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Abstract: This paper presents a novel human-system collaborative robot-programming platform, where case-based 
reasoning (CBR) and explanation-based learning (EBL) are integrated together. CBR takes advantage of its unique 
CBR cycle to achieve the knowledge acquisition and reuse in the form of case, realizing efficient robot programming 
with the support of experienced human experts. EBL optimizes the rule structure in the knowledge base through 
learning in retrieving speedup rules in order to accelerate the case adaptation process. Feasibility of this proposal is 
verified via a number of experiments that allow the system to output both schemata for generalized robot 
programming tasks whose calculation rules are adaptive enough so that it can be applied to novel task inputs. 
Moreover, it is shown that our system is adaptive to the increase of the cases processed and be able to tackle with the 
learning utility problem.  

Keywords: Human-machine systems, human-centered design, interactive approaches, knowledge-based 
systems, and knowledge transfer, robot programming. 

 

1. INTRODUCTION 

As manufacturing shifts away from low mix/high volume 
production to high mix/low volume production, the current 
robot-programming paradigm, which is executed in a trial-
and error manner, is so tedious and time-consuming to keep 
pace with rapidly changing customers’ needs. This is mainly 
because a teaching task for the robots depends heavily on the 
engineers’ experiences and knowledge and the so-called 
knowledge transfer issues from experienced engineers to the 
younger generation were not resolved at all. Then, a new 
robot-programming paradigm emphasizing efficiency and 
flexibility becomes one of the key factors for manufacturer to 
survive in the fierce competition. 

This paper explores a new robot-programming paradigm 
integrating a number of machine learning methodologies with 
knowledge engineering, putting a high emphasis on 
knowledge acquisition and reuse. Knowledge to be gained 
from experienced engineer is in the form of cases, and the 
framework for the knowledge-intensive platform is designed 
as an extended CBR (Case-Based Reasoning) system. All the 
cases are organized in a hierarchical tree structure using a 
conceptual clustering technique that contributes much to an 
overall CBR framework in acquiring and reusing the 
knowledge via its CBR cycle. At the same time, another 
machine learning technique of EBL (Explanation-Based 
Learning) optimizes the structure of the rule base, generating 
speedup rule incrementally to improve case adaptation ability.  

There are two main contributions of our system. The primary 
contribution is our emphasis on knowledge acquisition and 
reuse. During the process of programming, not only the 
solution is desired, but the knowledge that human expert use 
is much more preferred as well. Compared to the rule-
knowledge, case-knowledge is more efficient and simple for 
human to learn and reuse. Besides, as an analog to human 

problem solving paradigm, CBR makes the incremental 
knowledge acquisition and reuse more natural. The secondary 
contribution is that our paradigm is based on learning from 
demonstration of the program written by experts in the past. 
This idea stems from the concept that text-based program is 
filled with experts’ knowledge such as how to select point 
and operation strategies, discussed by Wang et al. (2012). 
Following this research, in this paper we focus on practical 
problems encountered for realizing the teaching assistance 
system with respect to the flexible organization of individual 
cases and to the improvement of case adaptation performance 
without suffering from the learning utility problem caused by 
the increase of the number of cases. 

2. RELATED WORKS AND METHODOLOGIES 

2.1 Related Works 

In order to explore a new approach for robot programming, a 
great number of researches were carried out and systems 
were constructed. Aleotti et al. (2004) applied a virtual reality 
technology for robot programming. But VR needs well-
structured environment, and apparently ignores the 
knowledge succession between the human worker and the 
system. Galangiu et al. (2011) constructed an expert system 
for robot programming. However, the establishment of expert 
system is time-consuming and inefficient itself, due to the 
fact that rules must be carefully extracted in order to avoid 
inconsistency. Besides, some fragments of knowledge are too 
ambiguous to be expressed clearly. Ushioda et al. (2006) 
utilized machine learning (i.e., swept volumes) for robot 
programming. As his method is limited to specific case and 
the retrieved knowledge is difficult for the system, even for a 
human, to interpret and reuse, it fails to satisfy low-volume 
and high variety manufacturing needs. 

