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Abstract: The relaxed asymmetric Reeds–Shepp problem is the problem of finding a minimum-
time trajectory for the Reeds–Shepp vehicle from a given initial state to a given final position,
under the assumption that the backward motion of the vehicle is slower than the forward motion.
This modification of the classic Reeds–Shepp problem aims at better capturing physical reality
for vehicles that are less agile when moving backwards than when moving forwards—marine
vehicles being a representative example—and leads to new insights into the motion planning of
such vehicles. Specifically, it is shown that a family of optimal trajectories which is known to
be sufficient for the relaxed Reeds–Shepp problem is also sufficient for the relaxed asymmetric
Reeds–Shepp problem. It is also shown that the relaxed Reeds–Shepp problem and the relaxed
asymmetric Reeds–Shepp problem cannot have the same minimum-time synthesis.

1. INTRODUCTION

The motivation behind the present work stems from
motion planning problems for uninhabited surface vehi-
cles (USVs) and, more specifically, marine vehicles. Au-
tonomous marine missions are becoming increasingly im-
portant and challenging. Among other tasks, they include
border patrolling, sea sampling, ocean debris tracking,
and damage assessment after natural disasters such as
hurricanes and tsunamis. The autonomous capabilities of
uninhabited vehicles have matured over the past decade,
thus the extensive use of USVs for marine missions is a
natural path ahead. Especially in safety-critical rescue and
relief operations.

Fast motion planning is an integral component of au-
tonomous systems of vehicles and requires simple and
effective kinematic models, along with robust and well un-
derstood algorithms. Many of these tools and algorithms,
for some of the most common kinematic models, have
been developed and thoroughly studied by mathematicians
before their importance for path planning of uninhabited
vehicles became ubiquitous. The well known Dubins paths
[Dubins, 1957] are widely used as a basic tool for motion
planning of aerial vehicles that can only move forwards,
whereas the Reeds–Shepp paths [Reeds and Shepp, 1990]
provide a convenient alternative for motion planning re-
lated to vehicles that can move both forwards and back-
wards.

Assuming that `±, r±, and s± denote left turns, right
turns, and motion on a straight line, respectively, and
the signs correspond to forward (plus sign) and backward
(minus sign) of motion, then the main result in [Reeds
and Shepp, 1990] states that a sufficient family of shortest
paths between two configurations of a vehicle (a config-
uration being the position and orientation of a vehicle)
consists of 48 words in `±, r±, and s±, each word contains
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at most five letters, and there can be at most two points
of direction reversal, that is, points where the vehicle
changes from forward to backward motion or vice versa.
In Sussmann and Tang [1991], the classification of the
Reeds–Shepp paths is made systematic within the frame-
work of geometric and optimal control theory, and further
improved upon by eliminating two words (`−`+`− and
r−r+r−) from the sufficient family of optimal paths. The
resulting 46 words represent the so-called Reeds–Shepp
paths. These results reduce the basic motion planning
problem of finding a shortest path between two given con-
figurations of a vehicle to the computation of 46 paths and
the selection of the shortest among them. This procedure
is further refined in [Souères and Laumond, 1996] where
a minimum-time “synthesis” is constructed in the sense
that the state space R2 × S1 of the Reeds–Shepp vehicle
is partitioned into sets of initial conditions according to
the type of Reeds–Shepp path that connects each initial
condition to a given fixed configuration.

When the terminal constraint for the Reeds–Shepp vehicle
is a position with unspecified orientation, as opposed to a
configuration—in other words, if the terminal constraint in
the optimal control formulation of the problem is a sub-
manifold of R2×S1 diffeomorphic to S1—then a transver-
sality condition at the final end-time complements the
necessary conditions of the Maximum Principle and the
sufficient family of optimal paths is significantly shortened
and simplified [Souères et al., 1994]. The elements of the
reduced sufficient family are called “relaxed Reeds–Shepp
paths”, in view of the relaxation of the terminal constraint.

