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Abstract: This paper deals with a fault prognosis method, based on the extraction of a health
indicator (HI) from a large amount of raw sensors data, applied to Discrete Manufacturing
Processes (DMP). The HI is extracted by locating the significant points of machine which
are related to the degradation. The dynamics of HI is then analysed and modelled using an
appropriate stochastic process. The adaptive aspect of the prediction model allows the updating
of the Remaining Usesul Life (RUL) estimation. The developed approach is applied on a real
case provided by ST-Microelectronics, where experimental result shows its efficiency.
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1 Introduction

Fault prognosis of industrial systems is one of central issues
of Condition Based Maintenance (CBM). It is important
to minimize the downtime of machinery and production,
and thus to increase efficiency of operations and man-
ufacturing. Till now, the production process in almost
industries (e.g: pharmaceuticals, foods, semiconductors,
auto-mobiles, etc.) use a strategy of Preventive and Cor-
rective Maintenance which is less efficient than the CBM.
The development of methodologies to predict equipment
failure will enable these industries to replace the PCM
by the CBM, but currently few studies are conducted on
this subject. This is because of their complex operations,
which involve a multiple-step sequence at different manu-
facturing stages. The processes are highly non-linear, time
varying, subject to significant disturbances and usually
exhibit unit-to-unit variations.

Fault prognosis focuses on predicting the time at which a
system or a component will no longer perform its intended
function, the time length from the current moment to
that time is defined as the RUL. It is a random variable
and it depends on health/deterioration information of the
asset. Generally, to predict the RUL, many works are
either based on a health indicator (HI) which is already
available, such as in Bakker and van Noortwijk (2004),
Lawless and Crowder (2004), Tseng and Peng (2007) or
based on some mathematical hypotheses of HI profile, such
as in Bagdonavicius and Nikulin (2001), Le Son et al.
(2012a) or propose a method to extract HI in their specific
study, such as in Le Son et al. (2012b), Benkedjouh et al.
(2013). In semiconductor manufacturing, a survey of data-
driven prognosis in this field of Alexis Thieullen (2012)
shows that, almost the health indicators are calculated
from multivariate analysis such as multiway PCA, prin-
cipal component based k-nearest neighbour or principal
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components-based Gaussian mixture model.

This paper proposes a new fault prognosis method for
DMP, as illustrated in Fig. 1. An off-line analysis is exe-
cuted to support the on-line supervision. In off-line anal-
ysis, historical data is analysed to identify the significant
points of machine which are related to the degradation
then extracting a health indicator. Next, the dynamics of
this indicator is analysed to construct a prediction model
and to identify the model parameters. In on-line supervi-
sion, the significant points are observed to calculate the
real time health indicator. An adaptive predictive model
is launched to provide the RUL.

Fig. 1. Schema of fault prognosis

The remaining of this paper is organised as follows. Section
2 presents the off-line analysis where 2.1 provides the
formulation of multivariate analysis to contribute a health
indicator and 2.2 depicts the degradation modelling based
on an adaptive Wiener process. The online supervision
procedure is proposed in section 3. In section 4, a real
case application using data collected in STMicroelectron-
ics is presented to illustrate the efficiency of the proposed
method. The conclusion is given in the last section 5.
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Nomenclature

i Index of product i
j Index of sensor j
k Index of observation k
I Number of products of off-line data
J Number of sensors
K Number of observations

X
(j,k)
i Measurement value at i, j, k

UL(j,k) Upper limit of point (j, k)

LL(j,k) Lower limit of point (j, k)
(jm, km) Moving point (jm, km)
(js, ks) Significant point (js, ks)
M Number of moving points
S Number of sigificant points

m(js,ks) Mean of {X(js,ks)
i , i = 1, ..., I}

d(js,ks) Standard deviation of {X(js,ks)
i , i = 1, ..., I}

X Matrix of moving points
Xr Matrix of significant points
D First principal component of X
Pr1 First eigenvector of Xr

