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Abstract: In this paper the problem of local stabilization of nonlinear discrete-time systems
with time-varying delay and saturating actuators is studied. Firstly, through a fuzzy Lyapunov-
Krasovskii (L-K) function, we develop convex conditions to synthesize fuzzy state feedback
gain controllers that stabilize the nonlinear system subject to saturating actuators. Next, we
introduce a new approach to compute an estimate of the region of attraction where the initial
condition sequence is split into two subsequences. The first one is composed of the state vector
at the actual instant of sampling, i.e. for k = 0. The second one is composed of the state vectors
at the delayed samplings. Then, we propose a convex optimization problem to maximize the
estimated region of attraction of the closed loop control system. Finally, we give a numerical
example to illustrate the obtained results.
Keywords: Discrete-time nonlinear systems, delayed states, saturating input, Lyapunov-
Krasovskii fuzzy function, Takagi-Sugeno models, LMIs.

1. INTRODUCTION

In the last decades, the control system community has
experienced the development and the application of fuzzy
based control techniques. In particular, the fuzzy tech-
niques based on the Takagi-Sugeno (T-S) modeling ap-
proach has received lots of attention, because it allows
an exact or an approximate representation of nonlinear
systems as a blend of linear models Feng [2009]. Some
successful applications in controller synthesis can be found,
for instance, in Tanaka and Wang [2001], Feng [2009], and
Sung et al. [2012].

Dynamic systems with delay are often found in industrial
processes especially when there is transfer of mass, energy,
and/or information. The delay usually causes performance
deterioration and even loss of stability Miranda and Leite
[2011], Niculescu [2001]. In the last years, the academic
community has given great attention to the control prob-
lem of systems with delayed states, as can be seen, for
example, in Gassara et al. [2010], Liu et al. [2010], and
Xu et al. [2012]. Also, actuator saturation is present in
practical control systems. It is well known that it may

⋆ This work was supported by Brazilian Agencies CAPES, CNPq
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cause loss of performance and, in some cases, even unstable
behavior Hu and Lin [2001], Tarbouriech et al. [2011]. A
fundamental issue in this context is to estimate the region
of attraction, as the exact region of attraction is in general
hard to determine or even impossible to find by analytical
means Tarbouriech et al. [2011].

In the context of systems with state delay, the estimate of
the region of attraction is even more challenging because
a sequence of state vectors is required as the initial
conditions. The actuator saturation problem for systems
with time-delay has been studied, as can be seen in
Bender et al. [2011], Dey et al. [2012], Gomes da Silva
Jr. et al. [2009], Ting and Liu [2011], and Wang et al.
[2013], where all theses papers deal with continuous-time
systems with state delay. Moreover, the estimated region
of attraction is characterized as one ball set, which may
lead to conservative results. Similar research lines are
pursued in Ting and Chang [2011] where continuous-time
systems with actuator saturation and delay in the state
are considered under the T-S modeling and the region of
attraction is given as an ellipsoidal set.

The discrete-time version of T-S fuzzy systems with de-
layed states and saturating input has received much less
attention, although it is practically appealing. In Xia-Na
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et al. [2012] the stabilization problem is studied by a non-
convex design of a dynamic output fuzzy controller and
an ellipsoidal set is employed to determine a region of
local stability. However, it is not clear how the delayed
states are handled. In Xu et al. [2012] a ball is used to
characterize the region of local stability in the presence of
some exogenous disturbances.