Among other reasons, marine vehicles are inadequately
described by the Reeds–Shepp kinematic model because,
although these vehicles can move forwards and backwards,
their maximum backward speed is smaller than their max-
imum forward speed. Therefore, motion planning based
on the Reeds–Shepp paths will not be optimal in this
case. The purpose of this work is to solve the relaxed
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Reeds–Shepp problem (i.e., when the final orientation
in unconstrained) for a kinematic model that accounts
for differences in speed between forward and backward
motion. The resulting algorithms may be applicable not
only for the motivating example of the marine uninhab-
ited vehicles, but also for some types of ground vehicles
exhibiting the same kinematic constraint. For example, if
the backwards-looking sensors of a ground vehicle have a
shorter obstacle detection range than the forwards-looking
sensors, the backward speed may be artificially limited to
allow for sufficient reaction time if an unexpected obstacle
is encountered. The main difficulty to be addressed is the
lack of symmetry between forward and backward motion,
a property extensively used in all previous work on the
Reeds–Shepp problem. For example, if an optimal path
contains a cusp, i.e., if there is a point on the path where
the vehicle reverses its motion, then the circular arcs that
form the cusp will be of different radii. This asymmetry
complicates the analysis of the optimal paths.

The rationale behind the study of modifications of the
classic Dubins kinematic model is to obtain more real-
istic representations of real-world scenarios and it has
lead to several variations in the literature. It is worth
noting that, from a mathematical point of view, many of
these variations—for example, all the kinematic models
mentioned thus far—amount to simply changing the set
of control values or a boundary condition, however the
practical implications are non-negligible. For example, the
simpler form of the relaxed Reeds–Sheep paths makes path
planning computationally simpler than with Reeds–Shepp
paths. In this line of research, further generalisations have
appeared in [Bakolas and Tsiotras, 2011, 2013; Dolinskaya
and Maggiar, 2012]. In [Bakolas and Tsiotras, 2011] an
optimal synthesis (in the sense of [Souères and Laumond,
1996] described above) is constructed for a Dubins vehicle
that turns left or right with different minimum turning
radii. An optimal synthesis that accounts for the pres-
ence of a constant drift field is presented in [Bakolas and
Tsiotras, 2013], whereas time-optimal trajectories when
the maximum speed and the minimum turning radius are
functions of the orientation of the vehicle are analysed
in [Dolinskaya and Maggiar, 2012].

2. PROBLEM STATEMENT

Consider the driftless control system

γ′(t) = u1(t)X1(γ(t)) + u2(t)X2(γ(t)) (1)

on M = R2 × S1, where X1, X2 ∈ ΓωTM are the real
analytic vector fields with coordinate representations

X1(x1, x2, x3) = (cosx3, sinx3, 0)

and
X2(x1, x2, x3) = (0, 0, 1),

in the chart on TM induced by the chart (V, φ) =
(R2 × S1 \ {(−1, 0)},

(
(x1, x2), (y1, y2)

)
7→ (x1, x2, x3 =

atan(y2/y1))) on M . 1 If I is an interval in R, we denote by
L1

loc(I;Rn) the locally integrable maps from I into Rn, and

by W 1,1
loc (I;M) the locally absolutely continuous curves

from I into M . Then, the class A of admissible controls
for (1) consists of maps u(t) = (u1(t), u2(t)) in L1

loc(I;Rn)

1 To cover the entire state space M , i.e., the plane not covered by
φ, a second chart can be chosen in an obvious manner.

that take values in the set U , {−c, 1}× [−1/ρ, 1/ρ] ⊂ R2,
where c and ρ are fixed, positive, real numbers such that
c ∈]0, 1[ and ρ > 0. Given a control u, the corresponding

trajectory of (1) is an element of W 1,1
loc (I;M) and is

denoted by γ. The projection on R2 of (the image of)
a trajectory γ will be called the path that corresponds
to γ. An optimal path is the projection of an optimal
trajectory.