I0 Raw health indicator
I1 Raw health indicator after

lowpass filtering
Y Health indicator of off-line data
TN Normal operating threshold
TF Failure theshold
imax Index of the product at which I1(imax)

is maximum of I1(1→ I)
µ̂i Estimated drifting parameter at i

of off-line data
i0 inf{i : Y (i) > TN}
in Index of product in of online

supervision, is also the inspection time in

inmax Index of the product of online data at
which I1(inmax) is maximum of I1(1→ in)

Yn Health indicator of online data
ǐ Equivalent index of product inmax in off-line

data, where Y (̌i) ≤ Yn(inmax) < Y (̌i+ 1)
(µ0, P0, Estimated parameters of adaptive Wiener
Q, σ) process for modelling Y

2 Off-line analysis

2.1 Heath indicator extraction

Hypothesis: the degradation of machine is gradual over
time. From this hypothesis, the first products are consid-
ered respecting the good quality norm.

A discrete manufacturing process is the equipment which
processes/produces the distinct items or separate unit of
products such as in the industry of automobiles, semicon-
ductors, toys, etc. Therefore, the obtained measurement of
a discrete process during processing a set of products is a
data of three dimensional matrix I × J ×K, respectively

Fig. 2. Schema of health indicator extraction

I is number of products, J is the number of sensors
and K is the number of observation (sampling time).

Each point of this matrix data is signed X
(j,k)
i , where

i ∈ {1, ..., I}, j ∈ {1, ..., J}, k ∈ {1, ...,K} are respectively
the index of product, variable and observation.

A new method of heath indicator extraction is proposed
in this section and is depicted in Fig. 2. To build a health
indicator, a two-stages method is proposed with the main
ideas:

Stage 1: identifying the significant points (js, ks) of sensor
and observation which demonstrate the dynamics of degra-
dation on machine from whole points (j, k). This stage
consists two steps: step (1.1) identifying moving points and
step (1.2) identifying significant points.

Step 1.1:
The two objectives of this step are:

• Eliminating the zero-variance points for the use of
Principal Component Analysis (PCA) in next step

• Identifying the points which have a significant vari-
ation between the first products (considered as good
quality) and the degraded one

A large enough number n, (n < I) of first products
(considered as good quality products) is chosen to build
an upper limit UL and a lower limit LL for each point
(j, k):

UL(j,k) = max((X
(j,k)
i , i = 1, ..., n) (1)

and

LL(j,k) = min((X
(j,k)
i , i = 1, ..., n) (2)
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There are two cases:
Case 1: If an arbitrary product N, n < N ≤ I which
is verified bad quality by a measure test is available, it is
used to compare with the limits to select the moving points
(j, k) which satisfy the condition:

X
(j,k)
N > UL(j,k) or X

(j,k)
N < LL(j,k) (3)

Case 2: If there is no product which is verified bad quality,
the last product I, is considered as degraded according to
the hypothesis 2.1 and is used to select the moving points
(j, k) which satisfy the condition:

X
(j,k)
I > UL(j,k) or X

(j,k)
I < LL(j,k) (4)

After this step, every identified point is signed X
(jm,km)
i ,

i ∈ {1, ..., I}, (jm, km) ∈ {(1jm, 1km), ..., (Mjm,Mkm)},
M is the number of identified points. They are arranged
in a new matrix X :

X =


X1

(1jm,1km) X1
(2jm,2km) . . . X1

(Mjm,Mkm)

X2
(1jm,1km) X2

(2jm,2km) . . . X2
(Mjm,Mkm)

...
...

. . .
...

XI
(1jm,1km) XI

(2jm,2km) . . . XI
(Mjm,Mkm)

 (5)

Step 1.2:
X is then mean-centered and unit-deviation scaled and is
decomposed by PCA:

X = T × PT (6)

where T is score matrix and PT is transpose matrix of P ,
P is loading matrix.