The objective in this paper is to propose some convex
conditions in terms of linear matrix inequalities (LMIs)
for the synthesis of fuzzy stabilizing feedback controllers
of T-S discrete-time systems with time-varying delay and
actuator saturation. The proposed conditions are based on
an fuzzy Lyapunov-Krasovskii (L-K) function that assures
the converging to the origin of the trajectories initiated
in a so-called estimate of the region of attraction. The
characterization and computation of such an estimate is a
main result introduction in the present work for dealing
with control saturations. Firstly the sequence of initial
states is split into two subsequences: one composed of
the state vector at the actual instant, i.e. at sampling
time k = 0, and the other made up by the delayed
state vectors present in the initial condition. Each of these
subsequences are used to characterize two sets depending
on the maximum value of the delay. The Cartesian product
of these sets yields the estimated region of attraction.
Additionally, a convex optimization problem is proposed
to synthesize a fuzzy state feedback controller that maxi-
mizes the corresponding estimated region of attraction. A
numerical example is given to illustrate the effectiveness
of the proposed approach.

Notations: The r-th row of the matrix L is denoted as
L(r). The symbol ⋆ represents the symmetric blocks in a
symmetric matrix. Matrices I and 0 denote, respectively,
identity and null matrices of appropriate dimensions. For
d ∈ N

∗ and k ∈ N, φd,k = {xk−d, xk−(d−1), . . . , xk−1}
denotes a sequence of d vectors xj ∈ R

n, j ∈ [−d,−1],
where [a, b] is the interval of the integer numbers starting
in “a” and ending in “b”. Consider that ϕd,k defines a
sequence of d + 1 vectors xj ∈ R

n, j ∈ [−d, 0], such
that ϕd,k = {φd,k, xk}. The space of the vector sequence
ϕd,k = {φd,k, xk}, which maps [−d, 0] in R

n, is Dd =
D([−d, 0],Rn), with the norm ‖φd,k‖d = sup

−d≤j≤−1
‖x(k +

j)‖, where ‖ · ‖ is the Euclidean norm. The function
Y = round(X) rounds the elements of X to the nearest
integers.

2. PROBLEM STATEMENT

Consider a time-varying delay discrete-time nonlinear sys-
tem with saturating control inputs represented by:

xk+1 = f(xk, xk−dk
, sat(uk)), (1)

where xk ∈ R
n is the state vector with the initial condition

given by a sequence ϕd̄,0, with ϕd̄,0 = {φd̄,0, x0} and ϕd̄,0 ∈

Dd̄, φd̄,0(j) = xj , j ∈ [−d̄,−1] and uk ∈ R
m is the control

input vector, sat(uk) is a classical vector-bounded saturat-
ing function, i.e, sat(uk)(i) = sign(uk)(i) min{v0(i) , |uk(i)

|},
i = 1, . . . ,m, where −v0(i) and v0(i) are bounds on the i-th

control input. The function f(·, ·, ·) : Rn ×R
n ×R

m → R
n

is continuous and it is always assumed that the origin is
the equilibrium of the system, that is, f(0,0,0) = 0. The
time-varying delay is denoted by dk with 1 ≤ d ≤ dk ≤ d̄,
where d and d̄ are the lower and upper bounds of the delay,
respectively, and consequently dk is subject to

|dk+1 − dk| ≤ δ, (2)

where δ ∈ N denotes the maximum modulus variation
admissible by dk between two samples with δ = d̄− d.

The nonlinear system (1) can be represented by a T-S
fuzzy model as:

Rule i :
IF z1(k) is Mi1 and · · · and zp(k) is Mip,

THEN xk+1 = Aixk +Adixk−dk
+Bisat(uk),

(3)

where zj(k), j = 1, . . . , p, are the scalar premise variables
supposed to be dependent only on the states, Mij are
the fuzzy sets, p is the number of premise variables. The
matrices, Ai ∈ R

n×n, Adi ∈ R
n×n and Bi ∈ R

n×m,
i = 1, . . . , N , are known.

From a standard fuzzy inference method, for example,
a center-average defuzzifier, product fuzzy inference, and
singleton fuzzifier, the dynamic fuzzy model (3) can be
expressed by the following model Chen et al. [2009], Feng
[2009]:

xk+1 = A(αk)xk +Ad(αk)xk−dk
+B(αk)sat(uk), (4)

where the membership variables are

αk(i) = wi(z(k))/
∑N

j=1 wj(z(k)) with

wi =
∏p

j=1 Mij(zj(k)) and z(k) = [z1(k) z2(k) · · · zp(k)]
T
.

