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Abstract:
The state estimation problem, here investigated, regards a class of nonlinear stochastic systems,
characterized by having the state model described through stochastic differential equations
meanwhile the measurements are sampled in discrete times. This kind of model (continuous-
discrete system) is widely used in different frameworks (i.e. tracking, finance and systems
biology). The proposed methodology is based on a proper discretization of the stochastic
nonlinear system, achieved by means of a Carleman linearization approach. The result is a
bilinear discrete-time system (i.e. linear drift and multiplicative noise), to which the Kalman
Filter equations (or the Extended Kalman Filter equations in case of nonlinear measurements)
can be applied. Because the approximation scheme is parameterized by a couple of indexes,
related to the degree of approximation with respect to the deterministic and the stochastic terms,
in the numerical simulations, different approximation orders have been used in comparison with
standard methodologies. The obtained results encourage the use of the proposed approach.

Keywords: Nonlinear Filtering, Stochastic Systems, Nonlinear Systems, Kalman Filtering,
Carleman Approximation

1. INTRODUCTION

Consider the following stochastic nonlinear differential
system endowed with sampled measurements,

dxt = f(xt)dt+

s∑
i=1

FidWi,t, t > 0

yi∆ = h(xi∆) +GNi, i = 0, 1, . . .

(1)

where xt ∈ Rn is the state vector, yi∆ ∈ Rq, i =
0, 1, . . . are the sampled measurements at time t = i∆,
Wi,t ∈ R are a set of pairwise independent standard
Wiener processes with respect to a family of increasing
σ-algebras {Ft, t ≥ 0}, Ni ∈ Rq, i = 0, 1, . . . is a
sequence of zero-mean independent random vectors, with
identity covariance matrix, independent of the state noise.
f : Rn → Rn and h : Rn → Rq are analytical nonlinear
maps. The initial state x0 = x̄ is an F0-measurable
random vector, independent of bothWt andNi. In order to
avoid singular filtering problems, see Bucy and Jonckheere
[1989], the standard assumption rank(GGT ) = q is used.

A continuous-discrete modeling approach is necessary in
many realistic frameworks where the model under investi-
gation is required to satisfy the underlying physics of a dy-
namical system whilst measurements are constrained to be
discrete. Filtering problems in such a continuous-discrete

domain occur in a wide range of frameworks, including
tracking [Teixeira et al., 2008], finance [Oksendal, 2003]
and systems biology [Hartmann et al., 2012].

It is well known that the solution to the optimal filtering
problem (in terms of the minimum variance estimate)
is a difficult infinite-dimensional problem for nonlinear
systems and, in general cases, it does not admit an imple-
mentable solution (see, e.g. Liptser and Shiryayev [1977]).
Only in few cases does the optimal filter have a finite
dimension (see Wong and Yau [1999] Basin and Calderon-
Alvarez [2009]). One way to approach nonlinear filtering
problems, in the general cases, is to approximate the orig-
inal system by means of a simpler mathematical structure
for which finite-dimensional, implementable state estimate
algorithms are available. This is the case, for instance, of
the Extended Kalman Filter (EKF), that makes use of
the linearization of the original nonlinear system, or of the
more recent polynomial extensions of the EKF, that suit-
ably exploit higher order degree Carleman approximation
(see, e.g. Germani et al. [2005, 2007] for both the discrete
and continuous frameworks).

