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Abstract: With advancing technology, systems are becoming increasingly interconnected and
form more complex networks. Additionally, more measurements are available from systems due
to cheaper sensors. Hence there is a need for identification methods specifically designed for
networks. For dynamic networks with known interconnection structures, several methods have
been proposed for obtaining consistent estimates. We suppose that the internal variables in the
network are measured with noise, but that there are external reference signals present in the
network that are known exactly. A method that is able to deal with this situation is the two
stage method, which solves several open loop identification problems sequentially. In this paper
it is shown that solving the problems simultaneously leads to estimates with lower variance.
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1. INTRODUCTION

A network is a set of subsystems (or modules) embedded
according to an interconnection structure (Van den Hof
et al. (2013)). Dynamic networks are becoming increas-
ingly complex in engineering. In addition, the ability to
take measurements using sensors is also increasing. Thus
the identification in networks problem is becoming in-
creasingly important. It is advantageous to address these
identification problems as explicit network identification
problems, because networks exhibit phenomena which do
not appear in classic open and closed-loop systems.

The quality of an estimate can be assessed by determining
if it is consistent and what its variance is. Consistent
models with low variance are in demand. The variance
of the parameters of the estimate define the confidence
regions. The prediction error method provides tools to
assess them.

Consistent estimates of a module embedded in a network
can be obtained using several methods presented in the
literature in Van den Hof et al. (2013). However, when the
internal variables are measured with sensor noise, only the
two-stage method (Van den Hof et al. (2013)) still results
in consistent estimates. To use this method, there must
be external variables present, which are known exactly.
Examples of such signals could be reference signals in
a control loop. In the current literature limited analysis
is performed on the variance of network prediction error
method estimates. What are the variance expressions?
And can the variance of the two-stage method be reduced
in a smart way?

? The work of Arne Dankers is supported in part by the National
Science and Engineering Research Council (NSERC) of Canada.

In Wahlberg et al. (2009) a method is proposed to reduce
the variance of estimates in a cascade. It is shown that
their alternative objective leads to a reduction of the
variance of the estimate of the upstream transfer function
in the cascade. The question arises how this variance
reduction technique can be exploited for identification of
a target module embedded in a dynamic network.

In this paper it is shown that the results of Wahlberg et al.
(2009) for cascade systems can be extended to directed
acyclic graphs. Additionally, it is shown that not only
is the upstream module estimated with lower variance,
but so is the downstream module. Furthermore, it is
shown that the two stage method effectively transforms
a network into a directed acyclic graph. Consequently, we
combine these three results to obtain estimates of modules
embedded in a network with lower variance than the two
stage method. The mechanism by which the new method
achieves lower variance is by simultaneously minimizing
the set of prediction errors that are sequentially minimized
in the two-stage method.

The background material is presented in section 2. The
proposed method and its consistency properties are pre-
sented in Section 3. Its variance is treated in Section 4,
and compared with the two-stage method in Sections 5,
6. Simulation results are in Section 7. and compared with
the two-stage method in Sections 5, 6.

2. BACKGROUND

2.1 Dynamic networks

A dynamic network is built up of L elements related to L
measured scalar internal variables wj , j = 1, . . . L. Every
internal variable in this network can be written as:
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wj(t) =
∑
j∈Nj

Gjk(q)wk(t) + rj(t) (1)

• With Gjk a proper rational transfer function;
• with Nj the set of indices of internal variables with

direct causal connection to wj . k ∈ Nj iff Gjk 6= 0.
• with rj an external variable that can possibly be ma-

nipulated by the user;
• with q−1 the delay operator (i.e. q−1u(t) = u(t− 1))

The internal variables can be expressed as:
w1

w2

...
wL

 =


0 G12 . . . G1L

G21 0
. . . G2L

...
. . .

. . .
...