Note that αk is a state-dependent time-varying parameter
vector that is measurable or possible to be estimated in
real time belonging to the unitary simplex:

Ξ =

{

αk ∈ R
N ;

N
∑

i=1

αk(i) = 1, αk(i) ≥ 0, i = 1, . . . , N

}

.

(5)
Therefore, matrices in (4) can be rewritten as:

[A(αk) Ad(αk) B(αk)] =
N
∑

i=1

αk(i) [Ai Adi Bi] ,

αk ∈ Ξ. (6)

Consider the following two types of feedback control laws:

uk = K(αk)xk +Kd(αk)xk−dk
, (7)

uk = K(αk)xk. (8)

The control law (7) can be used when the delay dk is
available on real time. Otherwise, only the control law (8)
can be implemented.

Note that the matrices of the controllers are dependent of
the membership variables and, similar to the matrices of
the fuzzy system (4), they are defined as follows:

[K(αk) Kd(αk)] =

N
∑

i=1

αk(i) [Ki Kdi] , αk ∈ Ξ, (9)

where Ki ∈ R
m×n and Kdi

∈ R
m×n.

Because of the saturating actuators and presence of delay
in the state vector, the local asymptotic stability of the
nonlinear system (1) in closed loop with feedback control
law (7)-(9) will be analyzed through two auxiliary sets

Cx =
{

x0 ∈ Dd̄; V1(x0, α0) ≤ c(φd̄,0)
}

(10)

and
B(r) =

{

φd̄,0 ∈ Dd̄; ‖φd̄,0‖d̄ ≤ r
}

, (11)

where V1(x0, α0) is a parameter dependent quadratic form,
c(φd̄,0) is a function on R

+ with the sequence φd̄,0 as

argument and 0 ≤ r ∈ R
+. Then, the associated estimate

region of attraction will be characterized by Υϕ = B(r)×
Cx =

{

(φd̄,0, x0) | φd̄,0 ∈ B(r) and x0 ∈ Cx
}

.
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Problem 1. Determine controller gains Ki and Kdi and
characterize the regions Cx and B(r), such that Υϕ =
B(r) × Cx is a set of initial conditions such that the cor-
responding trajectories of the closed-loop system converge
asymptotically to the origin.

3. PRELIMINARIES

Define Ψ(uk) = uk − sat(uk), i.e., Ψ(uk) corresponds to
a decentralized dead zone nonlinearity. Using the fuzzy
formulation (4)–(9), we have:

xk+1 = Â(αk)xk + Âd(αk)xk−dk
−B(αk)Ψ(uk), (12)

where, by construction,

Â(αk) =

N
∑

i=1

N
∑

j=i

µijαk(i)αk(j)0.5 (Ai +BiKj

+Aj +BjKi) , (13)

Âd(αk) =
N
∑

i=1

N
∑

j=i

µijαk(i)αk(j)0.5 (Adi +BiKdj

+Adj +BjKdi) , (14)

with

µij =

{

2, i 6= j,
1, otherwise.

(15)

Consider matrices K(αk) ∈ R
m×2n, G(αk) ∈ R

m×2n

and a vector ξk ∈ R
2n, given respectively by K(αk) =

[K(αk) Kd(αk)], G(αk) = [G(αk) Gd(αk)], and ξk =
[

xT
k xT

k−dk

]T
. Also, define the polyhedral set:

S ≡ {ξk ∈ R
2n : |(K(αk)(i) − G(αk)(i))ξk| ≤ v0(i) ,

i = 1, . . . ,m}. (16)

The following Lemma regarding nonlinearity Ψ(uk) was
directly adapted from Jungers and Castelan [2011] and
Tarbouriech et al. [2004].

