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Abstract In this paper the output regulation problem for a class of hybrid linear systems in
the presence of uncertain time domain is considered. Uncertainty is modeled by assuming that
the time domain is not known to the controller and by allowing for arbitrarily close, even
simultaneous, jumps. Considering the full information setting, the geometric characterization
of the relevant regulation manifolds is given. Finally, the theory is illustrated and validated by
means of numerical examples.

1. INTRODUCTION

Control of hybrid systems, characterized by the interaction
between a continuous-time dynamics (here we will use the
term “flow” dynamics) and a discrete-time dynamics (here
named “jump” dynamics), is a topic widely studied in the
last years, with several important results described, e.g.,
in [Goebel et al., 2009, 2012, Johansson, 2004, Liberzon,
2003, Sun and Ge, 2005]. The problem of output regulation
has also been recently addressed for different classes of
hybrid systems, among others in the works [Cox et al.,
2012, Galeani et al., 2008a,b, 2012, J.B. Biemond and
Nijmeijer, 2011, Marconi and Teel, 2011, 2010, Morarescu
and Brogliato, 2010] and references therein. When refer-
ring to hybrid systems, one very important issue is the
difference between the case when the jump times are fixed
and known and the case when the jump times depend
on the state variables of the system itself. The second
case is typically much more difficult to deal with, as a
matter of fact, as discussed in [Galeani et al., 2012], the
fact that the occurrence of a jump depends on the state,
renders the overall system nonlinear, even when the flow
dynamics and the jump dynamics are both linear. On the
other hand, if the jump times are fixed and known to
the controller “a priori”, several simplifications occur: the
overall system is essentially linear (and this has very nice
consequences for stabilization issues) and, with an eye on
regulation requirements, it is possible to use the redundant
control inputs (if any) to steer the state of the plant to the
proper values to be assumed right before the jump, in such
a way that the regulated output and its derivatives are
guaranteed to attain exactly the desired value right after
the jump (see, e.g., [Carnevale et al., 2012a, 2013a,b]).
Goal of this paper is to start filling the gap between the two
cases just described: here the jump times are assumed to be
not dependent from the state of the plant (thus linearity
of the overall system is preserved), hence generated by
some external source, but they are not known in advance
to the controller. When the switching signal imposes a
jump (one can imagine different sources, like an external
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operator deciding freely when to switch), this command
is given at the same time to the exosystem, the plant
and the compensator. The fact that the compensator has
no information in advance about the jump times, renders
necessary to drop some of the tools that have been used in
the recent past, that are based on using explicit formulae
for the solutions of LTI systems (see, e.g., [Carnevale et al.,
2012a, 2013b]), and use a different approach, based on
geometric control ideas.

Novel contribution

Goal of this paper is to solve the output regulation problem
for a class of linear hybrid systems in which the time
domain is not known in advance. The full information
setting is assumed here, hence both the exogenous signal
and the state of the plant are assumed to be measurable.
The time domain does not have particular restrictions and
the solution of the problem relies on two components:
the characterization of the subspace of the extended state
space (including both the state of the plant and of the
exosystem) where output regulation is achieved, and the
stabilization part. The novel contribution is concentrated
in the first component, and relies heavily on the definition
and geometric characterization of a proper subspace that is
jointly controlled-invariant for the extended flow dynamics
and jump dynamics: such a subspace is called here hybridly
controlled invariant. Differently from what is standard
for LTI systems, the solution of the problem will involve
the characterization of the subspace of initial conditions
of the exosystem for which the problem is solvable. As
a matter of fact, requiring regulation for the whole set
of initial conditions would result too restrictive in many
cases. For greater generality, in this study also the presence
of “impulsive” inputs (acting on the jump dynamics)
is allowed, similarly to the works by [J. Bentsman and
Rubinovich, 2011, R.G. Sanfelice and Heemels, 2013]. As
for the system describing the flow dynamics, it is not
assumed to be square, although, thanks to the presence
of the impulsive inputs, the fact of having more control
inputs than outputs is less crucial than in other output
regulation problems for hybrid systems.
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Notation A′ denotes the transpose of matrix A. Given a
subspace V ⊂ Rn, A−1(V) denotes the inverse image 1 of
V through A, that is A−1(V) is the subspace of all vectors
µ such that Aµ ∈ V. For a square invertible matrix T , the
usual inverse will be denoted as T−1 (without a subspace
as argument).

