

Knowledge-Intensive Teaching Assistance System for Industrial Robots Using
Case-Based Reasoning and Explanation-Based Learning

Guanfeng Sun*, Tetsuo Sawaragi*, Yukio Horiguchi* and Hiroaki Nakanishi*

Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
(e-mail: sun.guanfeng.63m@st.kyoto-u.ac.jp,{sawaragi, horiguchi, nakanishi}@me.kyoto-u.ac.jp)

Abstract: This paper presents a novel human-system collaborative robot-programming platform, where case-based
reasoning (CBR) and explanation-based learning (EBL) are integrated together. CBR takes advantage of its unique
CBR cycle to achieve the knowledge acquisition and reuse in the form of case, realizing efficient robot programming
with the support of experienced human experts. EBL optimizes the rule structure in the knowledge base through
learning in retrieving speedup rules in order to accelerate the case adaptation process. Feasibility of this proposal is
verified via a number of experiments that allow the system to output both schemata for generalized robot
programming tasks whose calculation rules are adaptive enough so that it can be applied to novel task inputs.
Moreover, it is shown that our system is adaptive to the increase of the cases processed and be able to tackle with the
learning utility problem.

Keywords: Human-machine systems, human-centered design, interactive approaches, knowledge-based
systems, and knowledge transfer, robot programming.

1. INTRODUCTION

As manufacturing shifts away from low mix/high volume
production to high mix/low volume production, the current
robot-programming paradigm, which is executed in a trial-
and error manner, is so tedious and time-consuming to keep
pace with rapidly changing customers’ needs. This is mainly
because a teaching task for the robots depends heavily on the
engineers’ experiences and knowledge and the so-called
knowledge transfer issues from experienced engineers to the
younger generation were not resolved at all. Then, a new
robot-programming paradigm emphasizing efficiency and
flexibility becomes one of the key factors for manufacturer to
survive in the fierce competition.

This paper explores a new robot-programming paradigm
integrating a number of machine learning methodologies with
knowledge engineering, putting a high emphasis on
knowledge acquisition and reuse. Knowledge to be gained
from experienced engineer is in the form of cases, and the
framework for the knowledge-intensive platform is designed
as an extended CBR (Case-Based Reasoning) system. All the
cases are organized in a hierarchical tree structure using a
conceptual clustering technique that contributes much to an
overall CBR framework in acquiring and reusing the
knowledge via its CBR cycle. At the same time, another
machine learning technique of EBL (Explanation-Based
Learning) optimizes the structure of the rule base, generating
speedup rule incrementally to improve case adaptation ability.

There are two main contributions of our system. The primary
contribution is our emphasis on knowledge acquisition and
reuse. During the process of programming, not only the
solution is desired, but the knowledge that human expert use
is much more preferred as well. Compared to the rule-
knowledge, case-knowledge is more efficient and simple for
human to learn and reuse. Besides, as an analog to human

problem solving paradigm, CBR makes the incremental
knowledge acquisition and reuse more natural. The secondary
contribution is that our paradigm is based on learning from
demonstration of the program written by experts in the past.
This idea stems from the concept that text-based program is
filled with experts’ knowledge such as how to select point
and operation strategies, discussed by Wang et al. (2012).
Following this research, in this paper we focus on practical
problems encountered for realizing the teaching assistance
system with respect to the flexible organization of individual
cases and to the improvement of case adaptation performance
without suffering from the learning utility problem caused by
the increase of the number of cases.

2. RELATED WORKS AND METHODOLOGIES

2.1 Related Works

In order to explore a new approach for robot programming, a
great number of researches were carried out and systems
were constructed. Aleotti et al. (2004) applied a virtual reality
technology for robot programming. But VR needs well-
structured environment, and apparently ignores the
knowledge succession between the human worker and the
system. Galangiu et al. (2011) constructed an expert system
for robot programming. However, the establishment of expert
system is time-consuming and inefficient itself, due to the
fact that rules must be carefully extracted in order to avoid
inconsistency. Besides, some fragments of knowledge are too
ambiguous to be expressed clearly. Ushioda et al. (2006)
utilized machine learning (i.e., swept volumes) for robot
programming. As his method is limited to specific case and
the retrieved knowledge is difficult for the system, even for a
human, to interpret and reuse, it fails to satisfy low-volume
and high variety manufacturing needs.

