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Abstract: In this work we examine the problem of intercepting a moving target with a pursuer
that only moves forwards at constant speed and whose radius of turn is bounded from below.
We assume that the target is moving on a straight line at constant speed and that the target’s
velocity is known to the pursuer with no measurement error. We analyze both the problem
of minimum-time interception, as well as the problem of interception at a predefined time.
We establish lower and upper bounds on the minimum time to interception that are easy to
compute. We examine the relation between shortest paths and minimum time interception paths,
give conditions for the two types of paths to coincide and show cases where they differ. Finally,
we propose two algorithms for the elongation of an admissible path and provide conditions that
guarantee continuous elongation. The above analysis is also conducted in scenarios where the
target is located near or inside the circles of minimum turning radius that correspond to the
pursuer’s initial configuration.

Keywords: Dubins, moving target, minimum time interception, interception at a given time.

1. INTRODUCTION

We consider the problem of interception of a non-
maneuvering target by a pursuer that only moves forwards
in constant speed and whose radius of turn is bounded
from below. The target is assumed to move at constant
speed on a trajectory that is known to the pursuer. In
this work we wish to gain a better understanding of the
minimum-time interception problem and the ability to
continuously elongate minimum-time paths in order to
have control on the interception time.

A car-like robot that only moves forwards with constant
speed on a path of bounded curvature, is often called a
Dubins vehicle. It is named after L.E. Dubins (1957) who
studied planar continuously differentiable shortest paths
between fixed initial and final positions and orientations.
Dubins proved that such curves exist and are necessarily
a sub-path of a path of type CSC or of type CCC, where
S is a straight line segment and C is an arc of a circle
whose radius is the vehicle’s minimum turning radius r.
If C describes a clockwise (resp. counter-clockwise) turn
it will be replaced by R (resp. L). Thus, the shortest
path for a Dubins vehicle from any initial to any final
configuration belongs to the set of 6 admissible paths
D = {LSL,RSR,RSL,LSR,RLR,LRL}. The Dubins
vehicle model could be used as a simplified representation
of an uninhabited aerial vehicle(UAV), robot or missile
whose motion is planar.

We call the problem of finding a shortest path for a
Dubins vehicle without a terminal angle constraint the
? This research was partially supported by the Israeli government.

“relaxed Dubins” problem. Boissonnat and Bui (1994)
formulated the optimal control problem with a free ter-
minal angle. The transversality necessary condition for
optimality, together with the fact that all line segments
and inflection points must lie on the same straight line,
imply that the set of six candidates for optimal paths for
the constrained terminal angle problem, reduces to a set of
four possible paths for the relaxed version of the problem:
RD = {RS,LS,RL,LR}.
Dubins and relaxed Dubins optimal paths have been
considered also for the interception of a moving target.
Under the assumptions of a pursuer modeled as a Dubins
vehicle and a constant velocity target, Looker (2008)
suggests a search algorithm for finding the shortest CS
path to interception. The suggested algorithm is based on
a numeric solution for a single implicit equation for the
minimum time to interception, developed from a rigorous
analysis of the model constraints.

Bhatia and Frazzoli (2008) examine the rendezvous prob-
lem for a team of Dubins vehicles. For a pre-assigned
destination point far enough (four times the length of the
vehicle’s minimum turning radius) from all team members,
they propose a decentralized approximation algorithm for
minimum-time rendezvous with equal separation angles
between successive team members at the destination.

In this paper, we analyze the problems of minimum-time
interception and the problem of interception at a prede-
fined time. Because many interesting phenomena occur
when the target is located near or inside the pursuer’s
circle of minimum turning radius, we analyse such sce-
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narios thoroughly. We give lower and upper bounds on
the minimum time to interception that are easy to com-
pute, examine the relation between shortest paths and
minimum-time interception paths, and we show that short-
est paths may not be the optimal strategy for achieving
a minimum-time interception. We propose two algorithms
for path elongation and show that paths cannot always be
elongated continuously.