GL1 GL2 . . . 0



w1

w2

...
wL

+


r1
r2
...
rL

 (2a)

= G(q)w + r(t) (2b)

= (I −G(q))−1r(t) (2c)

Where it is assumed that (I−G)−1 exists. Define S = (I−
G)−1. Some ri may not be present: define R as the set of
indices of present ri. Any measurement can be expressed
as:

w̃k = wk + sk (3)

Where sk is a sensor error. It is a stationary stochastic
process with power spectral density Φsk(ω) = λk (i.e.
white noise). The proposed dynamic network has sensor
noise, and no process noise. Every real sensor has some
noise. This noise is presumed to originate from the internal
workings of the individual sensors. Then every sensor will
have a different error. Because networks have a large
amount of measurements, it is important to deal with
this explicitly. More complex noise frameworks will be
investigated in future work. The following assumptions are
made on dynamic networks:

Assumption 2.1.

• The network is well-posed in the sense that all principal
minors of (I −G(∞))−1 are non-zero.
• (I −G)−1 is stable
• The measurement noise sources are independent white

noise sources Φn = Λ = diag(λ1 . . . λL)
• The external excitation signals are uncorrelated, i.e.:
Rr1r2(τ) = 0 ∀τ .

Define wN = [wk1 . . . wkn ]T and GjN = [Gjk1 . . . Gjkn ]T ,
where {k1 . . . kn} = Nj . Any measurement w̃ can then be
written in either global or local form respectively as:

w̃k(t) =
∑
l∈R

Skl(q)rl(t) + sk(t) (4a)

w̃j(t) =
∑
k∈Nj

Gjk(q)wk(t) + rj(t) + sj(t) (4b)

Where Skl is the (k, l)th element of (I −G)−1.

2.2 The Prediction Error method

The prediction error method (Ljung (1999)) predicts the
output with a one-step-ahead predictor. The prediction
error is minimized to attain a model. The one-step ahead
predictor:

ŵk(t|t− 1) =
∑
l∈R

Skl(q, θ)rl(t) (5)

And the corresponding prediction error is:

εk(t) = w̃k(t)− ŵk(t|t− 1; θ) (6)

The unknown parameters are then estimated through a
prediction error criterion based on a cost function VN :

θ̂N = argmin
θ
VN (θ), (7a)

VN (θ) =

N−1∑
t=0

ε2(t, θ) (7b)

Where VN (θ) is the sum of squared prediction errors.

Definition 2.1. An estimate Gjk(q, θN ) is consistent if

Gjk(q, θ̂N )→ Gjk(q), w.p. 1 as N →∞

The variance of the estimate of the parameter vector θ in
(7) is characterized by the following proposition:

Proposition 2.1. Suppose the Assumption 2.1 holds. As-
sume also the data set is informative enough. Then the
covariance matrix of θ denoted Pθ is (Ljung (1999)):

Pθ = M−1, (9a)

M = Ēψ(t, θ0)Λ2(ψ(t, θ0))T , (9b)

ψ(t, θ0) =
∂ε(t, θ)

∂θ

∣∣∣∣
θ=θ0

, (9c)

where Ē is the mean over time and ensemble (Ljung
(1999)) and ψ(t, θ0) represents the gradient of the predic-
tion error evaluated at θ0, and Λ is a diagonal matrix with
the noise powers. M Represents the information matrix.

2.3 The two-stage method

The two-stage method (Van den Hof et al. (2013)) at-
tempts to obtain a consistent estimate of a target module
in a dynamic network. Its (second stage) predictor inputs
are (asymptotically) noise-free estimates of internal vari-
ables. The two-stage method performs consecutive mini-
mization of prediction errors.