2.2 Methodologies

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 4535

The robot programming is established on CBR framework,
while EBL in this framework is responsible for enhancing
case adaptation. As a fashionable research direction in 1980,
CBR has covered many engineering fields, ranging from
mechanical design to error analysis. However, there are a
limited number of research works that applied CBR to the
assembly domain except (Seo et al., 2007) and (Su, 2007).

CBR is selected for the following reasons. First, CBR
manages to handle situations where knowledge is difficult to
express clearly and completely. In practical engineering field,
it is hard to express every piece of knowledge clearly in the
form of rule. Besides, the process of encoding rules into the
knowledge base appears rather time-consuming. Therefore,
compare to rule-type knowledge, it turns out to be more
appropriate to manage experience and knowledge of skilled
engineer’s in the form of case. Second, CBR is consistent
with human cognitive model to solve problems based on
similar experience, which allows the system to have strong
self-learning and adaption ability in comparison with well-
structured expert system and VR.

As for EBL, it is a deductive learning method that exploits a
very strong domain theory to acquire knowledge from
training examples (DeJong et al., 1986). EBL does not result
in the acquisition of truly “new” knowledge. Instead, EBL
can be viewed as a process that rearranges the knowledge
structures in the domain theory to generate the operational
shortcut. EBL was first adopted by Segre and DeJong (Segre
et al., 1985) to give a manipulator the intelligence of
constructing schema to handle some manipulation problems,
while H. Adeli (Adeli et al.,1990) applied EBL in the civil
engineering field to investigate structural design.

The reason why we introduce EBL into the system is two-
fold. First, the EBL is able to gain the operational knowledge
from even a single training example, unlike other inductive
learning that needs processing a large number of samples.
Considering the increasing low volume/high variety needs,
this feature eliminates the time to collect different samples as
production scenario varies, making it a suitable approach
towards low-volume/high variety production. Second, EBL is
able to generate speedup rules to accelerate the inference
process and improve adaptation ability. More powerful
inference does lead to efficiency improvement in case
adaptation.

3. SYSTEM ARCHITECTURE

The system is composed of four components, which are
Planning Part, Learning Part, Knowledge Base and Case Base,
which is displayed in Fig.1. Rule base can be further divided
into atomic rule base and speedup rule base. Operational
criterion is also stored in the rule base. Both the planning part
and the learning part interact with the case base and the rule
base.

Input is supposed to be the information such as contact type
from CAD model, and position and attitude of workpiece and
obstacle captured by stereo camera and so on. Since how to
acquire information from CAD model and sensor is not the
primary focus in this research, it’s assumed that a
representation vector and assertions with regard to the target

Fig.1 Proposed system architecture

case are provided as the input. On the other hand, output is a
justified solution, including schema and calculation rules.

Our system is based on the case-based reasoning framework,
and CBR has four processes, which are retrieve, reuse, revise
and retain (Kolodner, 1992; Lopez de Mantaras et al., 2005).
From a perspective of CBR cycle, the planning part
undergoes three processes including RETRIEVE, REUSE
and REVISE. It retrieves the most similar case (i.e., a base
case) to the current problem case in question (i.e., a target
case) from case base, reuses its solution and revises its
solution accordingly to create a solution to the target case.
RETAIN is implemented in two ways: The system managed
target cases into case base hierarchically, while the EBL part
acquired new speedup rules into the knowledge base to
enhance the adaption ability.

3.1 The Planning Part

The planning part aims to produce a justified program based
on the input. According to specific function, it can be further
divided into a number of sub-parts, which are Transform,
Retrieval, Reuse, Verification, Revision and Justification.

Transform part is in charge of producing a representation
vector and assertions based on the information captured by
sensor and CAD data. The vector is used for retrieval, as
assertions are used for verification and revision.

Retrieval part takes the representation vector as an index,
searching case base for the most similar base cases to target
case. The indices of the matches will be output to reuse part.

Reuse part has the responsibility to acquire the solution of
similar cases from the case base according to these indices
given by retrieval part, and sends it to the verification and
revision part. The solution is hierarchically divided into three
layers, which are schema, calculation rules for major
parameter and minor parameter.

Verification part verifies whether the solution matches target
case or not in two aspects: schema and calculation rule. If
matched, verification part outputs a solution directly to

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4536

justification part. If not, verification part reports mismatch
information to revision part.

Revision part revises the suggested solution based on the
report from verification part and assertions. It interacts with
the knowledge base for related rules to adapt the solution
towards the target case, before outputting the solution for a
human expert to justify.

