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Abstract: A new robust error-feedback regulator is proposed for a class of uncertain hybrid
systems with periodic jumps, using a hybrid extension of the classical internal model principle.
The plant need not be minimum phase, square nor SISO. The proposed regulator contains an
internal model composed by two main units, a flow internal model providing the correct input to
achieve regulation during flows, and a jump internal model resetting the state of the regulator at
each period. Such a structure reminds internal model design for ripple-free regulation of sampled-
data systems; an important difference is that here the jump internal model must contain more
copies of the relevant dynamics of the exosystem with respect to the flow internal model.

1. INTRODUCTION

Control of hybrid systems, with interacting continuous-
time and discrete-time dynamics (“flow dynamics” and
“jump dynamics”, Goebel et al. [2012]), is a topic widely
studied, see, e.g., Liberzon [2003], Johansson [2004], Sun
and Ge [2005], Sanfelice et al. [2007]. Output regulation
has been addressed for different classes of hybrid systems,
see, e.g., Menini and Tornambè [2001], Galeani et al.
[2008a,b], Morarescu and Brogliato [2010], Marconi and
Teel [2010], Biemond et al. [2013], Cox et al. [2012], Mar-
coni and Teel [2013], Galeani et al. [2012].
The class of systems considered here is the largest class of
hybrid linear plants with periodic jumps for which robust
(with respect to independent parameter variations) output
regulation can be achieved by using an internal model
of the exosystem alone. As discussed by Carnevale et al.
[2012a, 2013b], the fact that the plant has more inputs
than outputs is essentially necessary for the robust ex-
istence of admissible trajectories for the state, that corre-
spond to the desired output. Hence, since robustness of the
regulation is desired here versus the largest possible class of
parameter variations, not only we do not assume that the
plant is square, but we exploit the presence of more inputs
than controlled outputs. The class of systems considered
here is physically motivated: it strictly includes systems
composed by uncertain subsystems that evolve separately
during flows and interact (possibly, in an uncertain man-
ner) at jumps: see the discussion and the physical example
by Carnevale et al. [2013c,a]. Other two strengths of the
paper are that it is not required that the exosystem is
Poisson stable (the results apply for unbounded exogenous
signals) and that exponential stability of the free responses
of the closed-loop system is guaranteed (implying the
weaker property that trajectories are bounded when the
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exosystem is Poisson stable).
The proposed compensator has many conceptual similar-
ities with the ones proposed many years ago for ripple-
free control of sampled-data systems, e.g., by Yamamoto
[1994], Grasselli et al. [1996, 2002], in the sense that,
here and there, the internal model is provided by a
continuous-time component (here called the flow internal
model, needed to ensure output regulation during flows,
and possibly obtained through the use of generalized hold
functions), and a discrete-time component (here called the
jump internal model, needed to ensure output regulation
at periodically sampled time instants). A quite surprising
novelty here with respect to the mentioned results is that,
due to the rich class of uncertainties taken into account
(affecting both the flow and the jump dynamics), the
jump internal model must contain as many copies of the
equivalent discrete-time dynamics of the exosystem as the
sum of the dimensions of the states of the observable
dynamics of the plant and of the flow internal model; on
the other hand, the flow internal model must contain only
as many copies of the flow dynamics of the exosystem
as the number of regulated outputs. In both cases, the
mentioned number of copies is the maximum that still
allows to obtain exponential stability (instead of simply
boundedness of trajectories) for the closed-loop system.
Notation. The acronyms GES/GIS are used for Global
Exponential/Incremental Stability. Cg := {s ∈ C : |s| <
1}. The Kronecker product is denoted by ⊗, and the
spectrum of matrix M by Λ(M).