2.2 Methodologies 
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The robot programming is established on CBR framework, 
while EBL in this framework is responsible for enhancing 
case adaptation. As a fashionable research direction in 1980, 
CBR has covered many engineering fields, ranging from 
mechanical design to error analysis. However, there are a 
limited number of research works that applied CBR to the 
assembly domain except (Seo et al., 2007) and (Su, 2007).  

CBR is selected for the following reasons. First, CBR 
manages to handle situations where knowledge is difficult to 
express clearly and completely. In practical engineering field, 
it is hard to express every piece of knowledge clearly in the 
form of rule. Besides, the process of encoding rules into the 
knowledge base appears rather time-consuming. Therefore, 
compare to rule-type knowledge, it turns out to be more 
appropriate to manage experience and knowledge of skilled 
engineer’s in the form of case. Second, CBR is consistent 
with human cognitive model to solve problems based on 
similar experience, which allows the system to have strong 
self-learning and adaption ability in comparison with well-
structured expert system and VR.  

As for EBL, it is a deductive learning method that exploits a 
very strong domain theory to acquire knowledge from 
training examples (DeJong et al., 1986). EBL does not result 
in the acquisition of truly “new” knowledge. Instead, EBL 
can be viewed as a process that rearranges the knowledge 
structures in the domain theory to generate the operational 
shortcut. EBL was first adopted by Segre and DeJong (Segre 
et al., 1985) to give a manipulator the intelligence of 
constructing schema to handle some manipulation problems, 
while H. Adeli (Adeli et al.,1990) applied EBL in the civil 
engineering field to investigate structural design.  

The reason why we introduce EBL into the system is two-
fold. First, the EBL is able to gain the operational knowledge 
from even a single training example, unlike other inductive 
learning that needs processing a large number of samples. 
Considering the increasing low volume/high variety needs, 
this feature eliminates the time to collect different samples as 
production scenario varies, making it a suitable approach 
towards low-volume/high variety production. Second, EBL is 
able to generate speedup rules to accelerate the inference 
process and improve adaptation ability. More powerful 
inference does lead to efficiency improvement in case 
adaptation. 

3. SYSTEM ARCHITECTURE 

The system is composed of four components, which are 
Planning Part, Learning Part, Knowledge Base and Case Base, 
which is displayed in Fig.1. Rule base can be further divided 
into atomic rule base and speedup rule base. Operational 
criterion is also stored in the rule base. Both the planning part 
and the learning part interact with the case base and the rule 
base. 

Input is supposed to be the information such as contact type 
from CAD model, and position and attitude of workpiece and 
obstacle captured by stereo camera and so on. Since how to 
acquire information from CAD model and sensor is not the 
primary focus in this research, it’s assumed that a 
representation vector and assertions with regard to the target  

Fig.1 Proposed system architecture 

case are provided as the input. On the other hand, output is a 
justified solution, including schema and calculation rules.  

Our system is based on the case-based reasoning framework, 
and CBR has four processes, which are retrieve, reuse, revise 
and retain (Kolodner, 1992; Lopez de Mantaras et al., 2005). 
From a perspective of CBR cycle, the planning part 
undergoes three processes including RETRIEVE, REUSE 
and REVISE. It retrieves the most similar case (i.e., a base 
case) to the current problem case in question (i.e., a target 
case) from case base, reuses its solution and revises its 
solution accordingly to create a solution to the target case. 
RETAIN is implemented in two ways: The system managed 
target cases into case base hierarchically, while the EBL part  
acquired new speedup rules into the knowledge base to 
enhance the adaption ability.  

3.1 The Planning Part 

The planning part aims to produce a justified program based 
on the input. According to specific function, it can be further 
divided into a number of sub-parts, which are Transform, 
Retrieval, Reuse, Verification, Revision and Justification.  

Transform part is in charge of producing a representation 
vector and assertions based on the information captured by 
sensor and CAD data. The vector is used for retrieval, as 
assertions are used for verification and revision.  

Retrieval part takes the representation vector as an index, 
searching case base for the most similar base cases to target 
case. The indices of the matches will be output to reuse part.  