Lemma 1. If ξk ∈ S, then the relation

Ψ(uk)
TT (αk)[Ψ(uk)−G(αk)xk−Gd(αk)xk−dk

] ≤ 0 (17)

is verified for all diagonal positive definite matrices
T (αk) ∈ R

m×m.

Consider the following fuzzy L-K candidate function,
V (xk, αk) : R

n × Ξ → R
+:

V (xk, αk) =
3
∑

i=1

Vi(xk, αk) > 0, (18)

with V1(xk, αk) = xT
k Q

−1(αk)xk,

V2(xk, αk) =
∑k−1

i=k−dk
xT
i R

−1(αi)xi,

V3(xk, αk) =
∑1

ℓ=2−δ

∑k−1
i=k+ℓ−1 x

T
i R

−1(αi)xi,

where Q(αk) =
∑N

i=1 αk(i)Qi, 0 < QT
i = Qi ∈ R

n×n and

R(αk) =
∑N

i=1 αk(i)Ri, 0 < RT
i = Ri ∈ R

n×n. We can
associate to this L-K function some level sets defined as
follows:

Definition 1. For all scalar c > 0 and the L-K function
(18), we define the level set LV1(c) as the intersection
of the ellipsoidal sets associated with matrices Qi > 0,
i = 1, . . . , N , as follows:

LV1(c) =
{

E(Q−1
i , c), ∀αk ∈ Ξ

}

=
⋂

αk∈Ξ

E(Q−1(αk), c)

=
⋂

i∈{1,...,N}

E(Q−1
i , c), (19)

where E(Q−1
i , c), i = 1, . . . , N , denote the ellipsoidal sets

E(Q−1
i , c) =

{

xk ∈ R
n; xT

kQ
−1
i xk ≤ c

}

. (20)

The equality given in (19) was proved in [Jungers and
Castelan, 2011, Lemma 4]. If we assume c = 1 in this
definition, then the simplified notation LV1 ≡ LV1(1) and
E(Q−1

i ) ≡ E(Q−1
i , 1) is used.

The following lemmas are also used in the next section to
establish the main result of this paper.

Lemma 2. Let R(αk) =
∑N

i=1 αk(i)Ri and RT
i = Ri > 0,

then
λmax

(

R−1(αk)
)

≤ max
i

(

λmax

(

R−1
i

))

, (21)

for i = 1, . . . , N and ∀αk ∈ Ξ.

Proof 1. Using the positive definiteness of Ri, we have

0 < λmax

(

R−1
i

)

≤ max
i

(

λmax

(

R−1
i

))

. (22)

Assuming λ̃ = max
i

(

λmax

(

R−1
i

))

, where λ̃ is a positive

scalar, we have λmax

(

R−1
i

)

≤ λ̃ ⇔ R−1
i ≤ λ̃I. By Schur’s

complement we get:
[

λ̃I I
I Ri

]

≥ 0. (23)

Multiplying the inequality (23) by αk(i), summing up for

i = 1, . . . , N , and knowing that
∑N

i=1 αk(i)Ri = R(αk), we
obtain:

[

λ̃I I
I R(αk)

]

≥ 0. (24)

By Schur’s complement, (24) yields R−1(αk) ≤ λ̃I ⇔

λmax

(

R−1(αk)
)

≤ λ̃. Therefore, we prove the Lemma 2.

