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Abstract: In the application of an autonomous underwater vehicle a critical requirement is to
keep the level of the actuation signals within operational limits to avoid, for example, actuator
nonlinearities and reduce peak power consumption. The most common approach to this problem
for AUVs that have been deployed is, if required, to trade-off performance in order to keep the
actuation signals and power required within the operational limits. This paper addresses depth
control of an AUV using model predictive control with constraints on the both the amplitude
and rate of change of the entries in the control vector. The model predictive control algorithm
is designed by solving a quadratic programming problem in real-time when implemented on an
AUV prototype. Experimental test results for depth control are also given and demonstrate that
physically relevant constraints on the thrust and actuation power, critical factors for the use of
these vehicles, can be achieved. Moreover, there is agreement between the control action used
and the underlying physics of a body moving in water.
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1. INTRODUCTION

Unmanned underwater vehicles (UUVs) are either re-
motely operated (ROVs) or autonomous (AUVs). The
former are typically tethered to a ship or surface structure
and the tether provides power and communication between
the vehicle and operator. Use of a tether enables a pilot
on the surface to manoeuvre the vehicle accurately and
intelligently to complete a complex task, such as repairing
an oil well riser. The major disadvantage of an ROV is
that, due to the tether, the range of the vehicle is short
and any motion of the ship is coupled with the vehicle
itself.

AUVs are typically of torpedo shape, with four control
surfaces and a propeller at the stern of the vehicle. These
vehicles are used for long range survey type operations
where the vehicle essentially acts like a bus for onboard
sensors to log data, see, e.g., [McPhail, 2009]. Such mis-
sions include bathymetry, CTD (conductivity, tempera-
ture and depth), or mine detection surveys and many other
survey-type missions. A typical AUV has an actuator set
on-board and therefore there is a minimum speed below
which the vehicle becomes unstable [Burcher and Rydill,
1994]. Such vehicles are therefore incapable of hovering
and thus are unable to undertake detailed inspection-type
missions.

The next generation of AUVs will require the ability to
transit long distances, typical of standard AUVs, but also
slow down to a hover in order to conduct inspections on
areas of interest, typical of ROVs. To achieve this goal,
a new approach is required to vehicle design and the
on-board actuators. Moreover, implementation challenges
to be solved include vehicle control using a multitude of
actuators. In particular, there is an engineering supported
need to impose magnitude and rate of change constraints
on the control signals for more demanding missions, such
as those arising in searching.

The dynamic model of an AUV system is nonlinear with
multiple inputs and outputs. In addition, it is paramount
to keep the level of the actuation signals within operational
limits to, amongst others avoid actuator nonlinearities and
reduce peak power consumption. Many previous control
designs for AUVs do not place constraints on the control
signals in the design and the result can be the need
to detune the performance achieved in order to keep
within the constraints (see, e.g., [Steenson et al., 2011a]
and [Steenson et al., 2011b] for further discussion of this
point from an end users viewpoint). The advances in
Model Predictive Control (MPC) means that it is now
feasible to consider design and experimental verification,
and eventual deployment, of control laws designed with a
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Fig. 1. Delphin2 AUV: Over-actuated hover capable AUV

priori constraints imposed on, e.g., the magnitudes of the
control signals allowed.

This paper describes the design and implementation of an
MPC scheme for depth control of AUVs, where operational
constraints on the amplitudes and the rate of change of
the control signals are imposed. The control signals are
computed in real-time using a quadratic programming
procedure. Supporting experimental results from an AUV
are given where there is agreement between the control
action used and the underlying physics of a body moving
in water.

2. DELPHIN2 AUV AND DYNAMIC MODEL

The Delphin2 AUV shown in Fig. 1 is a prototype vehicle
designed for the development and experimental verifica-
tion of algorithms for control and navigation, where in this
paper the former area is considered. This AUV is torpedo
shaped and over-actuated with four through-body tunnel
thrusters, four independently controlled control surfaces,
and a rear propeller.

An AUV has a minimum velocity below which the vehicle
becomes unstable. For the vehicle of Fig. 1 the through-
body tunnel thrusters are used below this critical speed
to maintain vehicle stability. Moreover, the thrusters are
the dominant actuator set when operating between −0.3
ms−1 to 0.5 ms−1 forward speed.