In the first stage, the goal is to reconstruct the internal
variables wk (4). For this purpose, estimates of Skl, k ∈
Nj , l ∈ R are estimated by minimizing the quadratic cost
function (7) of the prediction error:

εk(t, α) = w̃k(t)−
∑
l∈R

Skl(q, α)rl(t) (10)

Where α is a parameter vector. Let Skl(q, α̂) denote the
estimate of Skl. The estimate of wk is then:

ŵk(α̂) =
∑
l∈R

Skl(q, α̂)rl(t) (11)

In the second stage, the estimates of the noise-free internal
variables are used to identify the target module Gji in an
open-loop problem. Estimates are obtained by minimizing
the quadratic cost function (7) of the prediction error:
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εj(t, α̂, β) = w̃j(t)− rj(t)−
∑
k∈Nj

Gjk(q, β)ŵk(α̂) (12)

The two-stage method is defined as follows.

Algorithm 2.1. The Two Stage method

(1) Obtain estimates ŵk of wk for each k ∈ N using (10)
and (7)

(2) Using ŵ(α) obtain estimates of the target module Gji
using (12) and (7)

Proposition 2.2. Consider a dynamic network as defined
in section 2.1. Algorithm 2.1 provides consistent estimates
of Gji if the following conditions hold:

• The power spectral densities of [ŵk1 · · · ŵkn ], k∗ ∈ Nj ;
[rl1 · · · rln ], l∗ ∈ R are positive definite for ω ∈ [−π, π]

• The parametrization is chosen flexible enough such that
there exists a parameter vector θ0 such that Gjk(β0) =
Gjk and Skl(α

0) = Skl

Notice that the two-stage method tackles the network
identification problem as two sequential open-loop prob-
lems. The parametrization of the two-stage method can
be represented as a directed acyclic graph. This is shown
in figure 1 and the following equations:

wN (t) = SNR(q)r(t) (13a)

wj(t)− rj(t) = GjN (q)wN (t) (13b)

Where wN = [wk1 · · ·wkn ]′, k∗ ∈ Nj is a vector.

Fig. 1. The parametrization of the two-stage method can
be represented as a directed acyclic graph (13).

2.4 Variance reduction technique for cascade systems

In Wahlberg et al. (2009), a similar framework is investi-
gated for a cascade systems. Using our notation:

w̃2(t) = S21(q)r1(t) + s2(t) (14a)

w̃3(t) = G32(q)w2(t) + s3(t) (14b)

It is possible to consistently estimate S21 using only w̃2,
but Wahlberg et al. (2009) show that the variance of the
estimate of S21 can be reduced by minimizing:

VN (θ) =
1

N

N−1∑
t=0

ε2(t, θ)2

λ1
+
ε3(t, θ)2

λ2
, where: (15a)

ε2(t, θ) = w̃2(t)− S21(q, α)r1(t) (15b)

ε3(t, θ) = w̃3(t)−G32(q, β)S21(q, α)r1(t) (15c)

Notice how the modified cost function utilizes an extra
measurement. The information of Skl in w̃3 is being
exploited. In our paper, no extra measurements are used.
And the focus is on the target module Gji embedded

in a dynamic network rather than the direct open-loop
identification of S. The question arises how this variance
reduction technique can be modified for identification of
the target module G embedded in a dynamic network.

3. SIMULTANEOUS MINIMIZATION OF
PREDICTION ERRORS

In this section it is shown that the modified cost function
presented in section 2.4 can be applied to dynamic net-
works. We use it to link the prediction errors of the two-
stage method together. Instead of sequentially minimizing
the prediction errors in the two-stage method, they can
be simultaneously minimized. To apply this reasoning, the
results of Wahlberg et al. (2009) must be extended in two
ways. It will be shown that the downstream module is
also estimated with lower variance. And it will be shown
that the results of Wahlberg et al. (2009) hold for directed
acyclic graphs as well. It has already been presented that
the two-stage method parametrization transforms a dy-
namic network into a directed acyclic graph expression.

Consequently, we combine these results, and can obtain
estimates of modules embedded in a dynamic network
(including loops) with lower variance than the two stage
method. It uses the same parametrization as the two-stage
method, but uses a similar cost function as Wahlberg et al.
(2009). The method can be presented as following:

Algorithm 3.1.