2. PRELIMINARIES AND PROBLEM DEFINITION

2.1 Families of uncertain time domains

Following the notation of [Goebel et al., 2012], in the
context of output regulation, a class of hybrid systems
evolving on a single predetermined hybrid time domain
of the form

T := {(t, k) : t ∈ [tk, tk+1], k ∈ N, tk := kτM} , (1)

with τM > 0 has been recently studied by [Marconi and
Teel, 2010] and later considered in a series of papers
[Cox et al., 2011a,b, 2012] as well as [Carnevale et al.,
2012a,b, 2013b]. For such a class of systems, the dynamics
can be unambiguously defined. Departing from the above
mentioned papers, the hybrid systems considered in this
paper will still be defined unambiguously with a fixed
hybrid time domain T , but our a priori knowledge of T
will be limited to the fact that it has the form

T := {(t, k) : t ∈ [tk, tk+1], k ∈ N} , (2)

for some sequence {tk} of jump times satisfying tk ≤ tk+1,
k ∈ N, and it is unbounded (that is, for any N ∈ R it
is possible to find (t, k) ∈ T such that t + k > N , so
that it is possible to take limits for t + k → +∞ for
(t, k) ∈ T ). An unrestricted family Θ of possible hybrid
time domains is considered; hence, in particular it can
happen that tk = tk+1 for some k (so that two or more
consecutive jumps at the same flow time t are possible).

Roughly speaking, it appears evident that the main dif-
ference between hybrid time domains of the form (1) and
those of the form (2) belonging to Θ consists in the fact
that in the former case jumps occur precisely every τM
seconds while in the latter they may occur at any time,
i.e. yielding non-uniformly spaced jumps. The main conse-
quence is that, since the particular element T of the family
Θ associated to the solutions of the hybrid linear system
is not known beforehand, jumps occur unexpectedly as far
as the controller is concerned. This immediately makes
inapplicable the results developed along the lines traced in
[Carnevale et al., 2012a, Marconi and Teel, 2010], which
are based on exploiting the knowledge of τM .

2.2 Hybrid output regulation on uncertain time domains

Consider the hybrid linear plant P described by

ẋ = Ax+Bu+ Pw , (3a)

e = Cx+Qw , (3b)

x+ = Ex+ Fud +Rw , (3c)

with state x(t, k) ∈ Rn, control inputs u(t, k) ∈ Rm

and ud(t, k) ∈ Rmd acting on the continuous-time and
discrete-time evolutions of the state x, respectively, and
the performance output e(t, k) ∈ Rp, p ≤ m, where the

1 Note: this definition does not require invertibility of matrix A.

disturbance/reference w(t, k) ∈ Rq is generated by the
exosystem E

ẇ = Sw , (4a)

w+ = Jw . (4b)

As already specified, the above dynamics are associated to
an unknown time domain T given by (2) about which the
only available a priori knowledge consists in the fact that
T ∈ Θ. Compared to [Carnevale et al., 2012a], the aim here
is to achieve output regulation robustly with respect to the
uncertain time domain in the considered family. Since, as it
will become clear later, the problem might be solvable only
for a subset of the solutions of (4), namely those ensuing
from a suitable subspace of its state space (which turns out
to be an invariant subspace), the determination of such
a subset is also considered as part of the problem. It is
stressed here that only full information output regulation
problems will be considered in this paper.

Problem 1. (Hybrid Output Regulation with Uncertain
Time Domain). Given plant P in (3) and the exosys-
tem E in (4) find, if possible, a set W ⊆ Rq, invariant
with respect to (4), and a full information state feedback
choice of the control inputs ū(x,w), ūd(x,w) such that,
for any w(0, 0) ∈ W, all the closed loop trajectories of
(3)-(4) with the chosen ū(x,w) and ūd(x,w) are such that
limt+k→∞ e(t, k) = 0, with (t, k) ∈ T , for any T ∈ Θ.

Obviously, Problem 1 is instrumental to solve the more
meaningful following problem.