From the initial condition φd̄,0, terms V2(xk, αk) and
V3(xk, αk) of the L-K function (18), and using Lemma 2,
we get:

k−1
∑

i=k−dk

xT
i R

−1(αi)xi +

1
∑

ℓ=2−δ

k−1
∑

i=k+ℓ−1

xT
i R

−1(αi)xi ≤

−1
∑

i=−dk

φd̄,0(i)
TR−1(αi)φd̄,0(i) +

1
∑

ℓ=2−δ

1
∑

i=ℓ−1

φd̄,0(i)
T

×R−1(αi)φd̄,0(i) ≤ ρ‖φd̄,0‖
2
d̄, (25)

where

ρ = max
i=1,...,N

(

λmax

(

R−1
i

))

(

d̄+
δ2 − δ

2

)

. (26)

Thus, set Cx can be calculated as

Cx = LV1(1− ρ‖φd̄,0‖
2
d̄
)

=
{

x0 ∈ R
n;xT

0 Q
−1(α0)x0 ≤ 1− ρ‖φd̄,0‖

2
d̄

}

. (27)

To keep 1 − ρ‖φd̄,0‖
2
d̄
non negative it follows from (11)

that one needs to bound the radius of the ball B(r) as

0 ≤ r ≤ ρ−
1
2 .

The connection between the sets Cx and B(r) in terms of
the confinement of trajectories in LV1 and local asymptotic
stability is shown in the following Lemma.
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Lemma 3. Let (18) be fuzzy L-K candidate function. If
∀k ≥ 0 and ∀αk ∈ Ξ it is verified

∆V (xk, αk) = V (xk+1, αk+1)− V (xk, αk) < 0, (28)

then

V (xk, αk) < V (x0, α0) ≤ xT
0 Q

−1(α0)x0 + ρ‖φd̄,0‖
2
d̄. (29)

Therefore, ∀ x0 ∈ Cx = LV1(1 − ρ‖φd̄,0‖
2
d̄
) and ∀ φd̄,0 ∈

B(r), inequality (29) implies that xk ∈ LV1 and lim
k→∞

xk =

0.

Proof 2. Once (28) is verified with (18) then we have

xT
kQ

−1(αk)xk ≤ V (xk, αk) < V (x0, α0). (30)

Moreover,

V (x0, α0) = xT
0 Q

−1(α0)x0 +

−1
∑

i=−dk

φT
0 (i)R

−1(αi)φ0(i)

+

1−d
∑

ℓ=2−d̄

−1
∑

i=ℓ−1

φT
0 (i)R

−1(αi)φ0(i).

By using (25)–(27), we have:

V (x0, α0) ≤ xT
0 Q

−1(α0)x0 + ρ‖φd̄,0‖
2
d̄. (31)

From (30) and (31), it can be verified that if xT
0 Q

−1(α0)x0 ≤
1 − ρ‖φd̄,0‖

2
d̄
, then xT

k Q
−1(αk)xk ≤ 1. Therefore we can

conclude that trajectories emanating from Υ = B(r) × Cx
with 0 ≤ r ≤ ρ−

1
2 and ρ given by (26) remain inside LV1 .

Besides, due to the negative definiteness of (28) we can
assure the local asymptotic stability.

4. MAIN RESULTS

Based on the results shown in the previous section, we
present some convex conditions for the synthesis of T-
S fuzzy controllers for local stabilization of nonlinear
discrete-time systems with time-varying delay and satu-
rating actuators.

Theorem 1. Suppose that there exist symmetric definite
positive matricesQi ∈ R

n×n and Ri ∈ R
n×n, i = 1, . . . , N ,

diagonal and positive definite matrices Si ∈ R
m×m and

matrices U ∈ R
n×n, H ∈ R

n×n, Yi ∈ R
m×n, Ydi ∈ R

m×n,
Zi ∈ R

m×n, and Zdi ∈ R
m×n satisfying the following

LMIs:








−Qq 0.5(AiU + BiYj + AjU +BjYi)

⋆ 0.5(Qi +Qj)− UT − U

⋆ ⋆

⋆ ⋆

⋆ ⋆
(

0.5
(

AdiH + BiYdj

+AdjH + BjYdi

)

)

−0.5(BiSj + BjSi)

0 0.5(ZT
i + ZT

j )

Rℓ −HT −H 0.5(ZT
di + ZT

dj)