(1) Construct the prediction errors:

εN (t, α) = [w̃N (t)−
nr∑
p=1

SNp(q, αp)rp(t)]
T (16)

εj(t, θ) = w̃j(t)− rj(t)−GjN (q, β)

nr∑
p=1

SNp(q, αp)rp(t)

Where α is partitioned into [α1 . . . αnr
]T , such that

SNp(q, αp). Note that these are the same prediction
errors as (10) and (12) for the two-stage method. And
that both εN (t, α) and εj(t, α, β) are a function of
SNp(q, αp)

(2) Obtain estimates of Gjk(q) by minimizing:

VN (θ) =
1

N

N∑
t=1

[
εj(t, α, β)2

λj
+
∑
k∈Nj

εk(t, α)2

λk
] (17)

The simultaneous cost function and common parametriza-
tion in Skl links the prediction errors of the two stages,
such that w̃j(t) does get utilized in the estimation of Skl.
This results in a variance reduction of the estimate of Skl
by extending the reasoning of Wahlberg to multiple inputs.
In this paper, it is shown that the variance of the estimate
of the target module Gjk reduces as well.

Proposition 3.1. Under the conditions of Proposition 2.2,
Algorithm 3.1 results in consistent estimates of G0

jk, S0
kl.

The proof is presented in Gunes (2013).

Note that minimizing (17) is a non-convex optimization
problem. However, the optimizer can always be initialized
by using initial estimates and model orders attained by
performing the two-stage method on the dataset first, be-
cause the consistency conditions (Proposition 3.1) match.
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4. VARIANCE EXPRESSIONS FOR SIMULTANEOUS
MINIMIZATION OF PREDICTION ERRORS

In this section, the variance expressions for simultaneous
minimization of prediction errors will be presented. Con-
sider a dynamic network as defined in Section 2.1 that
satisfies Assumption 2.1 and the conditions of 3.1. In order
to derive the covariance matrix of θ an expression of the
prediction error gradient is required. The system equations
have been presented in (4), and the prediction errors are
presented in (16). Define ε = [εN εj ] as a vector of the
prediction errors. The prediction error gradient is:

ψ(t, α, β) = −

∂εN (t, α)

∂α

∂εj(t, α, β)

∂α

0
∂εj(t, α, β)

∂β

 (18)

Define αp as the parameter vector associated to the column

vector SNp, and rp. Define S′Np =
∂SNp(q,αp)

∂αp

∣∣
θ=θ0

. Notice

GjN is a row vector. Define G′jN = [
∂GT

jN (q,β)

∂β ]T
∣∣
θ=θ0

for

ease of notation. The prediction error gradient blocks of
(18) can then be written as:

−∂εN (t, α)

∂αp
= [S′Np(q)rp(t)]

T (19a)

−∂εj(t, α, β)

∂αp
= [GjN (q)S′Np(q)rp(t)]

T (19b)

−∂εj(t, α, β)

∂β
= G′jN (q)

nr∑
p=1

SNp(q)rp(t) (19c)

Then M as defined in (9), can be partitioned according to
α and β as:

M = E[ψ(t, θ0)Λψ(t, θ0)H ] (20a)

=

[
A+ F CH

C D

]
, where: (20b)

Apq = E[(S′Nprp)
TΛ−1N S′Nqrq]

Fpq = E[(GjNS
′
Nprp)

Tλ−1j GjNS
′
Nqrq]

C = [C1 . . . Cnr ] where, for p = 1, . . . , nr :

Cp = E[G′jN (q)SNp(q)rp(t)λ
−1
j GjN (q)S′Np(q)rp(t)]

D =

nr∑
p=1

E
[
G′jN (q)SNp(q)rp(t)λ

−1
j rp(t)S

T
Np(q)G

′T
jN (q)

]
Note that simplifications have been performed using the
non-correlation between the external excitation signals.
I.e., the off-diagonal blocks of A and F are zero and
D is symmetric. Recall P = M−1 (9). Using Schur’s
complement, the following proposition can be set up:

Proposition 4.1. Consider a dynamic network as defined
in section 2.1. Suppose that the conditions of Proposition
3.1 are met. The variance expressions of θ = [αβ] using
Algorithm 3.1 is:

P si =

[
P siα −P siα CTD−1

−D−1CP siα D−1 +D−1CP siα C
TD−1

]
P siα = [A+ F − CTD−1C]−1

Where the superscript si indicates the use of the method
3.1. And where the top-left block is the covariance matrix
of α and the bottom-right block is the covariance matrix of
β: P siβ . The other variables are defined in (20). Note that
to evaluate these expressions in practice, the noise powers
λj and λk, k ∈ Nj need to be known.

5. VARIANCE EXPRESSIONS FOR THE
TWO-STAGE METHOD

In this section, the variance expressions for the two-
stage method for the current framework will be presented.
Unlike Forssell and Ljung (1999) and Gevers et al. (2001),
the variance expressions are independent of individual
realizations of the first stage estimate due to the fact only
sensor noise is present (and not process noise).

Proposition 5.1. Consider a dynamic network as defined in
section 2.1. Suppose that the conditions of Proposition 2.2
are met. The variance expressions for α and β obtained
using the two-stage method presented in Algorithm 2.1
are:

P 2S
α = A−1

P 2S
β = D−1 +

1

λ2j
D−1Q2D

−1

Where A and D are defined in (20), and where Q2 is:

Q2 =
1

2π

∫ π

−π
G′jN

nr∑
p=1

SNpΦ̄d+ΦrpS
H
NpG

′H
jN dω

Φ̄d+(α) = GjN [

nr∑
q=1

S′NqP
2S
αq
S′HNqΦrq ]GHjN

The proof is presented in appendix B. Again, to evaluate
these expressions in practice, the noise powers need to be
known.

6. VARIANCE COMPARISON

The variance expressions for the two-stage method (Algo-
rithm 2.1) and the simultaneous minimization of predic-
tion errors (Algorithm 3.1) are briefly presented in table
1. The goal is to achieve variance reduction of the target
module estimate. Does the simultaneous minimization of
prediction errors indeed result in target module estimates
with lower variance than the two-stage does?

Define Z = F − CTD−1C. It is proven in Appendix A
that Z ≥ 0. Hence A−1 ≥ [A+Z]−1 and the simultaneous
minimization of prediction errors results in a lower and
better Pα. Z also appears in Pβ , hinting to an improvement
of the variance of the target module estimate. In the
following proposition it is shown that Pβ is also less.

Proposition 6.1. Consider the variance results summa-
rized in table 1. The variance of estimates (including the
target module) of simultaneous minimization of prediction
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Table 1. Variance results summary (5.1, 4.1)

Method Two-stage method Simultaneous minimization

Pα A−1 [A+ Z]−1

Pβ D−1 +D−1Q2D−1 D−1 +D−1C[A+ Z]−1CTD−1

errors is equal to or smaller than the two-stage method
ones. The proof is presented in Appendix C.

7. SIMULATION RESULTS

In this section, Monte Carlo simulation results are pre-
sented to illustrate the results from the previous sections.
The results are based on 200 Monte Carlo simulations
of the dynamic network presented in Fig. 2. The noise
is white with powers 0.03, 0.0001 and 0.03. The external
excitation signals are white and unit power. The data size
is 250. The results are presented in Fig. 3.

Fig. 2. Example dynamic network with target module G21.

It appears that both methods provide consistent estimates,
but that simultaneous minimization of prediction errors
results in estimates with lower variance.

Fig. 3. Magnitude plots of the estimates of G21. The thick
black line represents the true system.

