quality of
the approximation.

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

N

ǫ
(%

)

Fig. 3. Influence of N on the relative error between
H2-norms of implicit fractional order model and its
integer order approximation

5. CONCLUSION

In this paper, analytical expressions are given for the H2-
norm of several implicit type transfer functions. Specifi-
cally, the authors are interested in the scope of this paper
to transfer functions of the first kind, of the first kind plus
a fractional integrator and of the series connection of two
transfer functions of the first kind. These transfer functions
are widely used in the literature to model real systems or
phenomena, but also to define filters or control strategies.
However, the properties of these transfer functions have
been little studied since their introduction in 1951. Given
the frequency of use of these functions, it is important
to study their properties and this article thus contributes
to fill this gap. The authors show the interest of the ob-
tained H2-norm analytical expressions for approximating
an implicit type transfer functions with a classical rational
transfer function. This approximation is required for the
implementation of a fractional controller or to simulate a
filter designed with an implicit type transfer function. It
is thus really important to have a bound on the approx-
imation error. Such a bound is proposed in term of the
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infinity norm of the time response error. In future works,
the authors intend to extend the number of implicit type
transfer functions studied and to propose several other
applications to demonstrate the interest of the H2-norm
computation for the considered class of systems.

Appendix A. APPENDIX

- According to formula 8.310.1 Gradshteyn and Ryshik
(2007), the Euler Gamma function Γ is defined as:

Γ(ν) =

∫ ∞

0

e−xxν−1dx , ν > 0. (A.1)

- The Stirling asymptotique formula for ν ≫ 0 writes
(Gradshteyn and Ryshik, 2007, formula 8.337.2):

Γ(ν + 1) ∼
√
2πν (ν/e)

ν
(A.2)

- According to formula 8.384.1 Gradshteyn and Ryshik
(2007), the Euler Beta function B(x, y) is defined as:

B(x, y) = Γ(x)Γ(y)/Γ(x+ y) . (A.3)

- The following integral is reported in formula 3.194.3 of
Gradshteyn and Ryshik (2007):

∞
∫

0

xρ−1dx

(1 + βx)ν
= β−ρB(ρ, ν − ρ). (A.4)

where the conditions | arg(β)| < π and ν > µ > 0 must
hold and where B(., .) is the Euler’s Beta function.

- According to formula 8.14.1 Gradshteyn and Ryshik
(2007), the Gauss hypergeometric function 2F1 is:

2F1(a, b; c; z) =
∞
∑

k=0

(a)k(b)k
(c)k

z
k

k!
. (A.5)

where (q)k is the rising Pochhammer symbol:

(q)k =

{

Γ(q + k)/Γ(q) q > 0

(−1)kΓ(1− q)
/

Γ(1− q − k) q ≤ 0.
(A.6)
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