For the continuous-discrete scenario here considered, the
EKF-based algorithms available in the literature (see, e.g.
Jazwinski [1970], or the more recent Hartmann et al.
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[2012], Jorgensen et al. [2007]) make use of the free evolu-
tion of the system (the mean value differential system):

˙̂xt = f(x̂t), x̂t=k∆ = x̂k|k (2)

to compute the state prediction x̂k+1|k at the endpoint
of the time interval between a couple of consecutive
measurements [k∆, (k + 1)∆), starting from the estimate
x̂k|k, whilst the one-step prediction error covariance matrix
Pk+1|k is computed at the endpoint of the same interval
as the evolution of the continuous-time Riccati equation

Ṗt = A(t)Pt + PtA(t)T +

s∑
i=1

FiF
T
i , (3)

starting from Pt=k∆ equal to the error covariance matrix,
with matrix A(t) given by the Jacobian matrix of f(·)
computed in x̂t. Then the state estimate equations are
updated (as well as the error covariance matrix and the
Kalman gain) according to the optimal linear filter equa-
tions applied to the first-order approximation of the sys-
tem equations. This note proposes the use of the polyno-
mial Carleman approximation scheme (see, e.g., Kowalski
and Steeb [1991]) to compute a discrete-time approxima-
tion of the continuous-time stochastic nonlinear system,
with the aim to achieve a more accurate prediction step
in the filtering algorithm. Indeed, it has been shown that,
in a deterministic framework, the Carleman linearization
technique provides the embedding of the original nonlinear
system into an infinite-dimensional linear system, whose
discretization can be achieved and easily implemented with
a finer and finer degree of precision, Cacace et al. [2011].
The same idea is applied to the stochastic case here investi-
gated, providing a discrete-time bilinear system, i.e. linear
drift and multiplicative noise, whose system matrices will
be properly exploited to build up the filter equations (the
prediction step, actually).

The same continuous-discrete filtering problem has been
recently addressed by the same authors, according to a
different mixed observer-filter algorithm, Cacace et al.
[2013a], in the spirit of the application of high-gain ob-
servers in the stochastic context, see e.g. Ahrens and Khalil
[2009], Andrieu et al. [2009], Boizot et al. [2010], Sanfelice
and Praly [2012], Cacace et al. [2013b].

2. THE CARLEMAN-BASED DISCRETIZATION

The filtering algorithm is based on the discretization of
the nonlinear stochastic differential system (1), providing
a discrete-time stochastic system whose state evolves ac-
cording to the measurements sampling times. To this aim,
consider the time interval [k∆, (k + 1)∆), where ∆ is the
measurement sampling interval. In the following X(k) de-
notes the discrete state resembling xk∆ and φkt : [k∆, (k+
1)∆) → Rn is defined as φkt = xt − X(k). Since the rest
of the Section is devote to achieve the update equation for
X(k+1) within the sampling interval under investigation,
in order to simplify the notation we drop the superscript
k in φkt .

According to the Taylor expansion of the nonlinear func-
tion f(·) around X(k), it is:

dφt = dxt =

∞∑
j=0

Φ1
j (k)φ

[j]
t dt+

s∑
i=1

FidWi,t (4)

with

Φ1
j (k) =

∇[j]
x ⊗ f(x)

j!

∣∣∣∣∣
x=X(k)

∈ Rn×n
j

(5)

where the square brackets in φ[i] are used for the Kronecker
power of vector φ (that is φ[i] = φ⊗φ⊗· · ·⊗φ, repeated i
times) and ∇x ⊗ φ(x) provides the Jacobian of any vector
function φ(x) (see Germani et al. [2007] and references
therein for more details). Notice that Φ1

0(k) = f
(
X(k)

)
,

Φ1
1(k) is the Jacobian of f computed in X(k).

According to the spirit of the Carleman approximation we
aim to embed the nonlinear stochastic differential system
of φt, evolving in the sampling interval [k∆, (k+1)∆), into
a stochastic infinite-dimensional linear system. To this aim

we require to compute the differentials of φ
[h]
t , h > 1, that

is, according to the Ito formula and to (4):

d
(
φ

[h]
t

)
=
(
∇⊗ φ[h]

t

) ∞∑
j=0

Φ1
j (k)φ

[j]
t dt

+
1

2

(
∇[2] ⊗ φ[h]

t

)
F0dt+

(
∇⊗ φ[h]

t

) s∑
i=1

FidWi,t,

(6)

where

F0 =

s∑
i=1

F
[2]
i ∈ Rn

2×1 (7)

with Fi denoting the i-th column of matrix F , and

∇⊗ φ[h]
t = Uhn

(
In ⊗ φ[h−1]

t

)
, Uhn ∈ Rn

h×nh

∇[2] ⊗ φ[h]
t = Ohn

(
In2 ⊗ φ[h−2]

t

)
, Ohn ∈ Rn

h×nh
(8)

see Germani et al. [2007] for more details on the explicit
computation of matrices Uhn and Ohn.