Reuse part has the responsibility to acquire the solution of 
similar cases from the case base according to these indices 
given by retrieval part, and sends it to the verification and 
revision part. The solution is hierarchically divided into three 
layers, which are schema, calculation rules for major 
parameter and minor parameter. 

Verification part verifies whether the solution matches target 
case or not in two aspects: schema and calculation rule. If 
matched, verification part outputs a solution directly to 
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justification part. If not, verification part reports mismatch 
information to revision part. 

Revision part revises the suggested solution based on the 
report from verification part and assertions. It interacts with 
the knowledge base for related rules to adapt the solution 
towards the target case, before outputting the solution for a 
human expert to justify. 

3.2 The Learning Part 

Learning part can be viewed as a retain part in the system, 
which is responsible for knowledge acquisition. The input to 
the learning part is the justified solution including program 
and calculation rules. After the learning part takes the input, 
the knowledge will be acquired in two dimensions. One is 
that the solution will be sent to Case base, so that it can be 
retained into the case base constructed in a hierarchical tree 
structure according to its representation vector. The other is 
that the calculation rules alone will be taken a goal concept 
for EBL to generate speedup rules. In the initial stage when 
there are not so many cases in the case base, experienced 
worker can input the vector and calculation rules directly. In 
the situation, the case will be sent and stored into Case base.  

Learning part hosts two components, which are Explainer and 
Knowledge base. The atomic rules and operational criteria 
are stored in the knowledge base for Explainer to refer. 
Explainer interacts with Atomic knowledge base to construct 
an explanation tree. Then, Generalizer decides to what extent 
the derived explanation tree should be generalized for the 
usage of novel cases according to the operational criteria. By 
investigating into a derived explanation tree, speedup rule can 
be generated and is stored at the speedup rule base to 
accelerate the inference process in the future reuse. These 
speedup rules are treated with higher priorities over atomic 
rules when they are used in the further inferences. 

Finally, a procedure of Justification is carried out by a human 
expert. Human expert is allowed to ensure the quality of 
solution during this stage. He/she either modifies minor flaws, 
or rewrites and gives the schema and calculation, if the 
solution is far away from satisfactory. 

 

4. THE PLANNING MECHANISM 

The following gives a detailed explanation on the planning 
mechanism of our system. We talk about how to represent a 
case in a representation vector, how the system retrieves 
similar cases from the case base and how the system reuses 
and revises them. 

4.1 Case Representation and Organization 

Here are some assumptions set here to simplify this research. 
Both workpieces and obstacles are restricted to be kinds of 
concrete cuboid. Besides, both initial and destination 
environment is only allowed to have one obstacle or not. The 
tool is set two-figure gripper. The task is pick-and-place 
operation. Information such as attitude and position acquired 
by a visual sensor and contact type is transformed into a 
vector to represent the case.  

 

Herein, the five attributes are used to constitute a vector; 1) 
obstacle in initial environment, 2) obstacle in destination 
environment, 3) type of initial/destination environment 
combination, 4) contact type, and 5) attitude relation of the 
workpiece between the initial and the destination state.  

The initial environment and the destination environment are 
assumed to be limited into either of the three types that are 
labeled by taking account of the relations among workpieces, 
obstacles and tools; either of “isolated”, “collision-free”, 
“collision-prone”. The attribute concerning with the type of 
initial/destination environment combination considers 
obstacles in both initial and destination environment at the 
same time. The values for this attribute are defined as the 
combination of the above three values, thus may take one of 
the nine values. The values for the attribute of the contact 
types are either of; “plane-on”, “loose-insert” and “tight-
insert” that is determined according to the adopted strategy to 
place the workpiece. The values for the attribute of relation 
between initial state and destination states of workpiece 
include “unchanged”, “lean” and “reverse”, that are affecting 
on deciding PickPoint parameter in the robot programming.  