3.2 The Learning Part

Learning part can be viewed as a retain part in the system,
which is responsible for knowledge acquisition. The input to
the learning part is the justified solution including program
and calculation rules. After the learning part takes the input,
the knowledge will be acquired in two dimensions. One is
that the solution will be sent to Case base, so that it can be
retained into the case base constructed in a hierarchical tree
structure according to its representation vector. The other is
that the calculation rules alone will be taken a goal concept
for EBL to generate speedup rules. In the initial stage when
there are not so many cases in the case base, experienced
worker can input the vector and calculation rules directly. In
the situation, the case will be sent and stored into Case base.

Learning part hosts two components, which are Explainer and
Knowledge base. The atomic rules and operational criteria
are stored in the knowledge base for Explainer to refer.
Explainer interacts with Atomic knowledge base to construct
an explanation tree. Then, Generalizer decides to what extent
the derived explanation tree should be generalized for the
usage of novel cases according to the operational criteria. By
investigating into a derived explanation tree, speedup rule can
be generated and is stored at the speedup rule base to
accelerate the inference process in the future reuse. These
speedup rules are treated with higher priorities over atomic
rules when they are used in the further inferences.

Finally, a procedure of Justification is carried out by a human
expert. Human expert is allowed to ensure the quality of
solution during this stage. He/she either modifies minor flaws,
or rewrites and gives the schema and calculation, if the
solution is far away from satisfactory.

4. THE PLANNING MECHANISM

The following gives a detailed explanation on the planning
mechanism of our system. We talk about how to represent a
case in a representation vector, how the system retrieves
similar cases from the case base and how the system reuses
and revises them.

4.1 Case Representation and Organization

Here are some assumptions set here to simplify this research.
Both workpieces and obstacles are restricted to be kinds of
concrete cuboid. Besides, both initial and destination
environment is only allowed to have one obstacle or not. The
tool is set two-figure gripper. The task is pick-and-place
operation. Information such as attitude and position acquired
by a visual sensor and contact type is transformed into a
vector to represent the case.

Herein, the five attributes are used to constitute a vector; 1)
obstacle in initial environment, 2) obstacle in destination
environment, 3) type of initial/destination environment
combination, 4) contact type, and 5) attitude relation of the
workpiece between the initial and the destination state.

The initial environment and the destination environment are
assumed to be limited into either of the three types that are
labeled by taking account of the relations among workpieces,
obstacles and tools; either of “isolated”, “collision-free”,
“collision-prone”. The attribute concerning with the type of
initial/destination environment combination considers
obstacles in both initial and destination environment at the
same time. The values for this attribute are defined as the
combination of the above three values, thus may take one of
the nine values. The values for the attribute of the contact
types are either of; “plane-on”, “loose-insert” and “tight-
insert” that is determined according to the adopted strategy to
place the workpiece. The values for the attribute of relation
between initial state and destination states of workpiece
include “unchanged”, “lean” and “reverse”, that are affecting
on deciding PickPoint parameter in the robot programming.

4.2 Case Retrieval

In our system, a method of conceptual clustering called as
COBWEB (Fisher, 1987) is adopted for organizing the cases
so that the base case could be retrieved efficiently in reply to
the input novel case. Here are the two primary motivations to
use the concept clustering. First, the category utility, which is
used as a heuristic metric controlling the organization of the
clusters, is consistent with human’s unsupervised
categorization. It is based on probability matching, which is a
cognition phenomenon, allowing clustering not to be
susceptible to irrelevant and incomplete concepts. Second,
since our system is to be expanded according to the
accumulation of incrementally provided cases, a capability of
incremental learning is essential, and during this incremental
learning, the search cost should be favourable avoiding
exhaustive search methods. Low computation cost of
conceptual clustering permits system to update case base
rapidly when each new case is added, thus sustaining a
continual basis for reacting to new provision of inputs
incrementally. In this work, as an initial set of case base, 61
different cases are generated, whose values for the
corresponding attributes are picked up randomly from their
corresponding domain values. Then, conceptual clustering is
applied to these cases, wherein category utility (Corter and
Gluck, 1992) is used to guide clustering in measuring both
similarity of objects within the same class and dissimilarity
of objects from the ones of different classes.