Thus, by suitably exploiting (8) we have:

d
(
φ

[h]
t

)
=

∞∑
j=0

Uhn

(
In ⊗ φ[h−1]

t

)(
(Φ1

j (k)φ
[j]
t )⊗ 1

)
dt

+
1

2
Ohn

(
In ⊗ φ[h−2]

t

) (
F0 ⊗ 1

)
dt

+

s∑
i=1

Uhn

(
In ⊗ φ[h−1]

t

) (
Fi ⊗ 1

)
dWi,t

(9)

According to the following property of the Kronecker
product

(A⊗B) · (C ⊗D) = (A · C)⊗ (B ·D) (10)

that holds true for suitably dimensioned matrices A, B,
C, D, the following simplifications can apply

Uhn

(
In ⊗ φ[h−1]

t

)(
(Φ1

j (k)φ
[j]
t )⊗ 1

)
= Uhn

(
(Φ1

j (k)φ
[j]
t )⊗ φ[h−1]

t

)
= Uhn

(
(Φ1

j (k)φ
[j]
t )⊗

(
Inh−1φ

[h−1]
t

))
= Uhn

(
Φ1
j (k)⊗ Inh−1

)
φ

[j+h−1]
t

(11)

Ohn

(
In2 ⊗ φ[h−2]

t

)
(F0 ⊗ 1) = Ohn

(
F0 ⊗ φ[h−2]

t

)
= Ohn

(
(F0 · 1)⊗

(
Inh−2φ

[h−2]
t

))
= Ohn (F0 ⊗ Inh−2)φ

[h−2]
t

(12)
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Uhn

(
In ⊗ φ[h−1]

t

)
(Fi ⊗ 1) = Uhn

(
Fi ⊗ φ[h−1]

t

)
= Uhn

(
(Fi · 1)⊗

(
Inh−1φ

[h−1]
t

))
= Uhn (Fi ⊗ Inh−1)φ

[h−1]
t

(13)

so that the differentials in (6)-(9) can be written, in a
unified fashion for h = 1, 2, . . .:

d
(
φ

[h]
t

)
=

∞∑
j=0

Uhn
(
Φ1
j (k)⊗ Inh−1

)
φ

[j+h−1]
t dt

+
1

2
Ohn (F0 ⊗ Inh−2)φ

[h−2]
t dt

+

s∑
i=1

Uhn (Fi ⊗ Inh−1)φ
[h−1]
t dWi,t

=

∞∑
l=h−1

[Ak]hlφ
[l]
t dt+ [Lk]hdt

+

s∑
i=1

(
[Bi]h,h−1φ

[h−1]
t + [Fi]h

)
dWi,t

(14)

with

[Ak]hl =


1

2
Ohn (F0 ⊗ Inh−2) , l = h− 2 > 1

Uhn
(
Φ1
l−h+1(k)⊗ Inh−1

)
, l ≥ h− 1

0, otherwise

(15)

[Lk]h =


Φ1

0(k), for h = 1

1

2
O2
nF0, for h = 2

0, otherwise

(16)

[Bi]h,h−1 = Uhn (Fi ⊗ Inh−1), h > 1 (17)

[Fi]h =

{
Fi, h = 1

0, otherwise
(18)

In order to write the infinite dimensional Carleman em-
bedding (4)-(9) in the interval t ∈ [k∆, (k + 1)∆)
in a more compact form, define the extended state

Ψt =
[
φTt , φ

[2]T
t , . . .