⋆ −(Si + Sj)
⋆ ⋆

0

UT

0

0

−0.5
Ri + Rj

1 + δ











< 0,

∀i, ℓ, q = 1, . . . , N, j = i, . . . , N (32)

and

[

Qi − UT − U YT
i(ℓ)

− ZT
i(ℓ)

⋆ −v20(ℓ)

]

≤ 0,

∀i = 1, . . . , N, ∀ℓ = 1, . . . ,m, (33)

where Qi = diag{Qi, Ri}, U = diag{U,H}, Yi = [Yi Ydi],
and Zi = [Zi Zdi]. Then, the controller matrices in (9)
obtained through

Ki = YiU
−1 and Kdi = YdiH

−1 (34)

are such that the origin of the nonlinear system (1)
in closed-loop with control law (7)–(9) is asymptotically
stable for any set of initial conditions starting in Υϕ =

B(r)× Cx, with 0 ≤ r ≤ ρ−
1
2 and ρ given by (26), and the

corresponding trajectories remain in LV1 .

Proof 3. Suppose that (32) is satisfied, then we have
assured the positivity of Ri, Qi and Si, i = 1, . . . , N ,
by consequence V (xk, αk) verifies (18) and the Lemma 1
is verified too. Then, we show the relationship between
the diagonal matrix T (αk) and the diagonal matrix Si.
Besides, the regularity of U and H is assured by blocks
(2, 2) and (3, 3). By replacing Yi, Ydi, Zi and Zdi by
KiU , KdiH , GiU , and GdiH , respectively, multiplying the
resulting inequality successively by αk(i), αk(j), αk+1(q),
and αk−dk(ℓ), and summing up on i = 1, . . . , N , j =
i, . . . , N , q = 1, . . . , N , ℓ = 1, . . . , N , we get








−Q(α+
k
) Â(αk)U Âd(αk)H

⋆ Q(αk) − U − UT
0

⋆ ⋆ R(α−

k
)−H −HT

⋆ ⋆ ⋆

⋆ ⋆ ⋆

−B(αk)S(αk) 0

UTGT (αk) UT

HTGT
d (αk) 0

−2S(αk) 0

⋆ −
1

1 + δ
R(αk)











< 0. (35)

where Â(αk) and Âd(αk) are given in (13) and (14), re-
spectively. Note that the positive definite matrices Q(αk),
R(αk) and S(αk) can be written as

F (αk) =

(

N
∑

j=1

αj

)

F (αk) =

N
∑

i=1

N
∑

j=i

µijαk(i)αk(j)

× 0.5 (Fi + Fj) ,

where F stands for Q, R and S, and µij is given in (15),

Q(α+
k ) =

∑N
q=1 α

+
k(q)Qq, R(α−

k ) =
∑N

ℓ=1 α
−
k(ℓ)Rℓ, and the

shorthands α+
k ≡ αk+1 and α−

k ≡ αk−dk
.

From Geromel et al. [2007] we know that −MTE−1M ≤
E − MT − M , for all square matrices M and E =
ET > 0. Applying this inequality on the blocks (2, 2) and
(3, 3) of Θk we obtain, respectively, −UTQ−1(αk)U and
−HTR−1(α−

k )H . Then, applying Schur’s complement on
the resulting expression, we get

Π̃k =











−Q(α+
k
) Â(αk)U

⋆

(

UT (1 + δ)R−1(αk)U

−UTQ−1(αk)U

)

⋆ ⋆

⋆ ⋆

Âd(αk)H −B(αk)S(αk)

0 UTGT (αk)

−HTR−1(α−

k
)H HTGT

d (αk)
⋆ −2S(αk)







< 0. (36)
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Taking into account the regularity of U and H , due
to blocks (2, 2) and (3, 3) in (32) we consider the

congruence transformation Πk = T T Π̃kT with T =
diag{I, U−1, H−1, S−1(αk)} and by using Schur’s comple-
ment, we obtain








(1 + δ)R−1(αk)
−Q−1(αk)

0 GT (αk)S
−1(αk)

⋆ −R−1(α−
k ) GT

d (αk)S
−1(αk)

⋆ ⋆ −2S−1(αk)









+





ÂT (αk)

ÂT
d (αk)

−BT (αk)



Q−1(α+
k )
[

Â(αk) Âd(αk) −B(α)
]

< 0.