4.3 Deeper Case Description

After the system retrieves the similar cases from the case
base, it will reuse the knowledge of the retrieved cases to
create a solution to the target case. As mentioned before, the
knowledge attached to the previous case (i.e. case
knowledge) is divided into three layers, which are schema,
major parameter and minor parameter. It is analogous to
human’s process toward robot programming, which is that

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4537

expert defines the schema by writing the program in
controller-specific language, then determines the parameter
by teaching robot the information concerning parameters via
teaching pendent.

A. Schema Level

A schema is the program in controller-specific language,
which provides strategies to be applied for the target case.
Figure 2 shows a simple program written for the industrial
robot MELFA BFP-A86466 made by Mitsubishi Electric
Corporation (Mitsubishi, 2005). The program refers to a task
to pick up a cuboid from the plane. The whole motion is to
move to SafePoint (p1) at first, then move to PrePickPoint (p2,-
50), translate to PickPoint (p2) to grasp the object and retreat.
Ovrd is the command that means changing the velocity, as
M_NOvrd and 10 stands for the maximum velocity and 10% of
maximum velocity, respectively. Mov features move, while
Mvs represents translate. The point following the Mov and Mvs
shows the target point. Dly means delay, and the following
number shows the time delay in seconds.

Fig.2 Pick Operation

Due to flexibility and inter-changeability, a schema is further
divided into several segments. Its hierarchical task structure
is depicted in Fig. 3.

Fig.3 Hierarchical Representation of Pick-Place Task

B. Rules for Calculating Major and Minor Parameters

Major parameters are defined as key parameters that are
directly relevant with and contribute to the success of the
assembly. The calculation rule is used in this research to
express the knowledge of major parameter. Along with
specific data such as workpiece geometry, the detailed
parameter can be calculated. In the simple task above, the
major parameters are PickPoint(p2), and PrePickPoint(p2, -50).
Inappropriate selection of major parameters may result in the
failure of the assembly task. Compared to major parameters,
minor parameters do not define the success of assembly, but
affect the quality of the assembly task performance. Two
important minor parameters are known to be velocity and
time delay.

The velocity changes frequently during the operations and is
closely related both with the stability and the efficiency of the
assembly task, while the time delay set before and after the
gripper’s actions should be also selected appropriately by
considering the trade-off between stability and efficiency.
The selection of minor parameter depends heavily on the
experience of skilled engineers, and minor parameters will be
preserved originally for human expert to justify.

4.4 Case Revision (Case Adaptation)

The prior solution of retrieved case (i.e., the base case) does
not ensure to match the target case perfectly. Verification and
revision is usually carried out to verify whether the solution
stored in the base case is applicable to the target case or not,
and to revise it if necessary. As the solution of the base case
composes schema and parameters, verification and revision
will be carried out in corresponding two stages.

A. Schema Verification and Revision

 Schema verification is based on verifying difference pattern,
which means that the system figures out what is different
between the base case and target case. As the case is
described by representation vector, the system works out the
difference pattern by analyzing the difference between
vectors and consulting the knowledge base. If there is no
difference between vectors, no revision needs to be made.
According to the verification results, revision part takes it to
consult the knowledge base. There are a number of related
rules with regard to schema revision in the knowledge base.
In this manner, the system realizes the revision on schema of
the retrieved case by switching related segment.

B. Calculation Rule’s Verification and Revision

Calculation rule is verified by examining whether it fits with
assertions or not. Calculation rule is regressed into its
constraints by consulting the rules in the knowledge base.
Subsequently, whether assertions can satisfy all the
constraints or not is investigated. If not, calculation rule will
be considered to be inappropriate to the current target case
and the system will resort to the revision part to revise by
sending the type of the rule. Revision part reasons in a
forward-chaining fashion from the assertions by referring to
the rules in the knowledge base, until it gets the related rule.
If there is not related rule that can be found in the knowledge
base, revision part can leave this problem to human expert in
the justification stage, waiting for human expert to provide
the calculation rule.

4.5 Justification

When a program is generated, there might occur some
inappropriateness that is beyond the system’s ability to
realize. A human expert is expected to justify the program
generated by the system to ensure the solution quality.
Human expert either modifies slightly towards the minor
problem, or rewrites the schema and redefines the calculation
rules, given the suggested solution is far away from
satisfactory.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4538

A number experiments are conducted to demonstrate the
planning function of the system, but the details of the
demonstration are skipped because of the space limitation
here. This will be shown in the presentation according to the
process mentioned in this section.