]T
, evolving according to the following

stochastic differential system:

dΨt = AkΨtdt+ Lkdt+

s∑
i=1

(BiΨt +Gi) dWi,t

Ψt=k∆ = 0

(19)

where the infinite dimensional matrices Lk, Ak, Bi and Fi
have the block-structure

Lk =



[Lk]1
[Lk]2

0
0
0
...

 , Ak =



[Ak]11 [Ak]12 [Ak]13 · · ·
[Ak]21 [Ak]22 [Ak]23 · · ·
[Ak]31 [Ak]32 [Ak]33 · · ·

0 [Ak]42 [Ak]42 · · ·
0 0 [Ak]53 · · ·
...

...
. . .

. . .



Fi =


[Fi]1

0
0
0
...

 , Bi =


0 0 0 · · ·

[Bi]21 0 0 · · ·
0 [Bi]32 0 · · ·

0 0 [Bi]43
. . .

...
...

. . .
. . .

 ,
(20)

with 0 denoting null matrices of suitable size .

The integral equation associated to (19) is given by:

Ψt =

∫ t

k∆

eAk(t−τ)Lkdτ

+

s∑
i=1

∫ t

k∆

eAk(t−τ) (BiΨτ +Gi) dWi,τ .

(21)

Since φt = xt − X(k) we can use only the first n
components of vector Ψt to compute the updateX(k+1) =
x(k+1)∆. Indeed, it is φt = LΨt, with L = [In 0n×n2 · · · ],
therefore, from (21):

X(k + 1) = X(k) + Uk + Vk. (22)

with

Uk =

∫ (k+1)∆

k∆

LeAk((k+1)∆−τ)Lkdτ =

∫ ∆

0

LeAkθLkdθ

=

∫ ∆

0

∞∑
i=0

LA
i
kθ
i

i!
Lkdθ =

∞∑
i=1

LAi−1
k Lk

∆i

i!

(23)

and

Vk =
s∑
i=1

∫ (k+1)∆

k∆

LeAk((k+1)∆−τ) (BiΨτ +Gi) dWi,τ

(24)

Remark 1. Notice that the computation for the deter-
ministic drift Uk can be done in a finer and finer way,
according to the degree of tolerance required. Indeed, each
term of the infinite sum in (23) is a finite dimensional
matrix coming by suitably combining infinite-dimensional
matrices (see Cacace et al. [2011] for more details). On the
other hand, the stochastic term Vk is a multiplicative noise,
since the components of Ψt are involved in the stochastic
integral. In presence of a complete statistical characteri-
zation of the stochastic driving term Vk, by taking into
account all the infinite terms for the computation of Uk
we would have an exact discretization if starting from
X(k) = xk∆.

As far as the sequence Vk, k = 0, 1, . . ., it is easy to verify
that it is a sequence of zero-mean uncorrelated random
vectors, that is E

[
VkVTj

]
= 0, k 6= j.

Lemma 2. Define Ξk = E
[
VkVTk

]
the covariance matrix of

the random sequence Vk in (22). Then it is:

Ξk =

s∑
i=1

∫ (k+1)∆

k∆

LeAk((k+1)∆−τ)

·Qi
(
ητ ,mτ

)
eA

T
k ((k+1)∆−τ)LT dτ

(25)

where

Qi
(
ητ ,mτ

)
= E

[(
BiΨτ + Fi

)(
BiΨτ + Fi

)T ]
= BimτB

T
i +

(
Biητ + Fi

)(
Biητ + Fi

)T (26)

with

ηt = E [Ψt]

mt = Cov(Ψt) = E
[
(Ψt − ηt) (Ψt − ηt)T

] (27)

mean value and covariance matrix of Ψt.