The control system (1) can be viewed as the kinematic
model of a vehicle that moves forwards with constant
unit speed and backwards with constant speed equal to
c, along a planar curve whose curvature is bounded above
by |u2/u1|. Therefore, when the vehicle moves forwards,
the maximum curvature (resp. minimum turning radius)
is 1/ρ (resp. ρ), whereas, when it moves backwards, the
maximum curvature is 1/cρ (resp. cρ). In this paper, we are
interested in the problem of determining a sufficient family
of minimum-time trajectories from an initial state p ∈ M
to a terminal submanifold of the form {(xf , yf )}×S1 ⊂M .
The physical interpretation is that the vehicle has an initial
position and orientation and has to reach a final location
at which the orientation is unconstrained. We call this
problem the “relaxed asymmetric Reeds–Shepp problem”
(RARSP); a precise formulation is as follows.

RARSP: Given a point p ∈ M and a submanifold N =
{(xf , yf )}×S1 ⊂M , with p /∈ N , minimise the time T > 0

over the set of trajectories γ ∈W 1,1
loc ([0, T ];M) of (1) that

satisfy γ(0) = p and γ(T ) ∈ N .

We show that, although forward and backward motions
are not symmetric in the sense that the corresponding
paths have different bounds on their curvature, there is a
sufficient family of minimum-time paths which is identical
to that of the classic Reeds–Shepp problem Souères et al.
[1994]; Boissonnat et al. [1991]; Sussmann and Tang [1991].
However, for a given initial state and a given final position
of the vehicle, a minimum-time path of (1) may differ
substantially from a minimum-time path of the classic
Reeds–Shepp vehicle.

It is standard practise in motion planning to describe a
sufficient family of optimal paths as a collection of words
from an alphabet that represents the motion primitives.
The assignment of symbols to motion primitives for the
relaxed asymmetric Reeds–Shepp problem is shown in
Figure 1. The presence of a plus sign implies a circular arc
of radius ρ, whereas the presence of a minus sign implies
that the radius of a circular arc is cρ. If a circular arc
can correspond to either a left or right turn, it is denoted
by C. Similarly, if a straight line segment corresponds to
either forward or backward motion, it is denoted by S (e.g.,
S±, S∓). A subscript to any one of the letters `, r, and s
corresponds to the length of the curve represented by the
letter.
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Fig. 1. Motion primitives for the relaxed asymmetric
Reeds–Shepp vehicle.

3. EXISTENCE OF SOLUTIONS

Without loss of generality, we take ρ = 1 in the sequel.
To guarantee the existence of solutions to the RARSP, we
take the set of control values for (1) to be the convex hull
co (U) of U , that is, co (U) = [−c, 1] × [−1, 1]. When the
set of control values is co (U), the control system (1) is
denoted by (coΣ) and the set of admissible controls by
coA. The set co (U) is convex and compact and, therefore,
classic results from Optimal Control theory guarantee the
existence of optimal trajectories [Young, 1980]. However,
it has to be shown that no additional extremals are in-
troduced by doing so and this can be achieved by showing
that (1) is small-time locally controllable. Small-time local
controllability (STLC) of (1) implies that the minimum-
time functions of (1) coincide when the set of control
values is either U or co (U) [Sussmann and Tang, 1991].
In Sussmann and Tang [1991], c is equal to 1 and STLC
follows from the fact that, in this case, (1) is symmetric
and satisfies the Lie algebra rank condition [Nijmeijer and
van der Schaft, 1990]. In our case, c ∈]0, 1[ and symmetry
of (1) does not follow directly from the form of the set of
control values. We can show, however, that (1) is STLC by
means of a different argument. As an example of a driftless
system which is STLC, but whose set of control values
is not symmetric, system (1) is, perhaps, of independent
interest for theoretical investigations of such properties.

Proposition 1. The control system (1) is small-time lo-
cally controllable.