5. THE LEARNING MECHANISM

The learning part handles both the case knowledge and the
rule knowledge. As to the case knowledge, conceptual
clustering can incorporate a case into clustering tree in the
case base automatically.

As for the rule knowledge, EBL is used to create new
speedup rule based on the existed rules. By using speedup
rule rather than inference on a number of atomic rules step by
step, the system can enhance its adaption ability, which will
be discussed in the later section. Whether EBL part needs to
be provoked or not depends on whether there are related
speedup rules in the knowledge base or not. If related
speedup rules are found in the knowledge base, this particular
goal concept has got regressed before and there is no new
knowledge to be learned. In this case, EBL will not be
activated. If not, EBL part is to be activated to learn the
speedup rule.

An example is used to demonstrate how EBL functions. At
the start, the calculation rule is taken as a goal concept. Then,
explainer searches within atomic knowledge base for related
atomic rules to construct the explanation tree.

1, Pickpoint is -y, 0.5 if

 Feasible is -y-axis, 0.5, and

 Relation is reverse, and

 Approachable is –y-axis.

 2, Feasible is -y-axis, 0.5 if

 OpenWidth bigger-than dx, and

 Length bigger-than 0.5*dy, and

3, Approachable –y-axis if

 -y-axis hasnot obstacle, and

 x-axis hasnot Primary-obstacle

4, x-axis hasnot Primary-obstacle if

 +x-axis hasnot Primary-obstacle, and

 -x-axis hasnot Primary-obstacle

At this time, the generalizer checks if-parts of these rules to
see whether they meet operationality criteria or not. If they do,
the explainer will cease searching related rules. In this
example, operational criterions used are listed as follows:

1, Relation is reverse, and

2, OpenWidth bigger-than dx, and

3, Length bigger-than 0.5*dy, and

4, -y-axis hasnot obstacle, and

5, +x-axis hasnot Primary-obstacle, and

6, -x-axis hasnot Primary-obstacle

Accordingly, an explanation tree is constructed as showed in
Fig. 4.

By building a new explanatory structure successfully, a new
speedup rule is created.

PickPoint is -y,0.5 if

Relation is reverse, and

OpenWidth bigger-than dx, and

Length bigger-than 0.5*dy, and

-y-axis hasnot obstacle, and

 +x-axis hasnot Primary-obstacle, and

-x-axis hasnot Primary-obstacle

Fig. 4 Explanation tree for the rule (Pickpoint is -y, 0.5)

It means if the gripper’s open width is bigger than dx, and the
figure length is bigger than 0.5*dy, and the attitude relation
between the initial and destination state is reverse, no
obstacle is at the negative side of y–axis and no primary
obstacle is on the x-axis, then the gripper can pick up the
workpiece from the negative side of x-axis and its PickPoint is
in the middle of workpiece. The preceding speedup rule will
be stored into knowledge base and used in verification and
revision in the future.

6. LEARNING UTILITY PROBLEM

In this section, we discuss whether EBL can have a positive
influence on the case adaptation. First, we measure the elapse
time used by the system with and without EBL function to
evaluate adaptation efficiency.

Fig. 5 Elapse time for processing cases

The experiment is set to require the system to figure out how
to calculate PickPoint. The input into the system is the
assertions of specific cases, while the output is calculation
rules. The system without EBL obtains calculation method by
making inference on those atomic rules iteratively. In contrast,
the system with EBL cannot only refer to atomic rules, but
retrieves and reuses the speedup rules as well.

The 60 target cases and 88 atomic rules in knowledge base
are used for demonstration. During the experiment, there are
roughly ten speedup rules retrieved.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4539

Fig. 6 Elapse Time for system via atomic rule and EBL-training

The result is displayed in Fig.5, in which x-axis stands for a
list of cases and y-axis shows elapse time in microsecond for
processing a case. The curve in black and grey represents the
system with EBL and that without EBL. As showed in Fig. 6,
although the system with EBL spends relatively longer elapse
time at some points due to EBL’s learning of speedup rule, its
average elapse time is almost half of that used by the system
without EBL. Therefore, EBL is considered to boost case
adaptation by 50%. Second, ordering Effect is examined.
Since the speedup rules generated previously can accelerate
the adaption while faced with coming similar situations, it
comes necessary to investigate whether the order of input
case has something to do with case adaptation. Third, we
evaluate EBL’s influence by taking its contribution to solving
utility problem into account. In the machine learning
community, utility problem means the trade-off between
solution quality and system’s efficiency: large knowledge
base enhances system’s adaption ability and improves
solution quality, while the efficiency is deteriorated with
enlargement of knowledge base.