Since the machine degradation is supposed to be gradual,
at least one among the first principal components depicts
the machine features which is progressively decreasing or
increasing. The principal features of machine over time
are: gradual drifts of degradation, abrupt drifts, noises,
disturbances; among them, only gradual drifts of degrada-
tion and noises always occur on all the products, so, they
are depicted by the first principal component (PC) (first
column of T) called D.

The significant points are then identified. Noting that each
column of X , signed X (jm,km), depicts the evolution of the
point (jm, km) chronologically. Among them, some points
degrade with ascending tendency meanwhile some other
points degrade with descending tendency, the remaining
points are those whose evolution do not describe the
degradation. Because D carries the degradation dynamics
thus the absolute value of correlation between X (jm,km)

of the points which do not correspond to the degradation
and D are smaller than those between X (jm,km) of other
points and D. The absolute value of correlation between
each X (jm,km) and D, signed c(jm,km), is calculated as in
equation (7):

c(jm,km) =

1

I

∣∣∣ (X (jm,km)T −m(jm,km)I(1,I))× (D −mDI(I,1))

d(jm,km) dD

∣∣∣ (7)

where m(jm,km) is mean of column X (jm,km), d(jm,km) is

standard deviation of column X (jm,km), mD is mean of D,
dD is standard deviation of D, I(1,I) is the identity row
of size 1 × I, I(I,1) is the identity column of size I × 1
and I is the number of products. Because X is mean-
centered and unit-deviation scaled thus m(jm,km) = 0,
d(jm,km) = 1 ∀(jm, km) and mD = 0 as D is the first

PC of X , c(jm,km) is rewritten as:

c(jm,km) = a|X (jm,km)T ×D| (8)

where a = 1/(I ∗ dD) is a constant. Signing C is the set of
all c(jm,km). To separate the points (jm, km) which do not
correspond to degradation from others, a percentile pth of
C is calculated and considered as a lower limit to identify
the significant points which satisfy:

(jm, km) : c(jm,km) > percentilepth{C} (9)

The value of pth percentile depends on the application
case.

The significant points are signed (js, ks) and their

measure value is X
(js,ks)
i , i ∈ {1, ..., I}, (js, ks) ∈

{(1js, 1ks), (2js, 2ks), ..., (Sjs, Sks)}, the number of signif-
icant points is S. They are then arranged in a new matrix
Xr which is called reduced matrix and is given as follows:

Xr =


X1

(1js,1ks) X1
(2js,2ks) . . . X1

(Sjs,Sks)

X2
(1js,1ks) X2

(2js,2ks) . . . X2
(Sjs,Sks)

...
...

. . .
...

XI
(1js,1ks) XI

(2js,2ks) . . . XI
(Sjs,Sks)

 (10)

Signing m(js,ks) and d(js,ks) are respectively mean and
standard deviation of column (js, ks) of matrix Xr. They
are used later (equation 21) to scale the online data for
online supervision.

Stage 2: extracting the principal feature from these signif-
icant points.

Xr is then mean-centered and unit-deviation scaled and
is decomposed by PCA:

Xr = Tr × PT
r (11)

The first PC of Xr, signed I0 is considered as the health in-
dicator of machine because it represents the first principal
dynamics of all significant points, which are determined
describing the degradation dynamics in Stage 1.

I0 = Xr × Pr1 (12)

where Pr1 is the first column of Pr

2.2 Analysis of health indicator dynamics

2.2.1 Filtering: Applying the health indicator extrac-
tion presented at previous section, a common form of the
indicator is provided in Fig. 3.a, called I0 (applied on a
real data provided by STMicroelectronics). It is highly
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(a) I0 (b) I1

Fig. 3. Raw health indicator with lowpass filtering

noisy with a large variance all the time which will lead
to a highly noisy degradation rate if I0 is modelled. Thus
a low-pass filter (e.g: an average filter with a window size
of 10) is used to eliminate high frequency noises, the result
is called I1 and presented in the Fig. 3.b.