Proof Eq.(25) is a straightforward consequence of the Ito
isometry, since:
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Ξk =

s∑
i=1

s∑
j=1

E

[∫ (k+1)∆

k∆

∫ (k+1)∆

k∆

LeAk((k+1)∆−τ1)
(
BiΨτ1 + Fi

)(
BjΨτ2 + Fj

)T
· eA

T
k ((k+1)∆−τ2)LT dWi,τ1dWj,τ2

]

=

s∑
i=1

∫ (k+1)∆

k∆

LeAk((k+1)∆−τ)

· E
[(
BiΨτ + Fi

)(
BiΨτ + Fi

)T ]
eA

T
k ((k+1)∆−τ)LT dτ

(28)

and

E
[(
BiΨτ + Fi

)(
BiΨτ + Fi

)T ]
= E

[(
Bi(Ψτ − ητ ) +Biητ + Fi

)
·
(
Bi(Ψτ − ητ ) +Biητ + Fi

)T ]
= Qi

(
ητ ,mτ

) (29)

2

Unfortunately, Lemma 2 is of poor practical use, since
the exact computation of Ξk (an n× n finite-dimensional
matrix) passes through the computation of a pair of
infinite-dimensional objects like ηt and mt. Therefore, in
order to provide a finite-dimensional approximation of
both ηt and mt, the µ-degree Carleman approximation
of Ψt will be considered, by taking into account the

differentials d(φ
[h]
t ) for h ≤ µ and trivially neglecting in

the right-hand-side of in (14) the higher-than-µ Kronecker

powers of φt. This way, by denoting Ψh,µ
t the µ-degree

Carleman approximation of φ
[h]
t , the infinite-dimensional

equation (19) may be replaced by the finite-dimensional

equation for Ψµ
t =

[
(Ψ1,µ

t )T , (Ψ2,µ
t )T , . . . , (Ψµ,µ

t )T
]T

:

dΨµ
t = AµkΨµ

t dt+ Lµkdt+

s∑
i=1

(Bµi Ψµ
t + Fµi ) dWi,t (30)

where Lµk , Fµi (and Aµk , Bµi ) are provided by the first µ
blocks (the first µ row-blocks and column-blocks) in (20).

The integral equation associated to (30) is:

Ψµ
t =

∫ t

k∆

eA
µ
k

(t−τ)Lµkdτ

+

s∑
i=1

∫ t

k∆

eA
µ
k

(t−τ) (Bµi Ψµ
τ + Fµi ) dWi,τ .

(31)

according to which:

ηµt = E[Ψµ
t ] =

∫ t

k∆

eA
µ
k

(t−τ)Lµkdτ (32)

and

mµ
t =Cov(Ψµ

t ) = E

[
s∑
i=1

s∑
j=1

∫ t

k∆

∫ t

k∆

eA
µ
k

(t−τ1)

·
(
Bµi Ψµ

τ1 + Fµi
)(
Bµi Ψµ

τ2 + Fµi
)T

· eA
µT
k

(t−τ2)dWi,τ1dWj,τ2

]

=

s∑
i=1

∫ t

k∆

eA
µ
k

(t−τ)Qi
(
ηµτ ,m

µ
τ

)
eA

µT
k

(t−τ)dτ

(33)

From an implementing point of view it is useful to achieve
the differential equations associated to (32)-(33) for t ∈
[k∆, (k + 1)∆):

η̇µt =Lµk +

∫ t

k∆

Aµke
Aµ
k

(t−τ)Lµkdτ = Aµkη
µ
t + Lµk ,

ηµk∆ =0.

(34)

and

ṁµ
t =

s∑
i=1

Qi
(
ηµt ,m

µ
t

)
+

s∑
i=1

∫ t

k∆

Aµke
Aµ
k

(t−τ)Qi
(
ηµτ ,m

µ
τ

)
eA

µT
k

(t−τ)dτ

+

s∑
i=1

∫ t

k∆

eA
µ
k

(t−τ)Qi
(
ηµτ ,m

µ
τ

)
eA

T
k (t−τ)AµTk dτ

=

s∑
i=1

Qi
(
ηµt ,m

µ
t

)
+Aµkm

µ
t +mµ

t A
µT
k , mµ

k∆ = 0.