2. PROBLEM FORMULATION

We consider the problem of a pursuer modeled as Dubins
vehicle trying to intercept a moving, yet non-maneuvering
target, at a predefined time. We assume that:

(1) The velocities of the pursuer and target are coplanar.

(2) The target travels on a straight line at constant speed.

(3) The pursuer is modeled as a Dubins vehicle.
(4) There are no obstacles.
(5) The pursuer has full information about the target’s

future trajectory and speed.

The kinematic equations of a Dubins vehicle are(
ẋ
ẏ
α̇

)
=

 V cosα
V sinα

u
V

r

 , (1)

with (x, y) being the inertial position coordinates, α is the
orientation, measured counter-clockwise from the x-axis,
V is the speed, r is the minimum turning radius and u is
the control satisfying |u| ≤ 1.

The subscripts T and P, used throughout this paper,
refer to the target and pursuer, respectively. We use the
notation Ω ∈ R3 for a configuration, which is a position
and orientation triplet expressed in some inertial Cartesian
frame. We denote an inertial position with no orientation
constraint by ω ∈ R2.

Now, we formulate the problem of interception at a pre-
defined time as an optimal control problem. Without loss
of generality we assume the scenario starts at time t = 0
with the configurations of the pursuer and the target being
Ω0
P = (x0P , y

0
P , α

0
P ) and Ω0

T = (x0T , y
0
T , α

0
T ), respectively.

The scenario ends at the predefined time treq ≥ 0. The
solution to the problem will be a control that minimizes
the miss distance between the adversaries at treq. We are,
thus, lead to following optimal control problem.

Minimize the cost

J = (xP (treq)− xT (treq))
2 + (yP (treq)− yT (treq))

2, (2)

subject to the constraints


ẋP
ẏP
α̇P
ẋT
ẏT
α̇T

 =



VP cosαP
VP sinαP

u
VP
r

VT cosαT
VT sinαT

0

 , (3)

|u| ≤ 1, (4)

ΩP (0) = Ω0
P ,

ΩT (0) = Ω0
T .

(5)

One may obtain a numerical solution for this non-linear
optimal control problem, but in this work we aim at a
better understanding of the problem, using an analytic
approach. We divide the solution into two stages. First
we seek the minimum time required for capture (zero-
miss interception) denoted as tmin. Sufficient conditions
for capture were suggested by Cockayne (1967); Section
3 covers those conditions and provides helpful guidelines
for finding tmin. Once we know that capture is possible
and we have tmin, we address in Section 4 the problem
of interception at a predefined time treq > tmin, using
path elongation algorithms. Conclusions are presented in
Section 5.

3. MINIMUM-TIME INTERCEPTION

We start by defining some helpful notation. We often
use the splitting of the 2D space to the left-hand-side
(LHS) and right-hand-side (RHS). LHS (resp. RHS)
represents the half plane located to the left (resp. right)
of the axis defined by Ω0

P . We denote the left and right
circles of minimum turning radius, tangent to the pursuer’s
initial configuration Ω0, as DL and DR. The length of the
shortest path of a Dubins vehicle from Ω0 to Ωf will be
denoted by Dub(Ω0,Ωf ). The shortest path from Ω0 to
ωf will be denoted by RDub(Ω0, ωf ). The trajectory of
the target will be denoted by γ(t) : [0,∞) → R2. Given a
time t, the image γ indicates the target’s inertial position.
The function f̃sP (ω) : R2 → [0,∞), denoted as a time-
to-reach (TTR) function, represents the time it takes the
pursuer to reach from its initial configuration to any point
ω ∈ R2, using some feasible path-planning strategy s.

f̃∗P (ω) =
RDub(Ω0

P , ω)

VP
is a TTR function of a pursuer

that uses the relaxed Dubins shortest path strategy. The
composition f̃sP (γ(t)) indicates the time it takes a pursuer
that uses some feasible path-planning strategy s to reach
the point γ(t) ∈ R2 on the target’s trajectory. Since
the trajectory of the target is fixed (Assumption 2), we

simplify the notation by setting fsP (t) , f̃sP (γ(t)). The

TTR function of the target f̃T (· ) : γ(t) → [0,∞) is

actually the left inverse of γ(t) and thus we get fT (t) ,
f̃T (γ(t)) = t : [0,∞) → [0,∞). We notice that all TTR
functions are non-negative by definition and that fT (t) is
a continuous monotonically strictly increasing function.