2. PRELIMINARIES AND PROBLEM DEFINITION

Consider the hybrid time domain

T := {(t, k) : t ∈ [kτM , (k + 1)τM ], k ∈ N} , (1)

with τM > 0 given. The time variable t measures the flow
of continuous time, whereas the time variable k counts
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the number of times that the solution of the system has
jumped. The derivative with respect to t is indicated by a
dot, like in ẋ; the pushforward operation (with respect to
jump times) is denoted by a plus sign, so that x+(t, k) :=
x(t, k + 1), whenever both (t, k) and (t, k + 1) belong
to the relevant time domain. The notation we use here
is that presented in Goebel et al. [2012], but, since the
time domain T is a priori fixed, in equations like (2), for
simplicity, we do not explicitly write the flow and jump
sets. The equations where time derivatives appear (as in
(2a)) are supposed to hold in the intervals [kτM , (k+1)τM ),
k ∈ Z, whereas equations where the pushforward operator
appears (as in (2b)) are supposed to hold at hybrid times
(kτM , k − 1), for k ∈ Z.

Consider the following hybrid linear plant P:

ẋ = Ax+Bu+ Pw , (2a)

e = Cx+Qw , (2b)

x+ = Ex+Rw , (2c)

with state x(t, k) ∈ Rn, control input u(t, k) ∈ Rm and
output e(t, k) ∈ Rp, p ≤ m, where the exogenous signal
w(t, k) ∈ Rq is generated by the exosystem E

ẇ = Sw , (3a)

w+ = Jw . (3b)

The following assumption avoids trivialities.

Assumption 1. No eigenvalue of J̃ = JeSτM is in Cg. �

2.1 The considered class of hybrid systems

In this paper, robust regulation is achieved for a class of
plants subject to arbitrary parameter uncertainties under
a structural condition. Such a condition holds in particular
for systems composed by two or more subsystems evolving
separately during flows and coupled only at jumps; see the
discussion and the physical example by Carnevale et al.
[2013c,a]. The results in Carnevale et al. [2013b] show
that this structural condition captures the largest class
of systems for which an internal model based regulator
(ensuring robust regulation for arbitrary perturbations of
the nonzero elements in the prescribed structure) can be
designed containing only a model of the exosystem (that
is, the zero dynamics internal model principle is trivially
satisfied in this class of plants).

Assumption 2. Plant P is uncertain and belongs to a
family of plants F such that for each P ∈ F , the matrices
in the description (2) have the form

A =

[
A11 A12 A13

0 A22 A23

0 0 A33

]
, B =

[
B11 B12

0 B22

0 B32

]
, C = [0 0 C3], (4)

where A11 ∈ Rn1×n1 , A22 ∈ Rn2×n2 , A33 ∈ Rn3×n3 ,
B11 ∈ Rn1×m1 , B32 ∈ Rn3×m2 with m2 ≥ p. The nominal
plant and its state space description matrices are denoted
by a superscript as follows: P◦ ∈ F , A◦, B◦, . . . �

Remark 1. The state and input partitions x = [x′1 x′2 x′3]′

and u = [u′1 u′2]′ (with u1 having no effect on the
regulated output e during flows, and x1 corresponding
to the reachable subspace of the subsystem having state
(x1, x2) and input u1, as will be specified later) used in (4)
induce similar partitions on the other matrices in (2):

E =

[
E11 E12 E13

E21 E22 E23

E31 E32 E33

]
, R =

[
R1

R2

R3

]
, P =

[
P1

P2

P3

]
,

which however have no specific structure (i.e., zero blocks)
as in (4). Considering (2) with the constraint imposed by
the fixed zero entries in (4), there remain exactly

z = [n(n+m+ q)− (n1 +m1)(n2 + n3)− n2n3]+

+ p(n3 + q) + n(n+m+ q)

free parameters, so that each plant in F can be uniquely
identified with a vector of parameters f ∈ Rz, with f◦ cor-
responding to P◦. It follows that each open neighborhood
of f◦ in Rz defines an open neighborhood of P◦ in F . �

In previous works, e.g. Carnevale et al. [2012a,b, 2013b],
the form (4) was obtained by coordinate and feedback
transformations implying also additional properties, e.g.,
m2 = p, pairwise disjoint spectra for A11, A22, A33 and
S, and the subsystem (A33, B32, C3) being square and
without finite invariant zero. Here, on the contrary, as in
Carnevale et al. [2013a,c], the structure in (4) is based on
physical reasons (instead of preliminary transformations)
and then such additional properties are not guaranteed.

2.2 Problem definition and main solvability assumption

The robust output regulation problem is now formalized,
assuming that the plant P in (2) belongs to the family F
and has a nominal description P◦; next, more assumptions
on P◦ will be given under which the problem is solvable.