To-date the Delphin2 AUV has used gain-scheduled
Proportional plus Integral plus Derivative (PID) con-
trollers for manoeuvring the vehicle, [Steenson et al.,
2011a,b]. However, a number of factors, such as the use
of a fixed value for the estimated buoyancy, could lead
to poor/unacceptable performance when, e.g., perform-
ing complex manoeuvres or if the system unexpectedly
changes due to loss or gain of buoyancy. Moreover, in oper-
ation there is an engineering need to place magnitude and
rate constraints on the control signals for more demanding
missions. Such constraints are not included in the PID
design, leading to a control law that cannot be applied or
degraded/unacceptbale performance. These reasons justify
the use of designs, such as MPC, where such constraints
can be imposed in the design stage.

The AUV can be modeled as two coupled second-order
systems; depth and pitch, see Figure 2, and the equations
of motion are

q̇v =− 1

Iy
[xTvfTvf + xTvrTvr − zgW sin θ

+
1

2
ρV 2/3CDq|qv|qv],

qv =

∫ t

0

q̇v dt, θ =

∫ t

0

qv dt, (1)

for pitch and for depth

ẇv =
1

mz
[Tvf cos θ + Tvr cos θ + (W −B)

− 1

2
ρV 2/3CDw|wv|wv],

wv =

∫ t

0

ẇv dt, z =

∫ t

0

wv dt. (2)

The outputs from the controller are the force demands for
each thruster (in Newtons (N)). To translate these force
values into thruster speed set-points, that can be sent to
the thruster controller, the inverse of the following thrust
equation is used

n = 60×
[
Tdemand
ρKTD4

]0.5
. (3)

These equations calculate the angular acceleration about
the y (pitch) axis and linear acceleration on the z (depth)
axis respectively. The next step is to linearize them for
MPC design. The various parameters in these motion
equations are given in [Steenson, 2012] and only those
used in the linear model approximation developed next
are given in Table 1 below. Moreover, the damping terms
will be described as quadratic, despite the inclusion of the
absolute value (used to maintain correct sign).

zg

xTvr
xTvf

Tvr

Tvf

CG

CB

θ
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Fig. 2. Schematic of the location of the thruster force
vectors, moment arms, center of gravity and buoyancy
and the axis system, where the pitch angle is −10o.

The trigonometric terms can be linearized by assuming
small angles. Linearizing the quadratic damping terms
is more challenging. When the AUV has successfully
arrived at the defined depth and pitch set-points, and
is stable, the heave and pitch velocities are zero and
hence the damping forces and moments are equal to
zero. Linearizing about zero heave and pitch velocities
results in the damping coefficients also equalling zero,
therefore eliminating damping from the model. Due to the
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nonlinearities, removing damping from the model would
force the MPC algorithm to reduce the system velocities
using the system inputs (thrusters) rather than the natural
dynamics, causing the controller to perform slowly and
inefficiently. The linear damping terms therefore need to
be a compromise between low and high speed operation
and the resulting linearized state-space model for design
is

ẋ(t) =

A︷ ︸︸ ︷
0 1 0 0

0
ρV 2/3kz

2mz
0 0

0 0 0 1

0 0
−zgW
Iy

ρV 2/3kq
2Iy


p

x(t)

+

B︷ ︸︸ ︷
0 0
1

mz

1

mz
0 0

−xTvf
Iy

−xTvr
Iy


p

[
Tvf
Tvr

]
(t),

y(t) =

C︷ ︸︸ ︷[
1 0 0 0
0 0 1 0

]
p

x(t), (4)

where
x(t) = [ z(t) wv(t) θ(t) qv(t) ]

T

and kz and kq are the linear damping coefficients. The
values of the parameters used in this state-space model
are given in Table 1 and for design and implementation the
zero order hold sampling method is used with a sampling
period of 0.1 secs.

Parameter Value

ρ (density) 1000kg/m3

V (velocity) 0.08m2

mz 167.5kg

Iy (moment of inertia) 70kg.m2

W (weight) 540N

kz 8.62 × 10−2

kq 1.31 × 10−2

xTvf 0.55m

xTvr −0.49

Table 1. Linear state-space model parameters.

As discussed earlier in this section, constraints on the
magnitudes and rates of change of the control signals
Tvf (t) and Tvr(t) in (4) are required. The rate of change
of thrust demand should be chosen to be lower than the
maximum rate that the thruster can change its speed (this
is an approximation, as thrust is proportional to thruster
speed squared). If the controller demands larger changes
of thrust than the thruster is capable of producing, the
thruster dynamics will effectively act as a low-pass filter,
which may prove detrimental to controller performance
when the control law is implemented experimentally. In
this work the rate of change of set-points for each thruster
are set at ±2 N per sample.