For a pursuer and a target modeled as Dubins vehicles,
Cockayne (1967) shows that the pursuer will be able to
capture the target from any initial state if and only if

VP > VT and
V 2
P

rP
≥ V 2

T

rT
, where rP and rT are the mini-

mum turning radii of the pursuer and target, respectively.
In our scenario of interest, the target travels at constant
velocity while the pursuer is free to maneuver (under
its acceleration limitations), thus a speed advantage is
a sufficient condition for capture. It is not a necessary
condition, in general, however. Consider, for example, the
case of adversaries that are initially aligned on a collision
triangle. In that case the pursuer will capture the target
(without maneuvering) even if it is inferior in the sense of
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speed. In terms of the TTR functions, when interception
is possible there exist a strategy s and a non-negative real
number t̂ such that: fsP (t̂) = fT (t̂).

Theorem 1. If the target’s trajectory does not enter nei-
ther one of the two circles of minimum turning radius,
tangent the pursuer’s initial velocity, f∗P is a continuous
function.

Proof. Under the above constraint on the target’s trajec-
tory, both functions that compose f∗P (t) = f̃∗P (γ(t)) are
continuous. The continuity of γ is an assumption based on
the fact that it describes a trajectory of a real object.
It can be shown that the function f̃∗P (ω) : R2 \ DL ∪
DR → [0,∞) can be expressed in terms of continuous
functions. Continuity is maintained even when the target
crosses from the LHS to the RHS of the plane or vice versa.

Lemma 2. A relaxed Dubins shortest path reaches every
point on the target’s trajectory in minimum time.

Proof. Implied directly from the optimality of the relaxed
Dubins shortest paths shown by Boissonnat and Bui
(1994).

Lemma 3. If f∗P is a continuous function and interception

is possible, there must exist a t̂ such that: f∗P (t̂) = fT (t̂).

Proof. Interception is achieved at t1 that satisfies

fsP (t1) = fT (t1). (6)

From Lemma 2 we get that

f∗P (t1) ≤ fsP (t1) = fT (t1). (7)

Assuming the pursuer and target start at different initial
positions, we get

f∗P (0) > fT (0) = 0. (8)

From (7), (8), and the continuity of f∗P and fT , we deduce

that ∃t̂ : 0 < t̂ ≤ t1 and f∗P (t̂) = fT (t̂).

Theorem 4. If f∗P is a continuous function and interception
is possible, then the pursuer can intercept the target in
minimum time by following a relaxed Dubins shortest
path.

Proof. Under the specified assumptions, Lemma 3 implies
that when interception is possible using some path plan-
ning strategy s, it must also be possible using the relaxed
Dubins shortest path strategy, that is achieved for t̂ that
satisfies

f∗P (t̂) = fT (t̂). (9)

We define t1 as the minimal value that satisfies equation
(9). Suppose there exists t2 < t1 that satisfies fsP (t2) =
fT (t2) for s 6= ∗. Lemma 2 and the definition of t1 imply
that

f∗P (t2) < fsP (t2) = fT (t2). (10)

From (8), (10), and from the continuity of f∗P and fT we
deduce that ∃t3 : 0 < t3 < t2 < t1 and f∗P (t3) = fT (t3).
That contradicts the definition of t1.

Theorem 5. A minimum-time interception of a moving
target may require the pursuer to use a strategy that will
not result in the shortest path to the interception point.