Proof. To prove that (1) is STLC, we consider yet another

control set, namely Ũ = {−c, c} × [−c, c]. The control

system (1) is denoted by (Σ̃) when the set of control values

is Ũ , and it is STLC because it is symmetric and satisfies
the Lie algebra rank condition. The goal is to show that
every point q in M that can be reached from a given point
p ∈ M by a trajectory of (Σ̃) can also be reached by a
trajectory of (1) in less time. First we recall the fact that

(Σ̃) is STLC using measurable controls if and only if it is

STLC using piecewise constant controls and, therefore, we
restrict attention to piecewise constant controls without
loss of generality. More specifically, let T > 0 be a
positive real number and suppose that p ∈ M and q is in
the reachable set RΣ̃(p; [0, T [;A) from p using admissible
controls defined on [0, T ]. Then, q can be reached from p
by means of a piecewise constant control [Grasse, 1992]

ũp,qpwc : [0, T̃ ]→ {−c, c} × [−c, c].
Note that, by assumption, q can be reached from p in time
less than T , therefore, T̃ < T (and, of course, the control
can be extended to [0, T ] by setting (ũp,qpwc,1, ũ

p,q
pwc,2) = (0, 0)

on [T̃ , T ]). From ũp,qpwc, we can construct a control

up,qpwc : [0, S]→ {−c, 1} × [−1, 1],

where 0 < S < T̃ < T , that steers p to q in time less than
T and is admissible for the control system of interest (1)
since it takes values in {−c, 1} × [−1, 1]. To this end, let

t̃0 = 0 < t̃1 < · · · < t̃N−1 < t̃N = T̃ be the time instants
where any one of the two components of ũp,qpwc changes

value. 2 If we set Ii , ]t̃i−1, t̃i], i = 1, . . . , N , then the

interval [0, T̃ ] is the disjoint union

[0, T̃ ] = {0} ∪

(
N⋃
i=1

Ii

)
.

First we describe the domain of up,qpwc. It is the disjoint
union

[0, S] = {0} ∪

(
N⋃
i=1

Ji

)
,

where Ji is of the form ]ti−1, ti], i = 1, . . . , N , and the
intervals Ji are contiguous in the sense that the right
endpoint of Ji is equal to the left endpoint of Ji+1. Hence,
the intervals Ji are uniquely defined as long as we specify
their lengths. We do so as follows.

µ(Ji) =

{
µ(Ii), if ũp,qpwc,1 = −c,
cµ(Ii), if ũp,qpwc,1 = c,

where µ denotes the Lebesgue measure on R. We can now
specify the values of the piecewise constant control up,qpwc

that steers p to q in time S and is admissible for (1)

up,qpwc(t) =

{
ũp,qpwc, if ũp,qpwc,1 = −c,
1
c ũ

p,q
pwc, if ũp,qpwc,1 = c.

We conclude that, since the control system (Σ̃) is STLC,
so is the control system (1).

Given a trajectory γ : [a, b] ⊂ R → M of a control
system, let dom (γ) denote the domain [a, b] of γ, and In(γ)
and Term(γ) denote γ(a) and γ(b), respectively. With this
notation, the definitions of the minimum-time functions
VΣ, VcoΣ : M×M → [0,∞[ for (1) and (coΣ), respectively,
are

VΣ(p, q) ,
inf
u∈A
{µ(dom (γ)) | In(γ) = p and Term(γ) = q},

VcoΣ(p, q) ,
inf

u∈coA
{µ(dom (γ)) | In(γ) = p and Term(γ) = q}.

We have the following.
2 It can be shown, and it is actually known from previous works,
e.g., Sussmann and Tang [1991], that there can be only finitely many
switchings.
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Proposition 2. The minimum-time functions VΣ and
VcoΣ coincide.

Proof. The result follows from Proposition 1 and Theorem
5 in Sussmann and Tang [1991].