Problem 1. Given the nominal plant P◦ ∈ F as in (2)
and (4), and the exosystem E in (3), find, if possible,
a robust output regulator using only measurements of e
which achieves
• (GES) global exponential stability of the closed loop;
• (OR) lim

t+k→+∞
e(t, k) = 0 for all initial conditions;

for any P ∈ F0 ⊂ F , where F0 contains an open
neighborhood of P◦. �

Remark 2. In Problem 1, one could require simply that
all signals remain bounded instead of insisting on the
stronger GES requirement. At the price of a more careful
design of the internal model of the exosystem (which has to
guarantee that some structural properties of the plant are
preserved when it is augmented with the internal model),
achieving GES provides the added benefits that the ex-
osystem need not be restricted to be Poisson stable, and,
more importantly, there is no risk of “drifts” associated
to internal closed loop dynamics which, although bounded
and unobservable from the regulation error, might grow
with time due to noise or modeling errors (e.g. unac-
counted changes of reference signal, which appear as un-
modeled jumps). �

The needed structural properties of the hybrid system (2),
(4) can be tested by using the following matrices, defined
for any plant P ∈ F :

Ã :=

[
E11 E12

E21 E22

]
e

[
A11 A12

0 A22

]
τM , B̃ :=

[
E11

E21

]
, (5a)

C̃ := [E31 E32] e

[
A11 A12

0 A22

]
τM , D̃ := E31, (5b)

and considering the following notations:
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• the flow system matrix PF (s)

PF (s) :=

[
A− sI B
C 0

]
, (6)

• the partial hybrid system matrix PH(s)

PH(s) :=

[
Ã− sI B̃
C̃ D̃

]
, (7)

• the flow reachability matrix

RF :=
[
B AB A2B · · ·An−1B

]
, (8)

• the flow observability matrix

OF :=
[
C ′ (CA)′ (CA2)′ · · · (CAn−1)′

]′
, (9)

• the hybrid PBH stabilizability matrix RH(s)

RH(s) :=
[
EeAτM − sI ERF

]
, (10)

• the hybrid PBH observability matrix OH(s)

OH(s) :=
[
(EeAτM )′ − sI O′F

]′
. (11)

As stated before, for each of the defined matrices, a ◦

superscript denotes nominal values. Define also:

RF,1 :=
[
B11 A11B11 A2

11B11 · · ·An1−1
11 B11

]
,

OF,3 :=
[
C ′3 (C3A33)′ (C3A

2
33)′ · · · (C3A

n−1
33 )′

]′
.

Assumption 3. The nominal plant P◦ ∈ F satisfies:

rank (R◦F,1) = n1, (12a)

rank (O◦F,3) = n3, (12b)

rank (R◦H(s)) = n, ∀s 6∈ Cg, (12c)

rank (O◦H(s)) = n, ∀s 6∈ Cg, (12d)

rank (P ◦F (s)) = n+ p, ∀s ∈ Λ(S), (12e)

rank (P ◦H(s)) = n, ∀s ∈ Λ(J̃), (12f)

where J̃ = JeSτM . �

Note that Assumption 3 on the nominal plant P◦ implies
the existence of a neighborhood F1 ⊂ F where (12) hold.

3. REGULATOR ARCHITECTURE AND DESIGN

The overall regulator is composed of three main dynamic
blocks, as in Figs. 1 and 2:
• a jump internal model IJ , with a trivial flow dy-
namics, which ensures that the states of the subsystem
(A33, B32, C3) and IF have correct values after jumps;
• a flow internal model IF , with a trivial jump dynamics,
which, suitably reinitialized at each jump time, generates
the input required for output regulation during flow inter-
vals;
• a dynamic stabilizer K, which guarantees GES for the
closed loop.