Proof. Consider the example described in Figure 1. We
choose the values of r = 1 and VP = 1. By choosing

the target’s speed to be VT =
√
3

4π VP we get that the
target reaches point B in the same time it takes the
pursuer to complete a 2π turn. Next, we show that the
pursuer cannot intercept the target inside its left turning
circle. For that, we consider relaxed Dubins shortest path
strategy, suggesting a path of type RL>π from point C
to each and every point γ(t) between A and B. The

corresponding TTR function would be fRL>πP (t). We show
that these paths are too long to enable interception inside
the pursuer’s left turning circle. The path marked with
squares in Figure 1 is the shortest path from C to A. The
pursuer will surely be late to meet the target at point A
because the target leaves A at t = 0, when the scenario
starts:

fRL>πP (0) > fT (0) = 0. (11)

The values for the problem parameters we chose above
impose that interception is achieved if the pursuer travels
on the path marked with circles, a path of length 2π. We
denote the time it takes the target to reach point B as tB
and thus we have

fRL>πP (tB) = fT (tB). (12)

The function fRL>πP is a monotonically strictly increasing
function for 0 ≤ t ≤ tB because as the final point of the
path gets closer to point B, both segments for the right
and left turns get longer. We also recall that fT is a linear
function. We can consider the RL>π path planing strategy
to points on the target’s trajectory as if each point γ(t)
corresponds to a roll angle of the left turning circle over
the fixed right turning circle (see Figure 1b). Ignoring its
roll, we can decouple the translation of the left turning
circle and say that it moves upwards and right. The right
motion does not effect the length of the left turn because
the target’s path is parallel to that direction. The upwards
motion does in fact elongate the length of the left turn
segment. As the left turning circle rolls over the fixed
right turning circle, the component of the upwards motion
decreases and so does the rate of the left turn length

elongation, suggesting that fRL>πP is a concave function.

We can conclude by saying that fRL>πP and fT do not

intersect at any point γ(t̂) satisfying t̂ < tB .

To summarize, we showed that the pursuer cannot inter-
cept the target inside its left turning circle. Minimum-time
interception is achieved at point B on the path marked
with circles, whereas the relaxed Dubins shortest path to
point B is the path marked with triangles, reaching point
B before the target does and thus is not an interception
path.

Figure 2 illustrates another interception scenario for which

r = 1 and VP = 1, and VT = 2
√
3

5 VP . We consider six
different path planning strategies for the pursuer, specified
in the legend of Figure 2b. Among the covered strategies,
minimum-time interception is achieved using the RL<π
strategy which does not belong to the RD set of shortest
path candidates, suggesting that the set of minimum-time
interception path candidates does not coincide with the
set of shortest path candidates.
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(a) The counter-example used in the proof of Theorem 5.
The target is heading from point A towards point B on a
straight line. The pursuer is initially located at point C, heading
upwards.
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(b) Paths of the pursuer to
points on the target’s trajectory.

0 2 4 6 8 10 12
0

2

4

6

8

10

12

time

f

A

B

 

 

f
P
RL

>π

f
P
*

f
T

(c) TTR functions – the dis-
continuity of f∗P occurs at tB .

f
RL>π
P is continuous in the ex-

amined domain and intersects
fT at tB .

Fig. 1. r = 1, VP = 1, VT =
√
3

4π
VP - Minimum time interception

is achieved with a path longer than the shortest path to the
interception point.
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(a) Scenario Configuration - The
target is heading from point A
towards point B. The pursuer
is initially located at point C,
heading upwards.
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(b) TTR functions - considering

the specified strategies, f
RL<π
P

is the first to intersect fT .

Fig. 2. r = 1, VP = 1, VT = 2
√
3

5
VP - Minimum time interception

is achieved using the RL<π /∈ RD strategy.

Proposition 6. For a pursuer having a speed and a maneu-

verability advantage over its target tmin ≤
Dub(Ω0

P ,Ω
0
T )

VP − VT
.