4. NECESSARY CONDITIONS FOR OPTIMALITY

To analyse the optimal trajectories of (coΣ) we apply
the Maximum Principle (MP) [Pontryagin et al., 1962;
Agrachev and Sachkov, 2004] and we follow closely the
approach of Sussmann and Tang [1991] with the necessary
modifications to account for the asymmetric control set.

If v ∈ TxM and λ ∈ T ∗xM , then 〈λ, v〉 denotes the
canonical pairing between λ and v. The Hamiltonian is
the function

H(λ, x, u) = 〈λ, u1X
1 + u2X

2〉.
Theorem 3. (MP). If γ ∈ W 1,1

loc ([0, T ];M) is a solution
to the Relaxed Asymmetric Reeds–Shepp problem and
u ∈ coA is the corresponding control, 3 then there exists a
non-negative constant λ0 ≥ 0 and a non-trivial, absolutely
continuous section λ ∈ ΓT ∗M of the cotangent bundle of
M such that

λ̇ = −DxH, (2)

H(λ, x, u) = min
ω∈co(U)

H(λ, x, ω), (3)

H(λ, x, u) = −λ0, (4)

〈λ(T ), v〉 = 0, for every v ∈ Tγ(T )N, (5)

for almost every t ∈ [0, T ].

An important role in the analysis of the properties of
extremals based on (2)-(5) is played by the switching
functions

φ1 = 〈λ,X1〉,
φ2 = 〈λ,X2〉,

and the auxiliary function

φ3 = 〈λ,X3〉,
where X3 = [X2, X1], that is, X3 is the Lie bracket of X2

andX1. The functions φi, i = 1, . . . , 3, satisfy the following
system of differential equations with discontinuous right-
hand side [Sussmann and Tang, 1991]

φ̇1 = u2φ3, (6)

φ̇2 = −u1φ3, (7)

φ̇3 = −u2φ1. (8)

In terms of the switching functions, the Hamiltonian can
be written as

H(λ, x, u) = u1φ1 + u2φ2 (9)

and the constancy of the Hamiltonian (4) is, then, equiv-
alent to

u1φ1 + u2φ2 = −λ0. (10)

The minimisation condition (3) implies that u1 = 1, when
φ1 < 0 and u1 = −1/c when φ1 > 0, and u2 = −signφ2.
Therefore, u1φ1 ≤ 0 and (10) can be written as

u1φ1 − |φ2| = −λ0. (11)

3 In the case of (coΣ), a trajectory defines uniquely a control.

Because the vector fields X1, X2, and X3 are everywhere
linearly independent and the adjoint vector t 7→ λ(t)
vanishes nowhere, we also have that

|φ1|+ |φ2|+ |φ3| 6= 0. (12)

Property 1. Non-trivial abnormal extremals do not ex-
ist.

Proof. Suppose λ0 = 0 along a non-trivial extremal. Then,
u1φ1 = |φ2| ≥ 0 which implies u1φ1 = 0 and this can only
happen if φ1 = 0 (as a consequence of the minimisation
condition (3) on the values of u1). If φ1 = φ2 = 0, (12)
implies that φ3 does not vanish anywhere and it follows
from (6)-(8) that u1φ3 = u2φ3 = 0 ⇒ u1 = u2 = 0 which
is a contradiction since we assumed that the extremal is
non-trivial.

Property 2. Along a non-trivial extremal, the functions
φ1 and φ2 cannot have a common zero.

Proof. Suppose that there exists a time t such that φ1(t) =
φ2(t) = 0. Then, (4) and (9) imply that λ0 = 0 which
contradicts Property 1.

Property 2 excludes all paths that involve simultaneous
change in the values of u1 and u2. Using the, standard
by now, notation to describe paths for the Dubins and the
Reeds–Shepp vehicle, Property 2 implies that there cannot
be paths or subpaths of the form C±S∓ or of the form
C±1 C

∓
2 , if C1 6= C2. That the latter form of paths cannot

be optimal is intuitively obvious when c = 1, however it is
less so in the present case because forward and backward
motions have different bounds on their curvatures and,
therefore, a simultaneous switching of u1 and u2, with
u2 6= 0, does not mean that the vehicle traces the same
circular arc in the opposite direction.