The overall internal model IM is obtained by intercon-
necting IJ and IF as in Fig. 2. If the cascade-like inter-
connection of IM and P is shown to be hybrid-detectable
and hybrid-stabilizable, then the design of K is easily
performed (e.g. by using an approach similar to the one
used in Carnevale et al. [2012b]); hence, the key point is
to show how to design IJ and IF in such a way to achieve
output regulation and to preserve the structural properties
of hybrid-detectability and hybrid-stabilizability already
enjoyed by P◦ (and then by all “sufficiently close” P ∈ F)
according to (12c), (12d). Note that such a property could
be destroyed, even in the SISO case, if the internal model
were designed by simply copying the exosystem dynamics
(3) several times.

wE

xPxKK
w

u2

e

yK,P2

yF

u1
yK,P1

yJ

xM
IM

yK,J

yK,F

Fig. 1. The internal model based regulator.

3.1 The flow internal model IF

The subcompensator IF can be designed focusing ex-
clusively on the flow-only subsystem (A33, B32, C3) and
the flow-only exosystem. Since this system is possibly
nonsquare, a squaring down static time invariant gain is
introduced (as part of IF ), to guarantee that the cascade
between IF and (A33, B32, C3) preserves the flow observ-
ability property of the latter system.

Algorithm 1. Design of IF (see Fig. 2)

Step 1 Let µS(s) be the minimal polynomial of S, having
degree nS .

Step 2 Define AF0 as a lower companion matrix having
characteristic polynomial µS(s).

Step 3 Define CF0 = [1 0 · · · 0] ∈ R1×nS .
Step 4 Define the matrices

AF = Ip ⊗AF0, CF = Ip ⊗ CF0, (13)

with AF having size nF = p · nS .
Step 5 Define IF 0 according to the equations

ẋF = AFxF , (14a)

x+F = uF , (14b)

yF0 = CFxF . (14c)

Step 6 Define the matrix M2 ∈ Rm2×p, such that

rank

([
A33 − sI B32M2

C3 0

])
= n3 + p, ∀s ∈ Λ(S)

Step 7 Define IF as the cascade interconnection of IF 0

and M2, i.e. let yF = M2yF0 = M2CFxF and let
uF = yJF + yK,F . �

Note that the role of M2 consists in squaring down the
flow dynamics described by (A33, B32, C3), so that the
“squared” system (A33, B32M2, C3) has exactly p inputs
and p outputs and has no invariant zero in the set Λ(S),
thus guaranteeing that the cascade of the “core” flow inter-
nal model IF 0 (containing exactly p copies of the essential
flow dynamics of the exosystem, as characterized by its
minimal polynomial µS(s)) and system (A33, B32M2, C3)
is observable. Such a “squaring down” is possible, under
Assumption 3, by exploiting, e.g., algebraic duals of the
results in Kouvaritakis and MacFarlane [1976].

In turn, the flow observability property of the mentioned
cascade of IF 0 and (A33, B32M2, C3) (equivalently, of IF
and (A33, B32, C3)) and classic output regulation theory
imply the existence of a unique state[

x3(kτM , k)
xF (kτM , k)

]
=

[
Π3

ΠF

]
w(kτM , k), (15)

(where Π3, ΠF solve a suitable Francis equation) such that
e(t, k) ≡ 0 for all t ∈ [kτM , (k + 1)τM ].
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xJ
IJ 0

yJ0yK,J

yK,F

xF
IF0 yF0 yF

yJM1(·)

M2

IJ

IF IMyJF

uF

uJ

Fig. 2. Detailed view of the internal structure of the
internal model IM.

Clearly, the exact values of Π3 and ΠF depend on the
(unknown) plant parameters. Hence, in order to have
condition (15) satisfied for all k, an ancillary robust
output regulation problem must be solved, having a purely
discrete time nature and for a “regulated output”

ea(k) :=

[
x3(kτM , k)
xF (kτM , k)

]
−
[

Π3

ΠF

]
w(kτM , k), (16)

of dimension n3 + nF (the number of scalar equations in
(15)). These considerations give a qualitative motivation
for the design of IJ in the following subsection.

3.2 The jump internal model IJ

The jump internal model IJ is designed focusing exclu-
sively on the one period equivalent dynamics of the cascade
of IF and P, and the one period equivalent dynamics of the
exosystem, given by w((k+1)τM , k+1) = J̃w(kτM , k). The
internal model in IJ is designed to provide at each period
the correct initialization to x3(k) and xF (k) to ensure
e ≡ 0 during the flow interval (kτM , (k+ 1)τM ). Again, in
order to deal with possible nonsquareness and to ensure
that the internal model IJ is hybrid observable from
e, a multiplexing/squaring static time-varying (possibly,
piecewise constant) gain is introduced (as part of IJ ).