Problem 2. (Hybrid Output Regulation with Uncertain
Time Domain and Stability). Given plant P in (3) and the
exosystem E in (4) find, if possible, a setW ⊆ Rq, invariant
with respect to (4), and a full information state feedback
choice of the control inputs ū(x,w), ūd(x,w) which solve
Problem 1 and ensure that the zero equilibrium of system
(3) with w = 0 is globally asymptotically stable. �

2.3 Some basic facts from geometric control

A short review of some tools and concepts from geometric
control theory for linear time invariant systems is pro-
vided, in order to develop later the required analogous
concepts for the considered class of hybrid systems. An in
depth treatment of this topic can be found e.g. in [Basile
and Marro, 1992, Trentelman et al., 2001]. Consider a
continuous-time [respectively, discrete-time] linear time-
invariant (LTI) system of the form

ẋ = Ax+Bu, [x+ = Ax+Bu, ] (5)

with state x ∈ Rn and input u ∈ Rm. A subspace V ⊂ Rn

is an invariant for (5) if

AV ⊂ V, (6)

and is a controlled invariant for (5) if

AV ⊂ V + Im (B). (7)

The practical relevance of controlled invariance consists in
the fact that trajectories starting in the subspace V can
be kept in V for all times by suitable control actions if and
only if V is a controlled invariant. A feedback formulation
of controlled invariance can be given, consisting in the
fact that V is a controlled invariant if and only if there
exists a feedback u = Kx such that V is an invariant for
ẋ = (A+BK)x [x+ = (A+BK)x]; any such a K is called

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1532



a friend of the controlled invariant V. If an output of the
form y = Cx is present, it is of interest to identify the
largest controlled invariant contained in ker(C), namely
the largest subspace V such that trajectories starting in V
can be kept in V for all time by suitable control actions
(since V is controlled invariant), meanwhile producing zero
output (since V ⊂ ker(C)). Given a subspace V, define the
operator A(A,B)(·) mapping a subspace of Rn in another
subspace of Rn according to the rule:

A(A,B)(V) = V ∩A−1 (V + Im (B)) . (8)

Since clearly A(A,B)(V) ⊂ V, either A(A,B)(V) = V, in
which case V is a fixed point of A(A,B)(·), or A(A,B)(V)
has a dimension strictly smaller than the dimension of
V. Since the involved space Rn has finite dimension n, it
follows that iterated application of A(A,B)(·) converges to
a fixed point (which is a subspace) V∗ in a finite number of
iterations. Based on these facts, given a subspaceM⊂ Rn

and the dynamics (5), the invariant subspace algorithm
determines the largest controlled invariant contained in
M by defining

M0 =M, (9a)

Mk+1 = A(A,B)(Mk) = Ak+1
(A,B)(M), (9b)

for k = 0, 1, 2, . . ., whereAk+1
(A,B)(M) = A(A,B)(Ak

(A,B)(M)).

If Mk+1 = Mk, then M∗ = Mk and A∗(A,B)(M) =

Ak
(A,B)(M). It can be seen that k ≤ n.

3. HYBRIDLY CONTROLLED INVARIANT
SUBSPACES

In this section, we first define an extended hybrid system
including the plant and the exosystem, and then introduce
the controlled-invariant subspaces of the extended state
space which are crucial for solving the considered output
regulation problems.

Define the extended system as[
ẋ
ẇ

]
=

[
A P
0 S

] [
x
w

]
+

[
B
0

]
u =: Â

[
x
w

]
+ B̂u , (10a)[

x+

w+

]
=

[
E R
0 J

] [
x
w

]
+

[
F
0

]
ud =: Ê

[
x
w

]
+ F̂ ud , (10b)

e = [C Q]

[
x
w

]
=: Ĉ

[
x
w

]
. (10c)

The theory recalled in Section 2.3 applied to the flow
dynamics (10a) with output (10c) allows to determine

the largest flow controlled invariant contained in ker(Ĉ),
henceforth denoted as S, which is given by

S = A∗
(Â,B̂)

(ker(Ĉ)) ⊂ Rn × Rq. (11)

Clearly, by construction, subspace S is such that e = 0
whenever (x,w) ∈ S. In the classic (flow only) setting,
the full information output regulation problem for (10a)
with output (10c) is then solved by determining a friend

K̂ = [K Γ] of S such that the feedback control law u =
Γw +Kx renders the subspace S invariant and attractive
(attractivity can be achieved under suitable stabilizability
hypotheses). In the hybrid case, matters are quite more
involved since (x+, w+) does not necessarily belong to S.