Property 3. Along an optimal trajectory, the control u2

takes values in {−1, 0, 1}. In other words, optimal paths
consist of circular arcs of maximum curvature and straight-
line segments.

Proof. We already saw that u2 = −signφ2. If φ2 = 0 on an
interval I of positive (Lebesgue) measure, then Property 2
implies that φ1 cannot vanish anywhere in I and, therefore,
u1 ∈ {−c, 1}. Equation (7), then, implies that φ3 is zero on
I and, consequently, (8) implies that u2φ1 = 0 ⇒ u2 = 0
almost everywhere on I.

Property 4. Inflection points, straight line segments,
and the final endpoint of an optimal path lie on the same
straight line in the (x1, x2)-plane.

Proof. Let λ = (λ1, λ2, λ3) be the coordinate representa-
tion of the adjoint vector. From the adjoint equation (2)
it follows that λ1 and λ2 are constant along an optimal
path, and

λ3(t) = λ1x
2(t)− λ2x

1(t) + λ3(0). (13)

The transversality condition (5) which (in coordinates)
says that λ3(T ) = φ2(T ) = 0 (where T is the final time)
together with (13) imply that

0 = λ3(T ) = λ1x
2(T )− λ2x

1(T ) + λ3(0)

= λ1xf − λ2yf + λ3(0).
(14)

Hence, the points (x1, x2) where φ2 vanishes (points where
u2 changes sign, points on straight line segments, and the
final point of the path all lie on the same line in the
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(x1, x2) plane, because at such point φ2 = λ3 = 0. It
follows directly that straight-line segments can only occur
at the end of a path. It follows, also, that paths of the form
C±C±S cannot be optimal.

The next step is to show that an optimal path cannot
be a concatenation of three arcs. This fact is reported
in [Souères et al., 1994] as Lemma 2, however we give here
a simple and self-contained proof. First we make several
observations that are used in the proof. Observe that

φ2
1 + φ2

3 = λ2
1 + λ2

2 > 0. (15)

The sum cannot be zero, for otherwise the adjoint equa-
tion (2) and the transversality condition (5) would imply
that λ = 0, however the MP precludes λ from being
identically zero.

If φ2(t) = 0, for some t, then, from (11), u1(t)φ1(t) = −λ0.
If we assume that u1 = 1, (15) gives

φ2
3(t) = λ2

1 + λ2
2 − λ2

0 ⇔(
λ1 sinx3(t)− λ2 cosx3(t)

)2
= λ2

1 + λ2
2 − λ2

0.
(16)

From (16) one can compute the slope of the line described
by (14). A similar equation is obtained if we assume
u1 = −c.
Property 5. Paths of the form CCC cannot be optimal.

Proof. Property 2 implies that paths of the form C±1 C
∓
2 C
±
3

with C1 6= C2 or C2 6= C3 (for example, the paths `+r−`+

and r−`+`−) cannot be optimal. We show how to exclude
paths of the form C±C∓C±; the other cases can be treated
similarly. Consider first the case where u2 = 1 along the
whole path (in this case, the path is of the form `+`−`+)
and let σ, τ ∈]0, T [, σ < τ , be the times when the control u1

changes value from 1 to −c and from −c to 1, respectively.
Along the whole path, (6) and (8) take the form

φ̇1 = φ3, (17)

φ̇3 = −φ1, (18)

and the solution in [σ, τ ] to this system is given by[
φ1(τ)

φ3(τ)

]
=

[
cos(τ − σ) sin(τ − σ)

− sin(τ − σ) cos(τ − σ)

] [
φ1(σ)

φ3(σ)

]
. (19)

We have the boundary conditions φ1(σ) = φ1(τ) = 0 (τ
and σ are switching times for u1) and φ3(σ) = φ3(τ) =√
λ2

1 + λ2
2 (from (15)). System (19) yields

0 = sin(τ − σ)
√
λ2

1 + λ2
2,√

λ2
1 + λ2

2 = cos(τ − σ)
√
λ2

1 + λ2
2.