Algorithm 2. Design of IJ (see Fig. 2)

Step 1 Let µJ̃(s) be the minimal polynomial of J̃ , having
degree nJ̃ .

Step 2 Define EJ0 as a lower companion matrix having
characteristic polynomial µJ̃(s).

Step 3 Define CJ0 = [1 0 · · · 0] ∈ R1×nJ̃ .
Step 4 Define the matrices

EJ = In3+nF
⊗ EJ0, (17a)

CJ = In3+nF
⊗ CJ0, (17b)

with EJ having size nJ = (n3 + nF ) · nJ̃ .
Step 5 Define IJ 0 according to the equations

ẋJ = 0, (18a)

x+J = EJxJ + uJ , (18b)[
yJ0
yJF

]
= CJxJ =

[
CJ1
CJ2

]
xJ . (18c)

with CJ1 ∈ Rn3×nJ

Step 6 Choose M̄1 ∈ Rn1×n3 such that

rank

([
Ã− sI B̃M̄1

C̃ D̃M̄1

])
= n, ∀s ∈ Λ(J̃), (19)

and define M1(τ) ∈ Rm1×n3 , τ ∈ [0, τM ], such
that 1 M̄1 =

∫ τM
0

eA11(τM−τ)B11M1(τ)dτ .

1 By (12a), the reachability Gramian G1 of the pair (A11, B11) is

invertible, so M1(τ) := B′11e
A′

11(τM−τ)G−1
1 M̄1 is a possible choice;

Step 7 Define IJ as the cascade of IJ 0 and M1(·), i.e. let
yJ(t, k) = M1(t− kτM )yJ0(t, k). �

It is worth noting that the time-varying gain M1(·) serves
a double purpose. Let B̄11 :=

∫ τM
0

eA11(τM−τ)B11dτ . If

Im (M̄1) ⊂ Im (B̄11), then a constant (instead of time-
varying) M1 can be chosen with the only role of performing
a squaring down fully similar to the one performed by
M2 (cfr the discussion in Sec. 3.2); such a constant

M1 can be chosen as M1 = B̄]11M̄1, where B̄]11 is the
Moore-Penrose pseudoinverse of B̄11. Since (A11, B11) is
a reachable pair, then m1 ≥ n1 is a sufficient condition
for Im (M̄1) ⊂ Im (B̄11) to happen for almost all τM . 2

On the other hand, if Im (M̄1) 6⊂ Im (B̄11), then the role
of time variation in M1(·) is crucial in order to achieve
M̄1 =

∫ τM
0

eA11(τM−τ)B11M1(τ)dτ . In this case M1(·) has
the effect of “squaring up” (opposite to squaring down),
that is the effect of virtually “enlarging” the number of
inputs to the x1 dynamics; this is particularly evident
when rank (M̄1) = n3 > m1, in which case a constant
solution is not possible since it should be M̄1 = B̄11M1

but rank (B̄11) ≤ m1. In any case, the choice of M1(·)
allows to design IJ 0 as an internal model for a square
system having n3 + nF inputs and outputs (cfr (16)).

3.3 Main result: efficacy of the proposed solution

Under our assumptions, it can be proven that the intercon-
nection of IM (designed as in Fig. 2 by Algorithms 1 and
2) and P with input yK = [yK,P1 yK,P2 yK,J yK,F ] and
output e is a detectable and stabilizable hybrid system.
Similarly to what done by Carnevale et al. [2012b] (see
also Carnevale et al. [2014]), such properties ensure that
it is possible to design an hybrid linear output feedback
stabilizer (the block K in Fig. 1) providing GES and GIS,
and based on a suitable separation principle. The following
result can be proven.

Theorem 1. Under Assumptions 1, 2 and 3, Problem 1 is
solved by any regulator having the structure in Fig. 1,
with the subcompensators IF and IJ designed as in Sec-
tions 3.1 and 3.2, respectively, and with the subcompen-
sator K guaranteeing GES for the closed-loop system. �

As for classical linear output regulation theory, the con-
vergence to zero of the regulated output is ensured by
the presence of the internal model as far as the closed
loop remains asymptotically stable (which is equivalent to
GES/GIS for the considered class of closed loop systems,
see e.g. Carnevale et al. [2012b]); in fact, the proof of
Theorem 1 yields the following corollary.