In the sequel, it will be useful to consider projE(V), that is
the natural projection (see [Basile and Marro, 1992]) of a

subspace V of the extended state space on the state space
of the exosystem. Such a projection is defined as

projE(V) := {w ∈ Rq : [x′ w′] ∈ V, x ∈ Rn}.
If V is a basis matrix of V, namely V = Im(V ), a basis
matrix of projE(V) can be computed by retaining the
linearly independent columns of the matrix [0q×n Iq]V .

3.1 Maximal hybridly controlled invariant contained in S

As pointed out above, a solution moving in the flow
controlled invariant S might leave S due to a jump, for any
choice of ud in (10b), since flow controlled invariance does
not imply jump controlled invariance. It is then reasonable
to look for a set N ∗ which is the largest hybridly controlled
invariant contained in S, so that suitable control actions
exist preserving invariance ofN ∗ during arbitrary intervals
of flow and sequences of jumps.

The computation of N ∗ can be performed by repeated ap-
plication of the invariant subspace algorithm, alternatively
considering the flow dynamics (10a) and the jump dynam-
ics (10b). Recalling the definition of the operator A∗(·,·)(·)
in Section 2.3, the set N ∗, that is the largest hybridly
controlled invariant contained in S, can be computed as
the fixed point of the iterations:

N k+1 = A∗
(Â,B̂)

(
A∗

(Ê,F̂ )
(N k)

)
, N 0 = S , (12)

for k = 0, 1, ..., n − 1, which converge in a finite number
of steps due to finite dimensionality of the extended state
space Rn × Rq; hence N ∗ := N i where i is the first index
such that N i+1 = N i.

The following proposition characterizes N ∗ as the key
object for achieving output regulation as required in Prob-
lems 1 and 2.

Proposition 1. Consider the hybrid system (3) together
with the exosystem (4). LetN ∗ be the limit of the sequence
of subspacesN k defined in (12). Then, there exist feedback
control laws

ui = Kix+ Liw, (13a)

uid = Ki
dx+ Li

dw, (13b)

with ui making N ∗ flow controlled invariant and uid
making N ∗ jump controlled invariant, such that if the
initial condition [x′(0, 0) w′(0, 0)]′ belongs to N ∗ then
e(t, k) = 0 for all (t, k) in T ∈ Θ. In particular, this is
possible for the set of initial conditions of the exosystem
E given by W = projE(N ∗). �

3.2 An example

Consider the linear hybrid system described by the equa-
tions

ẋ = u, x+ = x, e = x+Qw, (14)

with x ∈ R, u ∈ R and e ∈ R, together with the exosystem

ẇ = (I2 ⊗ S0)w , w+ =

[
I2 0
0 J0

]
w (15)

w ∈ R4 with Q = [1 0 1 0] and

S0 =

[
0 1
−1 0

]
, J0 =

[
0 1
1 0

]
.

The exosystem injects on (14) a continuous-time sinusoidal
signal, described by the first two components of w, and

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1533



a discontinuous piecewise sinusoidal signal, described be
the last two components of w. Note that for (14)-(15) the
subspace S is defined by

S = {(x,w) ∈ R× R4 : x = −Qw}

= ker([1 1 0 1 0]) = Im



−1 0 −1 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

(16)

Then, it can be easily checked that

A2
(Ê,F̂ )

(S) = A1
(Ê,F̂ )

(S) = Im



−1 0
1 0
0 1
0 0
0 0


 ,

henceA∗
(Ê,F̂ )

(S) = A1
(Ê,F̂ )

(S). Moreover,N 0 = A∗
(Ê,F̂ )

(S),

which implies that N ∗ = A1
(Ê,F̂ )

(S). Interestingly, W =

projE(N ∗) selects the first two components of w, thus ex-
pressing the intuitive fact that (14), having a trivial jump
map, may only track the continuous sinusoidal signal, by
implementing a suitable feedback control law. If the jump
map x+ = x of (14) is replaced by x+ = x + ud, so that

F̂ = [1 0 0 0 0]′, repeating the computations it is found
that N ∗ = A∗

(Ê,F̂ )
(S) = S and W = projE(N ∗) = R4.

Thus, in this case both the continuous and the discontin-
uous sinusoidal signals can be tracked by using suitable
control laws u and ud.

The conclusions of the previous example naturally lead to
the comments discussed in the following remark.