4.2 Case Retrieval 

In our system, a method of conceptual clustering called as 
COBWEB (Fisher, 1987) is adopted for organizing the cases 
so that the base case could be retrieved efficiently in reply to 
the input novel case. Here are the two primary motivations to 
use the concept clustering. First, the category utility, which is 
used as a heuristic metric controlling the organization of the 
clusters, is consistent with human’s unsupervised 
categorization. It is based on probability matching, which is a 
cognition phenomenon, allowing clustering not to be 
susceptible to irrelevant and incomplete concepts. Second, 
since our system is to be expanded according to the 
accumulation of incrementally provided cases, a capability of 
incremental learning is essential, and during this incremental 
learning, the search cost should be favourable avoiding 
exhaustive search methods. Low computation cost of 
conceptual clustering permits system to update case base 
rapidly when each new case is added, thus sustaining a 
continual basis for reacting to new provision of inputs 
incrementally. In this work, as an initial set of case base, 61 
different cases are generated, whose values for the 
corresponding attributes are picked up randomly from their 
corresponding domain values. Then, conceptual clustering is 
applied to these cases, wherein category utility (Corter and 
Gluck, 1992) is used to guide clustering in measuring both 
similarity of objects within the same class and dissimilarity 
of objects from the ones of different classes. 

4.3 Deeper Case Description 

After the system retrieves the similar cases from the case 
base, it will reuse the knowledge of the retrieved cases to 
create a solution to the target case. As mentioned before, the 
knowledge attached to the previous case (i.e. case 
knowledge) is divided into three layers, which are schema, 
major parameter and minor parameter. It is analogous to 
human’s process toward robot programming, which is that 
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expert defines the schema by writing the program in 
controller-specific language, then determines the parameter 
by teaching robot the information concerning parameters via 
teaching pendent. 

A. Schema Level 

A schema is the program in controller-specific language, 
which provides strategies to be applied for the target case. 
Figure 2 shows a simple program written for the industrial 
robot MELFA BFP-A86466 made by Mitsubishi Electric 
Corporation (Mitsubishi, 2005). The program refers to a task 
to pick up a cuboid from the plane. The whole motion is to 
move to SafePoint (p1) at first, then move to PrePickPoint (p2,-
50), translate to PickPoint (p2) to grasp the object and retreat.  
Ovrd is the command that means changing the velocity, as 
M_NOvrd and 10 stands for the maximum velocity and 10% of 
maximum velocity, respectively. Mov features move, while 
Mvs represents translate. The point following the Mov and Mvs 
shows the target point. Dly means delay, and the following 
number shows the time delay in seconds.  

Fig.2 Pick Operation 

Due to flexibility and inter-changeability, a schema is further 
divided into several segments. Its hierarchical task structure 
is depicted in Fig. 3. 

Fig.3 Hierarchical Representation of Pick-Place Task 

B. Rules for Calculating Major and Minor Parameters 

Major parameters are defined as key parameters that are 
directly relevant with and contribute to the success of the 
assembly. The calculation rule is used in this research to 
express the knowledge of major parameter. Along with 
specific data such as workpiece geometry, the detailed 
parameter can be calculated. In the simple task above, the 
major parameters are PickPoint(p2), and PrePickPoint(p2, -50). 
Inappropriate selection of major parameters may result in the 
failure of the assembly task. Compared to major parameters, 
minor parameters do not define the success of assembly, but 
affect the quality of the assembly task performance. Two 
important minor parameters are known to be velocity and 
time delay.  

 

The velocity changes frequently during the operations and is 
closely related both with the stability and the efficiency of the 
assembly task, while the time delay set before and after the 
gripper’s actions should be also selected appropriately by 
considering the trade-off between stability and efficiency. 
The selection of minor parameter depends heavily on the 
experience of skilled engineers, and minor parameters will be 
preserved originally for human expert to justify. 

4.4 Case Revision (Case Adaptation) 

The prior solution of retrieved case (i.e., the base case) does 
not ensure to match the target case perfectly. Verification and 
revision is usually carried out to verify whether the solution 
stored in the base case is applicable to the target case or not, 
and to revise it if necessary. As the solution of the base case 
composes schema and parameters, verification and revision 
will be carried out in corresponding two stages.  