A real health indicator is always monotonous over time
because the degradation is not reversible. However, under
the influence of perturbations of machine, of environment
and significant disturbances of quality of input products,
I1 is not monotonous. If I1 increases progressively, the
higher values reflect the degradation better than their
lower neighbour values and inversely if I1 decreases pro-
gressively. Therefore, an algorithm is proposed to elim-
inate disturbances and to monotonize the indicator: I1
is analysed to structure a top curve It which is then
considered as health indicator if I1 increases or a bottom-
curve Ib if I1 decreases. This algorithm is presented for an
increasing indicator as follows (for a decreasing indicator
it is the same but replacing ”maximum” by ”minimum”
and replacing the signs by their opposite sign):

Step 1: Searching the maximum peaks of I1
{I1(i), i = 1→ I} is divided into several subsets:
{I1,u(i), i = 1 + wu→ w + wu}, u,w are integers
w > 1 (e.g:w = 10), u = 0, 1..., [I/w]

• If ∃u : max(I1,u(i)) > max(I1,u−1(i), I1,u+1(i))
=⇒ max(I1,u(i)) is a maximum peak
=⇒ It = It ∪max(I1,u(i))

Step 2: Monotonizing It

• Eliminating minimum peaks of It:
It(i) ≤ min(It(i − 1), It(i + 1)) (this step is executed
several times till there is no minimum peak on It)

• Eliminating It(end) if It(end) ≤ It(end− 1)

After this step, the last value of It is the maximum.
Signing imax is the index of product of this last value.
It(imax) = I1(imax) and I1(imax) is also the maximum value
of I1

Step 3: Interpolating and extrapolating It by linear method
for all product i, i ∈ {1, ..., imax}

One result of this algorithm on a real data (given by
STMicroelectronics) is given in Fig. 7 in section 4.

2.2.2 Health indicator modelling: The time unit here is
the duration of processing a product on machine. A normal
operating threshold TN is predefined. The filtered health
indicator from the previous section is signed Y . Supposing

that Y (i) is increasing, signing i0 as i0 = inf{i : Y (i) >
TN}. (if Y(i) is decreasing, i0 = inf{i : Y (i) < TN}).
Y (i), i0 < i < imax is then modelled using an adequate
stochastic process.

The Wiener process is considered inadequate in modelling
degradation which is monotone, according to Gorjian
et al. (2010). In spite of that, it is possibly used in this
case because fault prognosis pays more attention to the
indicator trend modelling than to the diffusion aspect
of the process. Moreover, the health indicator Y (i) has
the degradation rate changes with an unknown function.
Therefore, the profile of Y (i) can be modelled by an
adaptive Wiener process described in Wang et al. (2011).
It is presented as below:

Y (j) is the Condition Monitoring (CM) reading at time j,
it is modelled as:

Y (j) = Y (i) + µi(j − i) + σεi,j , j > i (13)

where Y (i) is the ith available CM point, µi is the
updated drifting parameter at i after observing Y (i), σ
is a constant, σεi,j is the error term which is normally
distributed and εi,j ∼ N(0, j−i). µi is updated by Kalman
filtering. At time i, the system equation is described:

µi = µi−1 + ν (14)

Y (i)− Y (i− 1) = µi−1 + σεi−1,i (15)

where the error terms are distributed as ν ∼ N(0, Q) and
εi−1,i ∼ N(0, 1). The updated estimate of µi at time i is
given as:

µ̂i = µ̂i−1 + Pi|i−1F
−1
i (Y (i)− Y (i− 1)− µ̂i−1) (16)

where
Pi|i−1 = Pi−1 +Q (17)

and
Fi = Pi|i−1 + σ2 (18)

and
Pi = Pi|i−1 − Pi|i−1F

−1
i Pi|i−1 (19)

The parameters (µ0, P0, Q, σ) are estimated using the
expectation-maximization algorithm given in Wang et al.
(2011). All the obtained drifting parameter values are
signed µ̂i, i0 ≤ i ≤ imax.