Remark 1. Recalling the construction of algorithm (12),

we have that N ∗ = S provided ÊS ⊆ S + Im(F̂ ). As a
consequence, the subspace S is controlled invariant with
respect to the jump dynamics (10b), in addition to the flow

dynamics (10a). Hence, both Â and Ê can be transformed
to highlight the decoupling between the components of x
that affect the error e and those that are completely free
to evolve in S, similarly to what is pursued in [Carnevale
et al., 2012a] for the flow dynamics only. As a matter of
fact, in this case the input redundancy is not crucial for
generating a regulation error zeroing trajectory. N

4. HYBRID OUTPUT REGULATION WITH
UNCERTAIN TIME DOMAIN

Having characterized the controlled invariant subspaces
where zero output motion is possible, we now turn to the
issue of rendering such subspaces externally stable (so that
all solutions are attracted to them, and output regulation
is achieved) and possibly internally stable (thus solving
the output regulation problem with stability). Since an
extensive literature is available about stabilization of the
relevant class of hybrid linear systems, and the main focus
of this paper (parallel to our previous work in [Carnevale
et al., 2012a,b]) is on characterizing the relevant zero error
motions which are crucial for regulation once coupled with
suitable stabilizers, the discussion here will be necessarily
much more sketchy.

Let X := Im ([In 0n×q]
′
), W := Im ([0q×n Iq]

′
) and define

N ∗X := N ∗∩X , N ∗W such that N ∗W⊕N ∗X = N ∗, and finally

N c
X ⊂ X and N c

W ⊂ W such that N ∗X ⊕ N c
X = X and

N ∗X⊕N c
X⊕N ∗W⊕N c

W = Rn+q. Let d∗X , dcX , d∗W , dcW denote
the dimensions of N ∗X , N c

X , N ∗W and N c
W , respectively. Let

X1, X2, X3 and X4 be matrices whose columns span the
subspaces N ∗X , N ∗W , N c

X and N c
W , respectively; let U1 and

U1d be matrices such that Im (U1) = Im (B̂) ∩ N ∗ and

U1d = Im (F̂ ) ∩ N ∗, and U2, U2d be matrices such that
[U1 U2] and [Ud U2d] are invertible. Consider the change
of coordinates[

x′ w′
]′

= T−1χ = [X1 X2 X3 X4]
[
χ′1 χ

′
2 χ
′
3 χ
′
4

]′
,

u = G−1ν = [U1 U2]
[
ν′1 ν

′
2

]′
,

ud = G−1
d νd = [U1d U2d]

[
ν′1d ν

′
2d

]′
.

In the new coordinates, system(10) becomes

χ̇ =

A11 A12 A13 A14

0 A22 0 A24

A31 A32 A33 A34

0 0 0 A44


χ1

χ2

χ3

χ4

+

B11 B12

0 0
0 B32

0 0

[ν1

ν2

]
:= Āχ+ B̄ν , (17a)

χ+ =

E11 E12 E13 E14

0 E22 0 E24

E31 E32 E33 E34

0 0 0 E44


χ1

χ2

χ3

χ4

+

F11 F12

0 0
0 F32

0 0

[ν1d

ν2d

]
:= Ēχ+ F̄ νd , (17b)

e = [0 0 C3 C4]χ := C̄χ, (17c)

where the zero entries in the above block matrices are
motivated by the fact that N ∗ is a hybridly controlled
invariant contained in S ⊂ ker(Ĉ), and Im (B) ⊂ X ,
Im (F ) ⊂ X . Hybrid controlled invariance of N ∗ also
implies the existence of matrices

K̄i =
[
K̄i

1 K̄
i
2

]
, K̄i

d =
[
K̄i

d1 K̄
i
d2

]
, (18)

such that

[A31 A32] = −B32K̄
i, [E31 E32] = −F32K̄

i
d, (19)

which can be used to provide a state feedback action ren-
dering N ∗ an hybrid invariant for the controlled system.
In particular, recalling that any state feedback matrix
transforming a controlled invariant V in a simple invariant
for the controlled system is called a friend of V, the set of
pairs of friends of N ∗ in the new coordinates is given by:

K̄ =

[
K̄s

1 K̄s
2 K̄s

3 K̄s
4

K̄i
1 K̄i

2 K̄s
5 K̄s

6

]
, (20a)