Utility problem is investigated here in two dimensions. First
is by compare the performance of the system without EBL
and that via EBL training. Given all 60 cases at hand, the
former 20 cases are used for training, then all 60 cases are
used to test whether there is utility problem or not. As Fig.6
shows, the average time for the system with EBL training is
317µs, while the system without EBL takes 823 µs. Hence,
EBL training gave a 260% improvement in case adaptation.
Secondary, we also evaluate utility problem in the
perspective of performance response and verified that EBL
helps the adaptation ability of the system improve
increasingly better, telling that the EBL here does not suffer
from utility problem.

7. CONCLUSIONS

A knowledge platform integrating CBR and EBL for robot
programming is proposed in this paper. The applicability is
verified by applying it to experiments. CBR manages to
generate a solution by referring to the previous case and
acquires the case knowledge. EBL is responsible for learning
speedup rules to optimize knowledge base’s structure to
improve the system’s adaption ability. Since the increase of
the learned rules are assumed to deteriorate the performance
of adaptation, we discussed about this learning utility
problem and verified that EBL helps the adaptation ability of

the system improve increasingly better without being suffered
from the utility problem. How to allow EBL to perform a
greater role will be investigated in the future. One idea is to
permit EBL to participate in the retrieval, as the explanation
tree can be used as the resource to generate new attributes.
Whether retrieval quality can benefit from these new
attributes needs to be investigated. If verified, EBL is able to
integrate with CBR better to achieve the comprehensive
improvement of system.

REFERENCES

Adeli, H. and Yeh, C. (1990). “Explanation-based machine
learning in engineering design”, Engineering
Applications of Artificial Intelligence, 3, 2, pp. 127–137.

Aleotti, J., Caselli, S. and Reggiani, M. (2004). “Leveraging
on a virtual environment for robot programming by
demonstration”, Robotics and Autonomous Systems, 47,
2–3, pp. 153–161.

Corter, J.E. and Gluck, M.A. (1992). “Explaining basic
categories: feature predictablility and information”,
Psychological Bulletin, 111, pp. 291-303.

DeJong, G. and Mooney, R. (1986). “Explanation-based
learning: an alternative view”, Machine Learning, 1, 2,
pp 145-176.

Fisher, D.H. (1987). “Knowledge acquisition via incremental
conceptual clustering”, Machine Learning, 2, 2, pp.
139-172.

Galangiu, G.A, Stoica, M., Sarkany, I. and Sisak, F. (2011).
“Expert system for teaching robots in a flexible
manufacturing line”, Proc. of 15th Int. Conf. on
Intelligent Engineering System, pp. 253-257.

Kolodner, J.L. (1992). “An introduction to case based
reasoning”, Artificial Intelligence, 6, 1, pp. 3-34.

Lopez de Mantaras, R. et al. (2005). “Retrieval, reuse,
revision and retention in case-based reasoning,” The
Knowledge Engineering Review, 20, 3, pp. 215-240.

Mitsubishi. (2005). Mitsubishi Electric Corp. Mitsubishi
Industrial Robot Instruction Manual - detailed
explanations of functions and operations, Art. No.
132315, Version K, BFP-A5992, Mitsubishi Electronics
Corporation, 14.

Seo, Y., Sheen, D. and Kim, T. (2007). “Block assembly
planning in shipbuilding using case-base reasoning”,
Expert System with Application, 32, 1, pp. 245–253.

Segre, A.M. and DeJong, G. (1985). “Explanation-based
manipulator learning: acquisition of planning ability
through observation”, Proceeding of IEEE Int. Conf. on
Robotics and automation, 2, pp. 555-560.

Su, Q. (2007). “Applying case-based reasoning in assembly
sequence planning”, International Journal of
Production Research, 45, 1, pp. 29-47.

Ushioda, T., Maeda, Y. and Akiba, D. (2006). “A robot
teaching method utilizing swept volumes by direct
teaching”, Proc. of JSME Conf. on Robotics and
Mechatronics, 2P1-D33 (in Japanese).

Wang, L., Tien, Y. and Sawaragi, T. (2011). “Case-based
automatic programming in robotic assembly
production”, Industrial Robot: An International Journal,
38, 1, pp. 86-96.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4540