(37)

Pre- and post-multiplying (37) by X̃T
k =

[

xT
k xT

k−dk
ΨT (u)

]

and its transpose, respectively, and from (12)–(14), we can

replace Â(αk)xk + Âd(αk)xk−dk
− B(αk)Ψ(uk) by xk+1,

getting

Ωk ≡ xT
k+1Q

−1(α+
k )xk+1 + xT

k

[

(1 + δ)R−1(αk)

−Q−1(αk)
]

xk − xT
k−dk

R−1(α−
k )xk−dk

− 2ΨT (uk)S
−1(αk)

× (Ψ(uk)−G(αk)xk −Gd(αk)xk−dk
) < 0. (38)

Choosing S−1(αk) = T (αk), we can obtain from (18):

∆V (xk, αk)− 2ΨT (uk)T (αk) (Ψ(uk)−G(αk)xk

−Gd(αk)xk−dk
) ≤ Ωk < 0. (39)

Thus, we can conclude that the feasibility of (32) assures
the negativity of ∆V (xk, αk) and verifies the sector gener-
alized condition (17) which with the positivity of V (xk, αk)
and the Lyapunov-Krasovskii’s theorem (see Leite and
Miranda [2008] for details) assure the stability of T-S
fuzzy model (3) in closed-loop with saturating actuators
by control law (7)–(9).

Now we assume that (32) is verified and additionally (33)
is satisfied. Then, we multiply (33) by αk(i) and sum up
on i = 1, . . . , N , getting:

Λ =

[

Q(αk)− UT − U YT (αk)(ℓ) −ZT (αk)(ℓ)
⋆ −v20(ℓ)

]

≤ 0.

(40)
Following what we did above, in the block (1, 1) we have
−UTQ−1(αk)U ≤ Q(αk)− UT − U , that is,

Λ ≥

[

−UTQ−1(αk)U YT (αk)(ℓ) −ZT (αk)(ℓ)
⋆ −v20(ℓ)

]

≤ 0. (41)

Pre- and post-multiplying (41) by F = diag{U−T , 1} and
its transpose, respectively, and then applying the Schur’s
complement, it follows that:

− ξTk Q(αk)ξk + (v0(ℓ))
−2ξTk (K

T (αk)(ℓ) − GT (αk)(ℓ))

× (K(αk)(ℓ) − G(αk)(ℓ))ξk ≤ 0, ∀ℓ = 1, . . . ,m. (42)

This implies that the intersection ellipsoidal set E(Q(αk)) ≡
{ξk ∈ R

2n; ξTk Q
−1(αk)ξk ≤ 1} is contained in S.

Remark 1. In the case where dk is not available in real
time, we consider control law (8) and solve Theorem 1
with Zdi = 0 and Qi = Qi, U = U , Yi = Yi, and Zi = Zi.

4.1 Convex optimization problem

The objective here is to solve Problem 1 using Theorem 1
by computing the set Υϕ as big as possible. In this sense

a fundamental issue is to maximize the size of LV1 ⊆ S.
Such an optimization can be achieved by considering the
maximization of an ellipsoidal set included in the level set
LV1 as follows

D(W ) =
{

x ∈ R
n;xTWx ≤ 1

}

⊆ LV1 . (43)

This inclusion is equivalent to:
[

W I
I Qi

]

≥ 0, i = 1, . . . , N. (44)

Therewith, a convex optimization problem can be pro-
posed as follows:

PΥ :

{

min trace(W )
s. t. (32), (33), and (44).