K̄d =

[
K̄s

d1 K̄
s
d2 K̄

s
d3 K̄

s
d4

K̄i
d1 K̄

i
d2 K̄

s
d5 K̄

s
d6

]
, (20b)

so that applying the feedback ν = K̄χ, νd = K̄dχ,
equations (17a)-(17b) reduce to χ̇ = ĀK̄χ, χ+ = ĒK̄χ
where ĀK̄ := (Ā+ B̄K̄), ĒK̄ := (Ē + ĒK̄d), are given by

ĀK̄ =

[
A11+B11K̄

s
1 A12+B11K̄

s
2 A13+B11K̄

s
3 A14+B11K̄

s
4

0 A22 0 A24

0 0 A33+B32K̄
s
5 A34+B32K̄

s
6

0 0 0 A44

]
,

(21a)

ĒK̄ =

[
E11+F11K̄

s
d1 E12+F11K̄

s
d2 E13+F11K̄

s
d3 E14+F11K̄

s
d4

0 E22 0 E24

0 0 E33+F32K̄
s
d5 E34+F32K̄

s
d6

0 0 0 E44

]
.

(21b)

The feedback gains in the original coordinates are obvi-
ously given by K = G−1K̄T , Kd = G−1

d K̄dT .

Remark 2. The state variables zx =
[
χ′1 χ

′
3

]′
and zw =[

χ′2 χ
′
4

]′
are easily seen to have a direct correspondence
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with the state of the plant and of the exosystem, respec-
tively. In particular, this is reflected by the fact that the
dynamics of zw is characterized by the matrices[

A22 A24

0 A44

]
,

[
E22 E24

0 E44

]
,

which are clearly unaffected by the input. The dynamics
of zx is characterized by the matrices[

A11 +B11K̄
s
1 A13 +B11K̄

s
3

0 A33 +B32K̄
s
5

]
,[

E11 + F11K̄
s
d1 E13 + F11K̄

s
d3

0 E33 + F32K̄
s
d5

]
,

which, under suitable hypothesis, can be stabilized by
an appropriate choice of matrices K̄s

1 , K̄s
5 , K̄s

d1 and K̄s
d5

(whereas K̄s
h, K̄s

dh for h = 2, 3, 4, 6 have no effect on
stability). N

Remark 3. The state variables z1 =
[
χ′1 χ

′
2

]′
and z2 =[

χ′3 χ
′
4

]′
can be given the following interesting interpre-

tation. On one hand, the state z1 represents the internal
dynamics of N ∗, that is it represents those states that
can freely evolve on the invariant subspace N ∗ after the
output regulation task has been achieved (that is, when
the regulated output e is zero). On the other hand, the
state z2 represents the external dynamics of N ∗, that is
it describes the off-the-subspace motion, so that ‖z2(t, k)‖
is equal to the distance of the trajectory from the output-
zeroing subspace N ∗ at any hybrid time instant (t, k) ∈ T .
Interestingly, the key component of any friend of N ∗, i.e.
of any state feedback providing its invariance, intrinsically
depends only on the internal variables z1. N
Remark 4. By the construction of N ∗ and the previous
remarks, it is apparent that χ4 is associated to evolutions
of the exosystem that cannot be actively compensated by
the control input in such a way to ensure zero regulation
output (since the largest hybridly controlled invariant con-
tained in S, hence in ker(C), is N ∗, but χ4 is associated to
off-the-subspace state variables) It follows that, provided
that χ4 is observable from e via C4 with the dynamics
given by A44 and E44, and that for all χ4(0, 0) 6= 0 there
exists at least one T ∈ Θ such that χ4 does not converge
to zero as t+k → +∞, (t, k) ∈ T , the only way to achieve
output regulation is by restricting the initial condition of
the exosystem to a setW such that χ4(0, 0) = 0, as is done
implicitly in Proposition 1. N

In light of the previous remark, it should be evident
that hybrid output regulation in the presence of uncer-
tain time domains T ∈ Θ can be achieved by enforcing
attractivity of N ∗, that is, using the framework employed
in [Basile and Marro, 1992], achieving external stabiliza-
tion of the controlled-invariant subspace N ∗. Moreover,
the additional requirement of closed-loop stability can be
achieved if, in addition to external stabilization of N ∗,
it is also possible to achieve internal stabilization of the
controlled invariant subspaceN ∗∩X (which is a controlled
invariant being the intersection of a controlled invariant
and an invariant, see again [Basile and Marro, 1992] for
the analogous property in the non hybrid setting). As illus-
trated above, such external [internal] stabilization problem
can be reformulated as the problem of finding matrices
K̄s

5 , K̄s
d5, [K̄s

1 , K̄s
d1] such that the dynamics described by

the matrices A33 + B32K̄
s
5 , E33 + F32K̄

s
d5 [A11 + B11K̄

s
1 ,
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Figure 1. Top graph: time histories of x3(t, j) and w1(t, j),
solid and dashed line, respectively. Middle graph: time
histories of x1(t, j) and x2(t, j), solid and dashed line,
respectively. Bottom graph: sequence of impulsive
control inputs ud corresponding to jumps of hybrid
system (22)-(23).