(35)

In summary, the Carleman-based discretization of the
nonlinear continuous time system (1) is formally provided
by:

Xµ,ξ(k + 1) = Xµ,ξ(k) + Uξk + Vµk . (36)

where the integer ξ defines the approximation of the
infinite sum in (23):

Uξk =

ξ∑
i=1

LAi−1
k Lk

∆i

i!
(37)

and {Vµk } is a sequence of zero-mean, uncorrelated random
vectors, with covariance matrix

Ξµk =

s∑
i=1

∫ (k+1)∆

k∆

LµeA
µ
k

((k+1)∆−τ)

·Qi
(
ηµτ ,m

µ
τ

)
eA

µT
k

((k+1)∆−τ)LµT dτ

(38)

and Lµ = [In 0n×n2 · · · 0n×nµ ].

3. THE FILTERING ALGORITHM

The state estimates at the sampling times are achieved
by suitably exploiting the Carleman-based discretization
of the nonlinear stochastic differential system (36). Notice
that the Carleman approach provides a bilinear discrete-
time system (i.e. linear drift and multiplicative noise), the
only nonlinearity relying in the output equation. Below
follow the steps of the filtering algorithm.

Initialization at k = 0. We set the initial conditions for the
(a priori) prediction x̂1|0 and for the (a priori) one-step
prediction covariance matrix P1|0.

Steps of the filtering algorithm.

• Update: In the update phase, the current a priori
prediction is combined with current observation in-
formation to refine the state estimate. This improved
estimate is termed the a posteriori state estimate.
(1) Innovation or measurement residual:

ỹk∆ = yk∆ − h(x̂k|k−1)

(2) Innovation covariance:

Sk = HkPk|k−1H
T
k +GGT
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with the observation matrix defined by the fol-
lowing Jacobian

Hk =
∂h

∂x

∣∣∣∣
x̂k|k−1

(39)

(3) Kalman gain:

Kk = Pk|k−1H
T
k S
−1
k

(4) Updated state estimate:

x̂k|k = x̂k|k−1 +Kkỹk∆

(5) Updated covariance estimate:

Pk|k = (In −KkHk)Pk|k−1

• Prediction: The prediction phase suitably exploits the
stochastic discretization (36) achieved by means the
Carleman approximation scheme around Xµ,ξ(k) =
x̂k|k.

(1) Compute Uξk according to a chosen degree of
precision ξ, by means of (37)

(2) Compute Ξµk according to the chosen degree µ of
the Carleman approximation, by means of (38)
and (34)-(35)

(3) Predicted state estimate:

x̂k+1|k = x̂k|k + Uξk
(4) Predicted covariance estimate:

Pk+1|k = Pk|k + Ξµk
Remark 3. Notice that the computation of Ξµk requires the
computation of the s integrals in (38), that is achieved by
means of the numerical solutions of ηµt and mµ

t provided
by (32)-(33).

4. SIMULATION

Numerical simulation results are here reported in order
to show the effectiveness of the proposed algorithm. The
example is taken from the systems biology framework,
where the problem to infer information from discrete
sampled measurements is particularly recurring.

The continuous-time model considered is the one that
describes the HIV dynamics (see Phillips [1996]), already
adopted to evaluate state estimation algorithms in the
recent past (see Cacace et al. [2013a,b]), whose equations
are presented below:

dx1t = (s− d1x1t − βx1tx3t)dt+ f1dW1,t

dx2t = (βx1tx3t − d2x2t)dt+ f2dW2,t

dx3t = (px2t − cx3t)dt+ f3dW3,t

yi∆ = x1,i∆ + x2,i∆ +GNi

(40)

where x1t, x2t, x3t are the target cells, infected cells and
serum viral concentrations, respectively and the output
represents the sum of the total cells presented in the blood
(y = x1 + x2).