However, since σ < τ , this is only possible if λ1 = λ2 = 0
and this was shown not to be possible because, together
with the transversality condition, it implies the triviality
of λ. So far we assumed that u2 ≡ 1. If u2 ≡ −1, then the
only difference is that the equations in (17) change signs
and the derivation remains the same. Also, it should be
noted that some paths of the form CCC can be shown not
to be optimal by simply using the fact that the inflection
points and the final point lie on the same line in the (x1, x2)
plane. One such case are the paths of the form C±C±C±.

Observe also that, since φ1 does not change sign along a
sinlge arc, (19) implies that an arc cannot be longer than
π/2. Recall that a cusp is a point where u1 changes sign

and an inflection point is a point where φ2 = 0. We have
the following.

Property 6. Every arc between a cusp and an inflection
point is π/2 radians

Proof. Equations (15) and (6)-(8) show that the vector
v = (φ1, φ3) has constant length and rotates with angular
velocity u2. For concreteness, consider an arc between
a cusp and an inflection point such that u1 = 1 and
u2 = 1; other cases are proven in a completely analogous
manner. Let t = 0, t = τ be the times when the cusp
and the inflection point occur, respectively. At the cusp,
we have v(0) = (0,

√
λ2

1 + λ2
2) from the fact that t = 0 is

assumed to be a switching time for u1 (hence φ1(0) = 0)
and from equation (15). At the inflection point we have
v(τ) = (λ0, 0). That φ3(τ) = 0 follows from the fact

that t = τ is a critical point of φ2 (φ̇2(τ) = 0) and
from (7) together with the fact that u1(τ) 6= 0. Hence,
v(0) · v(τ) = 0 and since λ0 > 0, v must rotate by π/2.

The previous analysis shows that the relaxed asymmetric
Reeds–Shepp problem and the relaxed Reeds–Shepp prob-
lem admit the same sufficient family of optimal paths as
given in Souères et al. [1994].

Theorem 4. A sufficient family of optimal paths for the
relaxed asymmetric Reeds–Sheep problem is given by:
C±α C

∓
π/2S with 0 ≤ α < 2π and d ≥ 0; C±α C

∓
β with

α, β ≤ π; C±α S
±
d with α < π/2 and d ≥ 0.

5. A COMMENT ON OPTIMAL SYNTHESIS

Theorem 4 should not be interpreted as saying that a
given instance of the relaxed asymmetric Reeds–Shepp
problem admits the same solutions as the relaxed Reeds–
Shepp problem when the boundary conditions are the
same for the two problems. This is a point where the
difference in speed during forward and backward motion
has a significant effect on the form of optimal trajectories,
as we now explain by means of an example.

Consider the case where the initial state of the vehicle is
(0, 0, 0) and the final position is (xf , 0) = (−d, 0), d > 0.
Then, it can be shown that there exists a positive real
number number d∗ such that

(1) if d < d∗, the shortest path is of the form s−d , that
is, the vehicle moves backwards on a straight line
segment the for time T = d

c , and

(2) if d > d∗, a shortest path is of the form r−α r
+
π/2s

+
δ ,

α > 0, δ > 0. An illustration of this path is given in
Figure 2.
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Fig. 2. An optimal path from (0, 0, 0) to (−d, 0) for d > d∗.

It follows that an optimal path starting with a straight-
line segment backwards will continue until the final point,
or it cannot be an optimal path.

The above example shows that a minimum-time synthesis
for the relaxed asymmetric Reeds–Shepp problem cannot
be the same as that for the relaxed Reeds–Shepp prob-
lem [Souères et al., 1994].
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