3 On-line supervision

The off-line analysis and on-line supervision can be re-
sumed in the Fig. 4

For on-line supervision: signing in is the index of product.
For a new product in processed on machine, the obtained
data is used to calculate the health indicator and to esti-
mate the RUL. We repeat again that the time unit here is
the duration of processing a product on machine, thus, it
is also the index of product.

3.1 Extraction of HI and filtering

From the equation (12), the value of raw health indicator
at product in is calculated as:

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8069



Fig. 4. Off-line and online prognosis

I0(in) = Xr(in)× Pr1 (20)

where Xr(in) =
(
X̄

(1js,1ks)
in X̄

(2js,2ks)
in . . . X̄

(Sjs,Sks)
in

)
,

each value X̄
(js,ks)
in is computed from the raw measurement

value Xin
(js,ks) of online data as follows:

X̄
(js,ks)
in =

Xin
(js,ks) −m(js,ks)

d(js,ks)
(21)

m(js,ks), d(js,ks) are respectively mean and standard devi-
ation of the significant points (js, ks) of off-line data, Pr1

is the eigenvector given in subsection 2.1.

The curve I0 is then similarly filtered and the obtained
health indicator called Yn (see 2.2.1).

3.2 RUL estimation

A failure threshold TF is predefined. Supposing that the
health indicator is increasing (if it decreases, the method
is the same but with opposite signs). When Yn exceeds
the normal operating threshold TN , the prognosis model is
launched. The main idea of RUL estimation is establishing
the expected evolution of Yn based on establishing the
predicted evolution of drifting parameter µin on taking
into account the maximum value Yn(inmax).

At each observation in of on-line supervision, Yn(1 →
inmax) is available. The RUL estimation at in is executed
as:

• Searching ǐ which satisfies
Y (̌i) ≤ Yn(inmax) < Y (̌i+ 1)), Y is the HI of section 2

• Calculating µinmax
of on-line indicator Yn by the

Kalman filtering using parameters (µ0, P0, Q, σ) and
the equations (16-19)

• Calculating the residual ∆ = µinmax
− µ̂ǐ

• Establishing the on-line predicted drifting parameter
is Ψin = {µ̂ǐ + ∆, µ̂ǐ+1 + ∆, ..., µ̂imax

+ ∆}

• From the equation (15), the expected value of Yn is
estimated recursively: for 0 ≤ j < imax − ǐ:

E
(
Yn(inmax + j + 1)

)
=E

(
Yn(inmax + j) + (µ̂ǐ+j + ∆) + σε0,1

)
=E

(
Yn(inmax + j)

)
+ (µ̂ǐ+j + ∆) (22)

and for j ≥ imax − ǐ:
E
(
Yn(inmax + j + 1)

)
=E

(
Yn(inmax + j) + (µ̂imax

+ ∆) + σε0,1
)

=E
(
Yn(inmax + j)

)
+ (µ̂imax

+ ∆) (23)

• Searching ĵ where ĵ = inf{j : E
(
Yn(inmax+j)

)
> TF },

ĵ − (in − inmax) is the estimated RUL.

4 Application

This section provides the result of application of the pro-
posed method on a real industrial data from STMicro-
electronics Rousset. Measured variables are sampled at
1 second intervals during a process, for 351 observations
of totally 19 sensors for one month of production, which
represents about 1000 wafers from the first wafer to the
last one before a new reparation. The data is preprocessed
by a synchronization step to obtain the common length
trajectories.

4.1 Off-line analysis

4.1.1 Health indicator extraction The first two hundred
wafers are used to contribute the upper limit UL and lower
limit LL of each point (j, k) with equations (1-2). The total
number of (j, k) points is 351∗19 = 6669 points, after this
step 1.1 it remains 1527 points (jm, km). The Fig. 5 shows
the first 4 principal components and their correspondent
eigenvalue of PCA in step 1.2. The first PC (blue color)
which is progressive depicts the non-linear degradation of
machine.