Proof. If the pursuer follows the target’s trajectory, it will
eventually capture the target due to its speed advantage.
The pursuer can align its velocity with the target’s trajec-
tory by following a Dubins path from Ω0

P to Ω0
T . It takes

the pursuer
Dub(Ω0

P ,Ω
0
T )

VP
units of time to complete this

path. During that time, the target travels
VT
VP

Dub(Ω0
P ,Ω

0
T )

distance units. This distance is then closed with the rel-
ative speed of the pursuer and target: VP − VT . To sum-

marize, the total duration of the path described above is:

Dub(Ω0
P ,Ω

0
T )[

1

VP
+

VT
VP (VP − VT )

] =
Dub(Ω0

P ,Ω
0
T )

VP − VT
.

The following lemma will be used to establish a lower
bound on tmin while considering a target that follows a
straight line trajectory.

Lemma 7. Assuming that interception is possible, a pur-
suer with no acceleration constraints and constant speed
achieves minimum-time interception of a non-maneuvering
target by heading straight to the interception point,
namely moving on the smallest available 1 collision trian-
gle defined by the adversaries’ relative geometry and their
speed ratio.

Proof. Let us assume that minimum time interception
is achieved by a pursuer taking a non-straight path to the
interception point, we indicate this strategy by NStrt. We
mark the interception point by γ(t1):

fNStrtP (t1) = fT (t1). (13)

A pursuer heading straight (a strategy indicated by Strt)
towards point γ(t1) would surely precede the NStrt pur-
suer and the target to that point, because a straight line
is the shortest path between two points

fStrtP (t1) < fNStrtP (t1) = fT (t1). (14)

Assuming the pursuer and target start at different initial
positions we get

fStrtP (0) > fT (0) = 0. (15)

We notice that fStrtP is a continuous function and we
recall that fT is also continuous. Combining the property
of continuity with equations (14) and (15) we get that
∃t̂ : 0 < t̂ < t1 and fStrtP (t̂) = fT (t̂) ≡ tSCT .

2 That
contradicts the definition of γ(t1) as the point of minimum
time interception. t̂ can easily be derived by finding the
smallest available collision triangle, which is defined by
the adversaries’ relative geometry and their speed ratio.

Corollary 8. For any pursuer modeled as a Dubins vehicle
that sets to intercept a constant-speed, non-maneuvering
target, tmin ≥ tSCT .

Proof. A lower bound can be obtained by relaxing some
of a problem’s constraints. In this case we relax the accel-
eration constraint that the Dubins vehicle is subjected to
and the corollary follows from Lemma 7.

4. INTERCEPTION AT A GIVEN TIME

We now address the problem formulated in Section 2 of
interception at a predefined time treq. We focus on the
interesting scenario where treq ≥ tmin.

First, we notice that if a Dubins vehicle can reach a point
at time t̂, it does not mean that it can reach that point at
any given time t > t̂, as can be illustrated in the scenario
described in Figure 3. Furthermore, this example shows

1 For a target with a speed advantage over the pursuer, it was shown
by Shima (2011) that, when interception is possible, the pursuer can
choose between two admissible collision triangles.
2 SCT stands for Smallest Collision Triangle.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2524



that the existence of a point on the target’s trajectory, for
which the pursuer can precede the target, is not a sufficient
condition for capture, equivalently,

∃t1 : fsP (t1) < fT (t1) ; ∃t2 : fsP (t2) = fT (t2). (16)

A

B

(a) Scenario Configuration -
The target is heading from
point A towards point B.
The pursuer is initially lo-
cated a small distance, ε,
to the right of point B and
heading towards it.

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

9

10

time

f

A
B

 

 

f
P
RL

<π

f
P
RL

>π

f
P
LR

<π

f
P
LR

>π

f
P
*

f
T

(b) TTR functions - f∗P ’s discontinu-
ity occurs at tB .

Fig. 3. r = 1, VP = 1, VT = 3VP - The pursuer gets to a singular
region (that gets smaller with ε getting smaller) on the target’s
trajectory before the target does, but will never capture it.

In view of the last scenario, we provide conditions under
which the implication in (16) does hold.

Lemma 9. For given initial configuration and final posi-
tion {Ω0,ωf} and a CS path connecting them, if the length

of the straight line segment satisfies |S| ≥ r
√

8 it is possible
to extend the path length by an arbitrary length ∆x > 0.