8. CONCLUSION AND FUTURE WORK

In this paper, a novel method for network prediction error
identification has been presented. Simultaneous minimiza-
tion of prediction errors is a combination of the two-stage
method (Van den Hof et al. (2013)) and simultaneous
minimization of prediction errors (Wahlberg et al. (2009)).
It has the same consistency properties as the two-stage
method, but considerably lower variance in the presence
of measurement noise. The mechanism by which the new
method achieves lower variance is by simultaneously min-
imizing the set of prediction errors that are sequentially
minimized in the two-stage method. In future work, the
proposed method will be extended to deal with more
general cases of available measurements. This has been

done in the literature for the two-stage method in Dankers
et al. (2013). Other future work will be extending to cases
with both measurement and process noise.
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Appendix A. PROOF FOR Z � 0

Recall Z = F − CTD−1C. Z � 0 Is equivalent to:

[
F CT

C D

]
=

[
E[y1y

T
1 ] E[y1y

T
2 ]

E[y2y
T
1 ] E[y2y

T
2 ]

]
� 0 (A.1a)

y1(t) = [GjNS
′
N1r1 . . . GjNS

′
Nnr

rnr
]TΛ−0.52 (A.1b)

y2(t) = G′jN

nr∑
p=1

SNp(q)rp(t)Λ
−0.5
2 (A.1c)

Which is the power spectral density of [y1(t) y2(t)] and
hence by definition positive semi-definite.

Appendix B. PROOF OF PROPOSITION 5.1

Consider the two-stage method presented in Algorithm
2.1. In the first stage, the parameter vector α is estimated
using the prediction error (10). Using proposition 2.1, the
covariance matrix of α can be derived to be A−1 ((20)).

In the second stage, GjN (q) is estimated as an open-loop
problem. Because its input is not available, the estimated
input ŵN (based on α̂) is used instead. Rewriting the
system equation in ŵN results into:
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mj(t) = GjN (q)ŵN (t) + rj(t) + d(t) (B.1a)

ŵN (t) =

nr∑
p=1

SNp(q, α̂p)rp(t) (B.1b)

d(t) = nj(t) + d+(t) (B.1c)

d+(t) = GjN (q)

nr∑
p=1

(
SNp(q)− SNp(q, α̂p)

)
rp(t) (B.1d)

Where d is the predictor noise term. The prediction error
is (12). The covariance matrix is Forssell and Ljung (1999):

Pβ = R−1Q1R
−1 +R−1Q2R

−1 (B.2a)

R =
1

2π

∫ π

−π
G′jNΦŵNG

′H
jN dω (B.2b)

Q =
1

2π

∫ π

−π
ΦdG

′
jNΦŵNG

′H
jN dω (B.2c)

Notice that nj(t) and d+(t) are uncorrelated because in
the framework we consider, nN is uncorrelated with nj .
Only the noise source nN affects SNp(q, α̂p) and d+. As a
result, Φd = Φnj + Φd+. Use this to split Q into Q1 +Q2:

Q1 =
1

2π

∫ π

−π
Φnj

G′jNΦŵNG
′H
jN dω (B.3a)

Q2 =
1

2π

∫ π

−π
Φd+G

′
jNΦŵNG

′H
jN dω (B.3b)

First, obtain an expression for Φd+. From (B.1), Φd+ can
be expressed as:

Φd+(α) = GjN∆SNR(α)Φr∆S
H
NR(α)GHjN

Where ∆SNR(q, α) = S0
NR(q)− SNR(q, α). The external

excitation signals are uncorrelated, such that:

Φd+(α) = GjN [

nr∑
p=1

∆SNp(α)∆SHNp(α)Φrp(ω)]GHjN

Where Φrp(ω) is a scalar. For every element of this sum,
a first order Taylor approximation can be performed:

SNp(e
jω, αp) ≈ SNp(ejω, α0

p) + S′Np(e
jω, α0

p)(αp − α0
p)

∆SNp(e
jω, αp) ≈ −S′Np(ejω, α0

p)(αp − α0
p)

The approximation holds for αp close to α0
p. From (B.4),

using this approximation, it follows that:

∆SNp(e
jω, αp)∆S

H
Np(e

jω, αp) = (B.6)

S′Np(e
jω)(αp − α0

p)(αp − α0
p)
TS′HNp(e

jω) (B.7)

Φd+(ejω, α) Depends on the realization of α. By averaging
over the ensemble of α, a useful measure Φ̄d+(ejω, α) can
be attained. Notice the covariance of α is defined as:

P 2S
α = E[(αp − α0

p)(αp − α0
p)
T ] (B.8)

Substituting this expression into (B.6) leads to:

Φ̄d+(α) = GjN [

nr∑
p=1

S′NpP
2S
αp
S′HNp]G

H
jNΦrp(ω) (B.9)

In similar fashion, replace ΦŵN by ΦwN (13). Also notice
that R−1QR−1 = R−1λj , because Φnj

= λj . Use R = λjD
(20). This leads to the expressions in Proposition 5.1.

Appendix C. PROOF OF PROPOSITION 6.1

Consider Proposition 6.1 as the lemma. Appendix A proofs
Z � 0, such that A + Z � A and [A + Z]−1 � A−1. This
concludes the proof for Pα. For Pβ , the proof reduces to:

1

λ2j
Q2 � CP siα CH (C.1)

First, the proof will be presented for the case of Z = 0, and
afterwards a generalization to Z � 0 will be presented. For
Z = 0, P siα = [A + 0]−1 = P 2S

α , Pα. A and Pα are block-
diagonal. Then CP siα C

H =
∑nr

p=1 CpP
si
αp
CHp . Rewrite Q2:

Q2 =

[
nr∑
p=1

1

2π

∫ π

−π
G′jNSNpGjNS

′
NpP

2S
αp
S′HNpG

H
jN

STNpG
′H
jNΦ2

rp dω

]
+

[
nr∑
p=1

nr,q 6=p∑
q=1

1

2π

∫ π

−π
G′jNSNp

GjNS
′
NqP

2S
αq
S′HNqG

H
jNS

T
NpG

′H
jNΦrpΦrq dω

]
Where Q2 is split into two terms. Denote the second term
V . V Has the form KP 2S

αp
KTΦrpΦrq . Since Φrp , Φrq are

scalar magnitudes � 0 and P 2S
αp
� 0: V � 0. Next, define

Ap = G′jNSNpGjNS
′
NpΦrpF , where F , Pαp = FFT .

Using this notation, (C.1) can be rewritten as:

1

λ2j

nr∑
p=1

1

2π

∫ π

−π
ApA

H
p dω + V � (C.3a)

nr∑
p=1

[
1

2π

∫ π

−π
Ap

1

λj
dω

][
1

2π

∫ π

−π
AHp

1

λj
dω

]
(C.3b)

Consider the stronger lemma without the summer and V :

1

2π

∫ π

−π
ApA

H
p dω �

[
1

2π

∫ π

−π
Apdω

][
1

2π

∫ π

−π
AHp dω

]
Suppose F [ap(t)] = Ap(e

jω), where F denotes the Fourier
transformation. Then:

ap(t) =
1

2π

∫ π

−π
Ap(e

jω)ejωtdω

ap(0) =
1

2π

∫ π

−π
Ap(e

jω)dω

1

2π

∫ π

−π
Ap(e

jω)Ap(e
jω)Hdω =

∞∑
t=−∞

ap(t)a
T
p (t) � 0 ∀t

The lemma (C.4) can then be rewritten as:
−1∑

t=−∞
ap(t)a

T
p (t) + ap(0)aTp (0) +

∞∑
t=1

ap(t)a
T
p (t) �

ap(0)aTp (0)

Which holds. This concludes the proof for Z = 0. For the
remaining cases Z � 0 (A), the two-stage method vari-
ance expressions 5.1 are unaffected, but the simultaneous
estimation of prediction errors variance expressions 4.1 are
strictly decreasing. The proof thus extends to any Z.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

2847