E11 + F11K̄
s
d1] is asymptotically stable for any T ∈ Θ.

Such matrices K̄s
5 , K̄s

d5, [K̄s
1 , K̄s

d1] can be used, together
with K̄i [K̄i

d] from (18), (19), to define a friend of N ∗,
as in (20), yielding the required invariance and stability
properties; note that the choice of other submatrices in
(20) is arbitrary.

Theorem 1. Consider hybrid system (3) together with the
exosystem (4). If K, Kd, are a pair of friends of N ∗
achieving external stability of N ∗ in N ∗ + X (that is,

for χ4(0, 0) = 0) for all T ∈ Θ, then u = K
[
x′ w′

]′
,

ud = Kd

[
x′ w′

]′
, solve Problem 1 with W = projE(N ∗).

If K, Kd, also achieve internal stability of N ∗ ∩ X for

all T ∈ Θ, then u = K
[
x′ w′

]′
, ud = Kd

[
x′ w′

]′
, solve

Problem 2 with W = projE(N ∗). �

5. NUMERICAL SIMULATIONS

Consider a linear hybrid system described by the equations
(3) with the matrices

[A B P ] =

[−1 0 0 1 0 1 0
0 −2 0 0 1 0 0
0 0 −0.5 0 1 1 0

]
, (22a)

[C Q] = [0 0 1 −1 0] , (22b)

[E F R] =

[
0 0 1 1 0 0
−1 0 0 0 0 0
1 −1 −1 0 0 0

]
. (22c)

The linear hybrid system is driven by an exosystem de-
scribed by equations of the form (4) with

S =

[
0 1
−1 0

]
, J =

[
0 1
−1 0

]
. (23)
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To begin with, note the maximal controlled-invariant sub-
space with respect to (3a) contained in ker([C Q]) is
S = ker([0 0 1 −1 0]). Suppose that the hybrid time do-
main may be any domain belonging to the family Θ. Hence
simultaneous jumps (i.e., more than one jump having the
same value of t) can occur. Towards the construction of
a feedback control law solving Problem 2, consider the
computational algorithm (12) as described in Proposition
1 and notice that

N ∗ = Im




1 1 1
1 0 0
0 1 0
0 1 0
0 0 1


 . (24)

Interestingly, W = R2 which implies that all the exoge-
nous signals generated by the exosystem (23) may be
tracked/rejected by system (22) for a suitable selection
of feedback control laws u and ud, which are obtained
as described in Section 4. In the first simulation we let
x(0, 0) = [1 0 4] and w(0, 0) = [1 0]. The hybrid time
domain is set a priori but it is unknown to the controller,
as discussed in the previous sections. We summarize the
time domain by providing the sequence of time instants
at which jumps in the plant and in the exosystem occur,
namely TJ = {0, 1, 7, 12, 18, 20, 20, 25}. Note that
there are two simultaneous jumps at t = 20s. The top
graph of Figure 1 shows the time histories of the third
component of the state of system (22), i.e. x3(t, j), in
closed-loop with the control inputs u and ud as above and
the first component of the state of the exosystem (23), i.e.
w1(t, j), solid and dashed line, respectively. In particular,
according to the structure of C and Q the former should
be regulated to the value of the latter. The middle graph of
Figure 1 displays the time histories of the first and second
components of the state of system (22), i.e. x1(t, j) and
x2(t, j) in closed-loop with the control inputs u and ud,
solid and dashed line, respectively. Finally, the sequence
of impulsive control inputs ud corresponding to jumps of
hybrid system (22) -(23) is shown in Figure 1.

6. CONCLUSIONS

A novel problem of hybrid output regulation with unpre-
dictable jumps has been introduced for arbitrary hybrid
time domains, and the key geometric objects for its solu-
tion have been described. Future work will be focused on
extending the proposed result to different classes of time
domains.
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