Notice that in the physical system all state variables are
bounded and positive, thus the noise amplitude F =
diag(f1, f2, f3) must be small enough to satisfy this con-
straint, as it actually happens in the simulations, which
have been performed in the time interval of [0, 100] min-
utes.

Regarding the parameters, s is the rate of the constant
influx of target cells, d1 the target cell loss, β the target
cells infection, d2 the target cells infection loss, p the viral

Table 1. Parameters

s d1 β d2 p c

1 · 102 1 · 10−3 1.3 · 10−6 1 1 · 103 3

production and c the viral clearance and were set at the
values presented in Table 1 (see Phillips [1996]).

To effectively evaluate the performance of the proposed
algorithm, we have chosen different values for the mea-
surement noise G in the range of 10 − 100 and the state
noise F = η ∗ diag(50, 1, 1) with η = 1, 2. Two classes of
simulations have been considered, according to a couple of
different measurement sampling time: ∆ = 0.5 and ∆ = 1.

For each set of noise parameters, one hundred random
realizations were run and the performance was evaluated
by using the Mean Square Error (MSE) for each of the
state component xj , j = 1, 2, 3:

MSEj =
1

N

N∑
ν=1

1

M

M∑
k=1

√
(xj,k − x̂j,k|k)2 (41)

where xj,k is the real value of component xj at time
t = k∆, xj,k|k is the estimated value of component Xj ,
N = 100 number of realizations and M the number of
measurements samples.

As far as the indexes of the approximation scheme, ξ has
been fixed equal to 10 for all the simulations. On the other
hand, the filtering algorithm has been tested for µ = 2 and
µ = 3 (2-EKF and 3-EKF for short). The comparison with
the standard Extended Kalman Filter (EKF) algorithm
(see the Introduction Section or Jazwinski [1970] for more
details) shows the very good results of the proposed
filtering scheme.

In Table 2 and 3, some numerical results for different types
of noises are presented. In particular in Table 2 it can be
noted that the EKF algorithm works better than the 2-
EKF, regards to x2 and x3, reasonably due to the very
small noises; however, if we increase the order of index µ,
the 3-EKF definitely improves the EKF performances. By
increasing the noise statistics, Table 3, it clearly appears
that even also the 2-EKF improves the EKF estimates.

Finally, in Figure 1 it is presented the evolution of the
concentration of healthy cells (x1) and the corresponding
estimates of 2-EKF and EKF algorithms. Notice that in
the figure the simulation time has been reduced to allow
to distinguish the different curves.

Table 2. Numerical results: MSE

G = 10 F = 1 ∗ diag(50, 1, 1)

∆ = 0.5 ∆ = 1
x1 x2 x3 x1 x2 x3

2-EKF 11.1 6.4 213 13.4 7.4 246
3-EKF 10.5 5.6 185 12.2 6.1 201
EKF 22.0 6.2 197 23.2 7.2 234
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5. CONCLUDING REMARKS

In summary, the algorithm here proposed has involved
two different and sequential tasks: the discretization of
stochastic nonlinear systems and the state estimate.

Regarding the first argument, in a deterministic fram-
work, the Carleman linearization technique provides the
embedding of the original nonlinear system into an infinite-
dimensional linear system. In the stocastic case, the result
is a bilinear discrete-time system composed by a linear
drift and a multiplicative noise.

The proposed algorithm is able to give a statistical charac-
terization of the stochastic term. Increasing the order µ of
the Carleman approximation, the estimate of the discrete-
time state covariance matrix becomes more and more accu-
rate. In presence of a complete statistical characterization
of Vk, by taking into account all the infinite terms for the
computation of Uk we would have an exact discretization
of the original system, if starting from X(k) = xk∆.

The bilinear fashion of the obtained discrete-time system
motivates the use of the optimal linear filter for bilinear
systems, that requires the knowledge of the second order
state noise statistics. Further improvements will be based
on the application a higher order polynomial filter (see
Carravetta et al. [1996]).
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