A. Schema Verification and Revision 

 Schema verification is based on verifying difference pattern, 
which means that the system figures out what is different 
between the base case and target case. As the case is 
described by representation vector, the system works out the 
difference pattern by analyzing the difference between 
vectors and consulting the knowledge base. If there is no 
difference between vectors, no revision needs to be made. 
According to the verification results, revision part takes it to 
consult the knowledge base. There are a number of related 
rules with regard to schema revision in the knowledge base. 
In this manner, the system realizes the revision on schema of 
the retrieved case by switching related segment. 

B. Calculation Rule’s Verification and Revision 

Calculation rule is verified by examining whether it fits with 
assertions or not. Calculation rule is regressed into its 
constraints by consulting the rules in the knowledge base. 
Subsequently, whether assertions can satisfy all the 
constraints or not is investigated. If not, calculation rule will 
be considered to be inappropriate to the current target case 
and the system will resort to the revision part to revise by 
sending the type of the rule. Revision part reasons in a 
forward-chaining fashion from the assertions by referring to 
the rules in the knowledge base, until it gets the related rule. 
If there is not related rule that can be found in the knowledge 
base, revision part can leave this problem to human expert in 
the justification stage, waiting for human expert to provide 
the calculation rule. 

4.5 Justification 

When a program is generated, there might occur some 
inappropriateness that is beyond the system’s ability to 
realize. A human expert is expected to justify the program 
generated by the system to ensure the solution quality. 
Human expert either modifies slightly towards the minor 
problem, or rewrites the schema and redefines the calculation 
rules, given the suggested solution is far away from 
satisfactory. 
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A number experiments are conducted to demonstrate the 
planning function of the system, but the details of the 
demonstration are skipped because of the space limitation 
here. This will be shown in the presentation according to the 
process mentioned in this section. 

5.  THE LEARNING MECHANISM 

The learning part handles both the case knowledge and the 
rule knowledge. As to the case knowledge, conceptual 
clustering can incorporate a case into clustering tree in the 
case base automatically.  

As for the rule knowledge, EBL is used to create new 
speedup rule based on the existed rules. By using speedup 
rule rather than inference on a number of atomic rules step by 
step, the system can enhance its adaption ability, which will 
be discussed in the later section. Whether EBL part needs to 
be provoked or not depends on whether there are related 
speedup rules in the knowledge base or not. If related 
speedup rules are found in the knowledge base, this particular 
goal concept has got regressed before and there is no new 
knowledge to be learned. In this case, EBL will not be 
activated. If not, EBL part is to be activated to learn the 
speedup rule.  

An example is used to demonstrate how EBL functions. At 
the start, the calculation rule is taken as a goal concept. Then, 
explainer searches within atomic knowledge base for related 
atomic rules to construct the explanation tree.  

1,  Pickpoint is -y, 0.5 if  

              Feasible is -y-axis, 0.5, and  

              Relation is reverse, and 

              Approachable is –y-axis. 

 2, Feasible is -y-axis, 0.5 if  

              OpenWidth bigger-than dx, and 

              Length bigger-than 0.5*dy, and 

3, Approachable –y-axis if  

              -y-axis hasnot obstacle, and 

              x-axis hasnot Primary-obstacle 

4, x-axis hasnot Primary-obstacle if  

              +x-axis hasnot Primary-obstacle, and 

              -x-axis hasnot Primary-obstacle 

At this time, the generalizer checks if-parts of these rules to 
see whether they meet operationality criteria or not. If they do, 
the explainer will cease searching related rules. In this 
example, operational criterions used are listed as follows:  

1, Relation is reverse, and 

2, OpenWidth bigger-than dx, and 

3, Length bigger-than 0.5*dy, and 

4, -y-axis hasnot obstacle, and 

5, +x-axis hasnot Primary-obstacle, and 

6, -x-axis hasnot Primary-obstacle 

Accordingly, an explanation tree is constructed as showed in 
Fig. 4. 

By building a new explanatory structure successfully, a new 
speedup rule is created.  