Proof. We follow the approach of Bhatia and Frazzoli
(2008) who give a similar proof for the case of a fixed
terminal angle. Extending the path length by 2πrn, n ∈ N,
is trivial by making n loops around a point on the original
path. Let us assume, then, that ∆x = mod(∆x, 2πr). We
suggest the path modification shown in Figure 4 for an LS
path: take a right turn on the circle marked with squares
followed by a left turn on the circle marked with triangles
(the same approach is applicable for the modification of an
RS path). Consider the circle marked with triangles as if
it were connected to a hinge located on the final position.
We can rotate the circle marked with triangles counter-
clockwise around the hinge like the sequence described
in Figures 4a→ 4b→4c→ 4d. The circle marked with
squares sits on top of the straight line and is tangent
to the circle marked with triangles. As the circle marked
with triangles moves from 4a to 4b the circle marked with
squares rolls right on the straight line segment. The circle
marked with squares rolls left when the circle marked with
triangles moves from 4b through 4c to 4d. This method
enables a continuous modification of the path length for
0 < ∆x < 2πr.

Figure 5a shows LHS |S|-loci of the final position. For
every point outside the LHS |S|-locus a LS path would
have a straight line segment longer than |S|. A RHS |S|-
locus can be obtained by reflecting the LHS |S|- locus
around the axis defined by Ω0

P .

Lemma 10. The length of the Dubins path defined by the
initial and final configurations {Ω0 = (x0, y0, α0),Ωf =

r

(a)

r

3r
r

r
√
8

(b)

r

2r

(c)

r

(d)

Fig. 4. Elongation of an LS path

|S| = r
√
8

3r

|S| = r

√
2r

4r

r

(a) LHS |S|-loci of the
final position

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

Path elongation [r]

|S
| [

r]

 

 
CC

>π
CC

<π

(b) The straight line segment length |S|
required for the elongation of a CS path
according to the method described in the
proof of Lemma 9.

Fig. 5. CS path - length of the straight line segment |S|

(xf , yf , α0 + π)} can be extended by an arbitrary length
∆x > 0.

Proof. If the initial and final orientations are heading in
opposite directions, to extend the path length by ∆x one

can add two straight line segments of length
∆x

2
after the

initial and before the final positions, aligned with α0 and
α0 + π, respectively. We can look at this method as if we
are translating the initial and final configurations while
maintaining the relative geometry.

Lemma 11. Given the initial configuration and final posi-
tion {Ω0 = (ω0, α0), ωf} satisfying |ωf − ω0| ≥ 4r, the
length of the relaxed Dubins shortest path connecting
them can be extended by an arbitrary length ∆x > 0.

Proof. Bhatia and Frazzoli (2008) showed that, given an
initial configuration Ω0 = (ω0, α0) and a final position ωf

satisfying |ωf − ω0| ≥ 4r, the length of the optimal path
for a Dubins vehicle is a continuous function of the final
orientation αf . The relaxed Dubins shortest path reaches

the final position in an arbitrary orientation αfRD. We can
refer to the final orientation as a constraint and describe a
process of rotation of the final orientation from the value

of αfRD towards α0+π. For a given final orientation we can
compute the Dubins shortest path. According to the theo-
rem by Bhatia and Frazzoli, the process of rotation of the
final orientation maintains a continuous modification of
the length of the original path. If we met the desired path
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length during the rotation process, our goal is achieved.
Otherwise, Lemma 10 implies that an arbitrary elongation
of the path length can be obtained if the final orientation
of the path is α0 + π.

We propose two algorithms for planning a path with a
duration that equals treq. We assume a Dubins vehicle with
speed v and minimum turning radius r and ω0 6= ωf . A
successful finish of an algorithm is indicated by finish, a
failure is indicated by quit.

Algorithm 1. Elongation 1

(1) Define an auxiliary variable x and x← 0.
(2) Given an initial configuration Ω0 = (ω0, α0) and a

final position ωf , compute a CS path according to
the value of x:
(a) x = 0: x← 1. If ωf is located on the LHS (resp.