The maximum absolute thrust value is set at +10 N,
corresponding to a thruster speed of approximately 1800
rpm. The thrusters are capable of driving at higher speeds,
and clearly producing more thrust, but it is desirable to
reduce the peak thrust and thereby reduce peak electrical
power consumption. The minimum absolute thrust value
is set at +0.7 N, corresponding to a thruster speed of
approximately 500 rpm. This is the minimum thruster
speed below which the thruster dynamics become more
non-linear due to the performance of the thruster con-
troller (hardware) and the motor dead-band around zero
thruster speed. Avoiding these non-linearities is the reason
for setting the limit above zero speed.

3. MPC DESIGN

The first step in the MPC design is to discretize the
continuous-time state-space model(4) to obtain

xm(k + 1) =Amxm(k) +Bmu(k),

y(k) =Cmxm(k), (5)

where Am = eAph, Bm =
∫ h
0
eApτBpdτ and Cm = Cp;

xm(k), u(k) and y(k) are the discrete state, input and
output vectors respectively. The MPC algorithm used
in this work [Wang, 2009] embeds an integrator into
the model, enabling the controller to deal with model
inaccuracies and ensure zero steady-state errors for set-
point tracking. This is done by replacing the system state
and input vectors by ∆x and ∆u, respectively, which are
constructed by taking the difference between the current
and previous state and input vectors, i.e.,

∆xm(k) = xm(k)− xm(k − 1),

∆u(k) = u(k)− u(k − 1). (6)

Introducing

x(k) =
[
∆xm(k)T yT (k)

]T
, (7)

gives the following state-space model for use in design

[
∆xm(k + 1)
y(k + 1)

]
=

A︷ ︸︸ ︷[
Am 0

CmAm I

] [
∆xm(k)
y(k)

]

+

B︷ ︸︸ ︷[
Bm

CmBm

]
∆u(k) (8)

y(k) =

C︷︸︸︷
[0 I]

[
∆xm(k)
y(k)

]
, (9)

where for the rest of the paper 0 and I denote the null
matrices, respectively, with compatible dimensions.

In this model it is ∆u(k) that is optimized by the predic-
tive control algorithm. In the steady-state, all entries in
∆xm(k) are zero and the steady-state values of the output
vector y(k) will be taken as the set-point vector entries.
Therefore, with the integrator embedded, the steady-state
values are not required, leading to simplification at the
implementation stage.

The MPC design uses the receding horizon control prin-
ciple, where the future state vector is calculated over
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a prediction horizon of Np samples for a future control
trajectory of Nc samples, where Nc ≤ Np. The prediction
will be denoted as starting from sample number k > 0.
Introduce the vectors

∆U =
[

∆uT (k) ∆uT (k + 1) . . . ∆uT (k +Nc − 1)
]T
(10)

X(k) =
[
xT (k + 1|k) . . . xT (k +Np|k)

]T
. (11)

where the notation x(j + i|k denotes the value of x(j + i)
given x(k). Then the state space model (8) can be used to
recursively compute the future state vectors and output
vectors, or in a more compact form,

Y = Fx(k) + Φ∆U, (12)

where

F =


CA
CA2

CA3

...
CANp

 , (13)

Φ =


CB 0 0 ... 0
CAB CB 0 ... 0

CA2B CAB CB ... 0
...

CANp−1B CANp−2B CANp−3B ... CANp−NcB


and

Y =
[
yT (k + 1 | k) . . . yT (k +Np | k)

]T
For a given reference , or set-point, vector r(k) at sample
time k, the objective of the MPC under the receding
horizon principle is to bring the predicted output as close
as possible to this vector, where the entries in the set-point
vector are assumed to remain constant in the optimization
window. This objective is then translated into a design to
find the control vector ∆U such that an error function
between the set-point and the predicted output vectors is
minimized.

The cost function used in this paper is

J = (Rs − Y )T (Rs − Y ) + ∆UT R̄∆U, (14)

where

RTs =

Np︷ ︸︸ ︷
[ 1 1 . . . 1 ] r(k)

and routine analysis gives the optimal solution in the
absence of constraints as

∆U = (ΦTΦ + R̄)−1ΦT (Rs − Fx(k)), (15)

with the assumption that (ΦTΦ + R̄)−1 exists.