PickPoint is -y,0.5 if  

Relation is reverse, and 

OpenWidth bigger-than dx, and 

Length bigger-than 0.5*dy, and 

-y-axis hasnot obstacle, and 

 +x-axis hasnot Primary-obstacle, and 

-x-axis hasnot Primary-obstacle 

Fig. 4 Explanation tree for the rule (Pickpoint is -y, 0.5) 

 

It means if the gripper’s open width is bigger than dx, and the 
figure length is bigger than 0.5*dy, and the attitude relation 
between the initial and destination state is reverse, no 
obstacle is at the negative side of y–axis and no primary 
obstacle is on the x-axis, then the gripper can pick up the 
workpiece from the negative side of x-axis and its PickPoint is 
in the middle of workpiece. The preceding speedup rule will 
be stored into knowledge base and used in verification and 
revision in the future. 

6.  LEARNING UTILITY PROBLEM 

In this section, we discuss whether EBL can have a positive 
influence on the case adaptation. First, we measure the elapse 
time used by the system with and without EBL function to 
evaluate adaptation efficiency. 

Fig. 5 Elapse time for processing cases 

The experiment is set to require the system to figure out how 
to calculate PickPoint. The input into the system is the 
assertions of specific cases, while the output is calculation 
rules. The system without EBL obtains calculation method by 
making inference on those atomic rules iteratively. In contrast, 
the system with EBL cannot only refer to atomic rules, but 
retrieves and reuses the speedup rules as well.  

The 60 target cases and 88 atomic rules in knowledge base 
are used for demonstration. During the experiment, there are 
roughly ten speedup rules retrieved. 
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Fig. 6 Elapse Time for system via atomic rule and EBL-training 
 
The result is displayed in Fig.5, in which x-axis stands for a 
list of cases and y-axis shows elapse time in microsecond for 
processing a case. The curve in black and grey represents the 
system with EBL and that without EBL. As showed in Fig. 6, 
although the system with EBL spends relatively longer elapse 
time at some points due to EBL’s learning of speedup rule, its 
average elapse time is almost half of that used by the system 
without EBL. Therefore, EBL is considered to boost case 
adaptation by 50%. Second, ordering Effect is examined. 
Since the speedup rules generated previously can accelerate 
the adaption while faced with coming similar situations, it 
comes necessary to investigate whether the order of input 
case has something to do with case adaptation.  Third, we 
evaluate EBL’s influence by taking its contribution to solving 
utility problem into account. In the machine learning 
community, utility problem means the trade-off between 
solution quality and system’s efficiency: large knowledge 
base enhances system’s adaption ability and improves 
solution quality, while the efficiency is deteriorated with 
enlargement of knowledge base.  

Utility problem is investigated here in two dimensions. First 
is by compare the performance of the system without EBL 
and that via EBL training. Given all 60 cases at hand, the 
former 20 cases are used for training, then all 60 cases are 
used to test whether there is utility problem or not. As Fig.6 
shows, the average time for the system with EBL training is 
317µs, while the system without EBL takes 823 µs. Hence, 
EBL training gave a 260% improvement in case adaptation. 
Secondary, we also evaluate utility problem in the 
perspective of performance response and verified that EBL 
helps the adaptation ability of the system improve 
increasingly better, telling that the EBL here does not suffer 
from utility problem. 

7.  CONCLUSIONS 

A knowledge platform integrating CBR and EBL for robot 
programming is proposed in this paper. The applicability is 
verified by applying it to experiments. CBR manages to 
generate a solution by referring to the previous case and 
acquires the case knowledge. EBL is responsible for learning 
speedup rules to optimize knowledge base’s structure to 
improve the system’s adaption ability. Since the increase of 
the learned rules are assumed to deteriorate the performance 
of adaptation, we discussed about this learning utility 
problem and verified that EBL helps the adaptation ability of 

the system improve increasingly better without being suffered 
from the utility problem.  How to allow EBL to perform a 
greater role will be investigated in the future. One idea is to 
permit EBL to participate in the retrieval, as the explanation 
tree can be used as the resource to generate new attributes. 
Whether retrieval quality can benefit from these new 
attributes needs to be investigated.  If verified, EBL is able to 
integrate with CBR better to achieve the comprehensive 
improvement of system. 
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