(45)

5. A NUMERICAL EXAMPLE

Consider the T-S fuzzy model with saturating input signal
described by (3) with i = 1, 2,

A1 =

[

−3 1
1 0

]

, Ad1 =

[

0.1 0
0.2 −0.5

]

, B1 =

[

1 0
0 0.5

]

,

A2 =

[

−2 1
1 −1

]

, Ad2 =

[

0.1 −0.2
0 −0.5

]

, B2 =

[

1 0
0 0.5

]

,

dk ∈ [1, 5], v0 = [5 15]
T

is the control signal bound,

and the fuzzy sets are defined as M1(x2,k) = sin2(x2,k)
and M2(x2,k) = cos2(x2,k). Then we have the following
membership function

αk = [M1(x2,k) M2(x2,k)] . (46)

By solving the optimization problem PΥ given in (45) we
obtain the law (7) with control gain matrices:

K1 =

[

2.4637 −0.809
−5.1263 1.1064

]

, K2 =

[

1.882 −0.9636
−2.8734 2.2807

]

, (47)

Kd1 =

[

−0.0324 −0.1066
−0.0505 0.464

]

, Kd2 =

[

−0.0879 0.0793
0.0757 0.3613

]

, (48)

and ρ = 0.0323.

Considering ‖φ10,0‖
2
10 = 0, we have the sets Cx = LV1

and B(r) = {0}. To illustrate the closed-loop behavior,
two simulations with different initial conditions indicated
by × marks in Figure 1. The set Cx is shown in Figure 1
and also the stable trajectories for two initial conditions
ϕ5,0 = {φ5,0, x0} ∈ D5, ‖φ5,0‖

2
10 = 0 and the initial

condition 1 takes x0 = [2.476 −0.8619]
T
, and the initial

condition 2 takes x0 = [−0.7438 4.902]
T
. The respective

control signals are shown in Figure 2 (see ◦marks for initial
condition 1 and � for the initial condition 2). Both control
signals stabilize the closed loop system even with the
saturation of these signals. For these simulations, the time-
varying delay was assumed as dk = round(3 + 2 cos(k)).

Additionally, we used [Gao et al., 2009, Theorem 2] to syn-
thesize the fuzzy gains for the control law (7), considering
ǫ = 1. We obtain the following gains:

K1 =

[

3.8728 −1
−2 1.7456

]

, K2 =

[

2.8728 −1
−2 3.7456

]

, (49)

Kd1 =

[

−0.1003 0
−0.4 0.9993

]

, Kd2 =

[

−0.1003 0.2
0 0.9993

]

. (50)

Since the condition proposed in [5] does not take into
account the saturation, the designer cannot a priori know
about the guaranteed convergence of the closed-loop tra-
jectories for given initial conditions. For example, by
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Fig. 1. The set Cx = LV1 and trajectories stable.
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Fig. 2. Saturating control signals.

choosing initial condition ϕ5,0 = {φ5,0, x0} ∈ D5 with

‖φ5,0‖
2
10 = 0 and x0 = [−3.163 −1.837]

T
, see ∗ mark in

Figure 1, we obtain an unstable trajectory starting from
a region where our controller is assured to be stabilizing.
Also observe in Figure 2 the respective saturating control
signals generated by this controller (∗ marks). Thus, this
clearly demonstrate the relevance of taking into account
the saturating control signals and the region of stability
for the initial conditions.

6. CONCLUSIONS

We have proposed convex conditions to synthesize fuzzy
control gains stabilizing a nonlinear discrete-time systems
with time-varying delay in the states and saturating actu-
ators. These conditions were developed based on a fuzzy
Lyapunov-Krasovskii function and described as LMIs. The
proposed design is based on a Takagi-Sugeno representa-
tion of nonlinear systems where each local subsystem has
saturating control inputs. To handle the input saturation,
we used a generalized sector condition. To this end, we
introduced a new characterization of the estimated region
of attraction that is based on splitting the initial conditions
sequence into two convex sets.
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