Using receding horizon control, only ∆u(k), a sub-vector
of ∆U, is applied and the actual control vector applied to
the plant is computed using

u(k) = u(k − 1) + ∆u(k) (16)

where both the current optimal control ∆u(k) and the
past value u(k − 1) are used. Since the current and past
control vectors have the same steady-state value, if the first
sample of the control vector is taken as the actual plant
input before the closed-loop controller is activated, the
computation of the control vector using (16) leads to the
actual control vector for direct implementation. Hence the
control vector has included its steady-state value, which is
also part of the simplification in the MPC implementation.

As discussed in the previous section, there is an engi-
neering need to place amplitude and rate constraints on
the control vectors used. This is achieved by minimizing
the cost function J of (14) in real-time with constraints
imposed. Control amplitude constraints for the state-space
model at sampling instant k are imposed in the form

umin ≤ u(k) ≤ umax, (17)

where the entries in umin and umax are the lower and
upper limits on the amplitude of the corresponding entry
in the control vector. allowed. In this work the same values
are imposed on each entry in the control vector, i.e., 0.7
N for the minimum and 10 N for the maximum, but this
setting also allows for different values for each entry.

The constraints on ∆u(k) = u(k)− u(k − 1) are

∆umin ≤ ∆u(k) ≤ ∆umax (18)

where the entries in ∆umin and ∆umax correspond to the
minimum and maximum allowable changes in the thruster
set-points, respectively.

The MPC design is obtained by minimizing the cost func-
tion (14) subject to (17) and (18) by direct application of
quadratic programming algorithms in, for example, [Wang,
2009] and the relevant references cited in this text. In this
application, implementation of the control law requires

direct measurement of all entries in
[

∆xTm(k) yT (k)
]T

at
each sampling instant k. The difficulty is that the state
vector component ∆xm(k) is not measurable but could be
approximated as ∆xm(k) = xm(k)−xm(k−1). If, however,
there is a significant amount of noise corruption in xm(k),
the computed difference ∆xm(k) will amplify its effects.
Hence an observer is used to estimate ∆xm(k) as

x̂(k + 1) = Ax̂(k) +B∆u(k) +Kob(y(k)− Cx̂(k)) (19)

where the observer gain matrix Kob is chosen such that the
closed-loop observer error system matrix A−KobC has all
eigenvalues strictly inside the unit circle of the complex
plane. In this paper Kob is designed using discrete-linear
quadratic regulator theory with weighting matrices Qob
and Rob. If Rob = robI, the effects of measurement noise
in y(k) can be reduced by selecting a large value of rob.
The initial state vector of the observer is taken as the zero
vector if the output vector y(k) is zero. Otherwise, the

initial ∆̂xm(0) is set to zero and the initial ŷ(0) is set to
the actual measurement of y(0).

4. EXPERIMENTAL VERIFICATION

Prior to the experimental tests, an in-depth simulation ex-
ercise was undertaken. These simulations were performed
in MATLAB using the non-linear model of the system
where realistic levels of measurement noise were added
to the depth and pitch feedback signals. From the sim-
ulation results, given in [Steenson, 2012], three controller
parameter sets were found corresponding to an aggressive,
conservative and balanced system response, see Table 4.

The simulation studies were also used to determine the
observer gain matrix by examining the effect of the ob-
server gain scalar, ro, on system performance. Although
system performance does vary with ro, it did not show
any instability despite a wide range of values tested. For
the experimental results given in the rest of this section
ro = 50 was used.
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Controller set Np Nc rw
Aggressive 60 8 0.5

Balanced 80 8 4.0

Conservative 100 8 8.0

Table 2. MPC design parameters for the ex-
perimental tests.

Figure 3 gives the simulation results when the AUV
is diving from 0 to 1 depth whilst maintaining a zero
pitch angle. The depth converges quickly with minimal
overshoot but the pitch does oscillate slightly about zero
degrees.
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Fig. 3. Simulation results for the MPC controller using
the observer with ro = 10. The noise still effects the
controller performance but within acceptable limits.

To test the MPC controller on the Delphin2 AUV, the
MATLAB code was translated into the Python program-
ming language and then integrated into the vehicles con-
trol software.

The experimental results were obtained in an acoustic tank
measuring 8.0×8.0×4 m deep. Each test consists of three
depth set-points of 1.0 m, 3.0 m and 2.0 m with the pitch
set-point set at 0.0o for all the tests. Once the AUV has
stayed within ±0.2 m of the depth set-point for 60 secs it
moves on to the next depth set-point.