RHS) of the plane, outside DL (resp. DR), use
a LS path (resp. RS) and continue to Step 3,
otherwise return to Step 2.

(b) x = 1: x← 2. If ωf is located on the LHS (resp.
RHS) of the plane, use a RS path (resp. LS) and
continue to Step 3.

(c) x = 2: quit.
(3) Denote the length of the straight line segment and

the duration of the path calculated in Step 2 as |S|
and tCS , respectively. If treq ≥ tCS , calculate the
corresponding path elongation ∆x = (treq − tCS)v
and continue to Step 4, otherwise quit.

(4) Use Figure 5b to find a sufficient length of straight
line segment |S|suf that corresponds to the required
elongation mod(∆x, 2πr).

(5) If |S| ≥ |S|suf continue to Step 6, otherwise, return
to Step 2.

(6) If ∆x ≥ 2πr make a loop around the initial position,
set ∆x to be ∆x−2πr and return to Step 6, otherwise
continue to Step 7.

(7) If ∆x > 0 continue to Step 8, otherwise finish.
(8) Elongate the path according to the method described

in the proof of Lemma 9 and finish.

Algorithm 2. Elongation 2

(1) Given an initial configuration Ω0 = (ω0, α0) and
a final position ωf , compute the relaxed Dubins
shortest path and denote its duration as tRD.

(2) If treq ≥ tRD calculate the corresponding path elon-
gation ∆x = (treq − tRD)v and continue to Step 3,
otherwise treq is unfeasible - quit.

(3) Compute the shortest Dubins path defined by the
configuration’s pair {Ω0, (ωf , α0 + π)} and the dif-

ference ∆̂x between its length and the length of the

path calculated in Step 1. If ∆̂x < ∆x continue to
Step 4, otherwise jump to Step 5.

(4) Add two straight line segments of length
∆x− ∆̂x

2
after the initial and before the final positions, aligned
with α0 and α0 + π, respectively, and finish.

(5) Create a set of N final orientations αi, i ∈ 1..N ,
equally spaced between 0 and 2π.

(6) ∀i = 1..N Compute the shortest Dubins path defined
by the pair of configurations {Ω0, (ωf , αi)} and the

difference ∆̂xi between its length and the length of
the path calculated in Step 1.

(7) If there exists a path i satisfying |∆̂xi − ∆x| < ε,
for a positive number ε as small as we wish, finish,
otherwise continue to Step 8.

(8) If there exist two successive paths j and k (k = j+1 or

j = N and k = 1) such that ∆̂xj < ∆x < ∆̂xk create
a set of N finial orientations αi, i ∈ 1..N , equally
spaced between αj and αk and return to Step 6 3 ,
otherwise quit.

Notice that, given Ω0, {ωf
∣∣ ∃CS path : |S| ≥ r

√
8} ⊂

{ωf
∣∣ |ωf − ω0| ≥ 4r}, as can be observed in Figure

5a. For a given pair of an initial configuration and a final
position, Elongation 1 and Elongation 2 do not necessarily
require the preconditions of |S| ≥ r

√
8 and |ωf −ω0| ≥ 4r,

respectively. However, Elongation 1 is not applicable if
the length of the straight line segment is not sufficiently
large (see: Figure 5b), whereas Elongation 2 can always
generate a path with an arbitrary duration starting from
the duration of the relaxed Dubins shortest path defined
by {Ω0 = (x0, y0, α0),Ωf = (xf , yf , α0 + π)}.

5. CONCLUSION

The problems of intercepting a moving target in minimum
time and at a predefined time were investigated. We gave
conditions for shortest paths to coincide with minimum-
time interception paths and gave examples where this is
not the case. We provided easy-to-compute, lower and
upper bounds on the minimum time to interception. For
the problem of interception at a predefined time, we
proposed two path elongation algorithms, and discussed
the contribution of each one of them and their ability to
generate a continuous elongation.
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