Corollary 1. Under Assumptions 1, 2 and 3, any regulator
designed as above ensures requirement (OR) in Problem 1
for all P ∈ F for which it achieves requirement (GES). �

In other words, given a regulator as in Theorem 1, and
denoted by Fs ⊂ F the set of plants such that K provides
GES for the closed-loop system, the same regulator solves
Problem 1 on the whole set Fs. Note that Fs includes
arbitrary large variations of matrices P , Q, R in (2).

however, more easily implementable alternative choices exist, e.g.
with M1(τ) piecewise constant (cfr [Carnevale et al., 2013c, Sec. V]).
2 Pathological cases for values of τM in a set of measure zero can
happen, e.g. A11 =

[
0 1
−1 0

]
, B11 = I, τM = 2π, yielding B̄11 = 0.
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(a) Nominal plant P◦. Time histories of the state x (top) and of the
regulation error e (bottom).
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(b) Perturbed plant P. Time histories of the state x (top) and of
the regulation error e (bottom).
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(c) Nominal plant P◦. Time histories of the states xF of the flow
internal model IF defined in Section 3.1 (top) and xJ of the jump
internal model IJ defined in Section 3.2 (bottom).
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(d) Perturbed plant P. Time histories of the states xF of the flow
internal model IF defined in Section 3.1 (top) and xJ of the jump
internal model IJ defined in Section 3.2 (bottom).

Fig. 3. Response of the nominal plant P◦ defined in of [Carnevale et al., 2013c, Example 1] (left column, Figures 3a and
3c) and a perturbed plant P (right column, Figures 3b and 3d) interconnected with the compensator described in
3. Global exponential stability of the closed-loop system ensures that all states converge to zero after the state of
the exosystem is reset to zero at time t = 25 (cfr Remark 2).

4. SIMULATIONS

The first example introduced in Carnevale et al. [2013c] is
revisited here by means of the construction in the previous
section, which yields a robust regulator. The flow and jump
internal models are defined according to the procedures
in Sections 3.1 and 3.2, respectively, and interconnected
to the plant according to Figs. 1 and 2, with a constant
M1(τ) = 1/

∫ τM
0

e−(τM−τ)dτ and M2 = 1. The stabilizer
K is designed to obtain (GES) for the closed-loop system.

In the following simulations, Problem 1 is solved for the
nominal plant P◦ defined in Example 1 of Carnevale et al.
[2013c], and for a generic element P of the family F of
perturbed plants. The plant P was obtained by perturbing
the entries of A, B and E of P◦ between 15% and 20% of
their nominal values. The top graph of Fig. 3a shows the
time history of the state of the nominal plant P◦ defined in
Example 1 of Carnevale et al. [2013c] interconnected with
the compensator proposed in this paper, whereas the time
history of the corresponding regulation error is depicted in
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the bottom graph. The time history of the state of the flow
and jump internal models, introduced in Sections 3.1 and
3.2, respectively, is displayed in Fig. 3c, top and bottom
graph, respectively. Note that the exosystem injecting
exogenous signals to the plant is switched off at t = 25s.
As expected, the state of the internal model asymptotically
converges to zero.

As for the perturbed scenario, the top and bottom graphs
of Fig. 3b show the time history of the state of the
perturbed plant P interconnected with the compensator
designed for the nominal plant P◦, and the time history of
the corresponding regulation error e, respectively. Finally,
similarly to Fig. 3c, the time history of the state of the
flow and jump internal models is shown in Fig. 3d.

5. CONCLUSIONS

The robust output regulation problem has been solved
for the largest class of linear hybrid systems with peri-
odic jumps for which the internal model design can be
performed based on the exosystem dynamics only. The
proposed design also achieves global exponential stability
of the closed-loop system and applies to MIMO, possibly
nonsquare and nonminimum phase systems. The proposed
design is based on two internal models of the exosystem,
one taking care of regulation during flows and the other
solving a related regulation problem at jumps.
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