Figures 4, 5 and 6, respectively, show the experimental re-
sults for the aggressive, balanced and conservative tuning
parameter sets of Table 4, where the depth and pitch, u
and ∆u, signals are plotted against time.

These experimental results provide very strong evidence
that the MPC with constraints algorithm is capable of
high quality performance in this application area, where
all three controller parameter sets provide stable control of
both depth and pitch. Figure 4 confirms that the maximum
thrust operational constraint of 10 N is only activated
during the maximum velocity phases of descending oper-
ations, when the thrust is required to overcome both the
positive buoyancy of the vehicle and the fluid drag due to
the vehicle descending. This maximum thrust operation
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Fig. 4. Experimental results for the MPC controller with

depth set-points of 1 m, 3 m and 2 m. The pitch set-
point remains fixed at 0.0o. Controller parameters:Np
= 60, Nc = 8, rw = 0.5, ro = 50.
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Fig. 5. Experimental results for the MPC controller with
depth set-points of 1 m, 3 m and 2 m. The pitch set-
point remains fixed at 0.0o. Controller parameters:Np
= 80, Nc = 8, rw = 4.0, ro = 50.

corresponds to the maximum actuation power. Moreover,
the minimum thrust constraint of 0 N is activated during
ascending operations, where the vehicle rises due to its
positive buoyancy and thus no actuation power is required.
Further application specific conclusions from these exper-
imental results are given next, starting with the overshoot
of the depth demand for all three parameter sets.

The overshoots for these parameter sets result in lower
overshoot values for the larger values rw with a minimum
overshoot of 0.15 m with rw = 8. This means that at the
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Fig. 6. Experimental results for the MPC controller with
depth set-points of 1 m, 3 m and 2 m. The pitch set-
point remains fixed at 0.0o. Controller parameters:Np
= 100, Nc = 8, rw = 12.0, ro = 50.

first depth demand the more conservative MPC provides
less overshoot. For the second depth demand of 3.0 m this
trend is reversed, with the largest overshoot of 0.382 m
for rw = 8. The cause of this reversal in trend is due
to the magnitude of the step change in depth demand,
where the lower rw values cause the system to behave more
aggressively with rapid changes in the entries in u, whilst
the higher Np values along with higher rw values cause the
controller to perform more conservatively.

For the first step change of 1.0 m, the more aggressive
controller with a rw value of 0.5 together with an Np value
of 60 causes the system to accelerate quickly, resulting
in a large heave velocity which in turn results in it
overshooting the depth demand. In contrast the more
conservative controller parameters do not generate high
heave velocities and hence corresponding overshoots are
lower. This variation in controller ‘aggressiveness’ leads
to the reversal in overshoot trends when the depth step
change is greater. In this case all the controller parameters
cause high heave velocities, but as the vehicle approaches
the depth set-point the conservative controller parameters
are slower to reduce the thrust magnitude and so their
heave velocities decrease slower than the more aggressive
controller parameters resulting in a greater overshoot.
Further work on tuning the design in response to these
first experimental results could be beneficial.

For the second step change, the constraints on the magni-
tude of thruster movement and its incremental movement
have become active, i.e., used the maximum u and ∆u,
when the aggressive MPC is used, see Figure 4. As a result,
the settling time is about 25 secs, which is about half of the
response time in comparison with the cases when the bal-
anced and conservative predictive controllers are used, see
Figures 5 and 6). Hence, by deploying constrained control,
the AUV system can provide the fastest response to the

depth set-point signal while maintaining all operational
constraints.

5. CONCLUSIONS

The contributions in this paper are on the application of
MPC with magnitude and rate constraints on the control
signals motivated by requirements for next generation
AUVs. Experimental results demonstrate that by using
a constrained control design, the response to depth set-
point signals is significantly reduced. The design has been
supported by experimental results that confirm that the
constraints are activated and the results obtained agree
with the physics of a body moving in water. These results
also suggest much further research to fully determine the
potential of MPC in this area. For example, further work
on tuning the design, in light of the discussion at the end
of the previous section, is required. Also the disturbance
rejection capabilities need to be investigated. Detailed
comparisons with alternative designs are also required
together with extensions to other modes of operation,
including transiting long distances and this last mode of
operation followed by hover.
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