Fig. 5. The first four principal components

Fig. 6 shows 763 significant points (js, ks) which are
identified with equations (8 - 9), pth is chosen as 50th

percentile. These points relate to the sensor 1, 2, 9, 10, 18.

Finally, all these significant points are used to calculate the
raw health indicator of machine with equations (11-12).

4.1.2 Analysis of health indicator dynamics Applying
the filtering proposed in 2.2.1, the health indicator Y is
given in Fig. 7. The normal operating threshold is prede-
fined TN = −10 and the failure threshold is predefined
TF = 55.
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Fig. 6. Significant points

Fig. 7. Health indicator

The parameter result of health indicator modelling is µ0 =
0.055, P0 = 3.06 × 10−6, Q = 2.7 × 10−5 and σ = 0.071.
The evolution of µ̂i is given in Fig. 8, this is really an
unknown function over time.

Fig. 8. Evolution of drifting parameter µ̂i

4.2 Online supervision

To validate the prognosis model, the online data is gener-
ated by a simulator which takes into account the dynamics
of historical data. One profile of online indicator is given
in Fig. 9 compared to the off-line indicator. At each in-
spection time in, the available online data is known only
for t = 1, ..., in. When Yn(inmax) > TN , (see section 3.1),
the degradation alarm launches the prognosis model.

At each inspection time in, the real failure time is 921
thus the real RUL is (921− in). Hence, the estimate RUL
and the real RUL can be compared as given in Fig. 10. The
result shows that the RUL estimation of almost inspection

Fig. 9. Online data

Fig. 10. Estimation error

times gives a small error excepting some periods. This is
because during these periods, the online health indicator
Yn evolves much differently from the reference one Y
(which can be caused practically by several phenomena
of the degradation process of machine) so that provokes
an important error. This error is then corrected due to
the adaptive aspect of the prediction model. The root
mean squared error of RUL estimation is 74 time units
(equivalent to the duration of processing 74 wafers or
nearly 3 lots in STMicroelectronics manufacturing) is a
small error, thus, the prognosis model is validated.

5 Conclusion

This paper proposes a new method of health indicator
extraction for discrete manufacturing processes from raw
data, based on identifying the significant points which re-
late to the degradation dynamics of machine. The HI of off-
line data is then modelled with an adaptive Wiener process
and its parameters are used to predict the evolution of HI
for the on-line supervision. An application of the proposed
method on a real industrial data is presented and it shows
a small error of RUL estimation.

References

Alexis Thieullen, Mustapha Ouladsine, J.P. (2012). A
survey of health indicators and data-driven prognosis in

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8071



semiconductor manufacturing process. In (ed.), , vol-
ume 8, 19–24. 8th IFAC Symposium on Fault Detection,
Supervision and Safety of Technical Processes.

Bagdonavicius, V. and Nikulin, M. (2001). Estimation in
degradation models with explanatory variables. Lifetime
Data Analysis, 7(1), 85–103.

Bakker, J. and van Noortwijk, J. (2004). Inspection vali-
dation model for life-cycle analysis. In Bridge mainte-
nance, safety, management and cost, proceedings of the
second international conference on bridge maintenance,
safety and management (IABMAS), Kyoto, Japan, 18–
22. Citeseer.

Benkedjouh, T., Medjaher, K., Zerhouni, N., and Rechak,
S. (2013). Remaining useful life estimation based on
nonlinear feature reduction and support vector regres-
sion. Engineering Applications of Artificial Intelligence.

Gorjian, N., Ma, L., Mittinty, M., Yarlagadda, P., and
Sun, Y. (2010). A review on degradation models in
reliability analysis. In D. Kiritsis, C. Emmanouilidis,
A. Koronios, and J. Mathew (eds.), Engineering Asset
Lifecycle Management, 369–384. Springer London.

Lawless, J. and Crowder, M. (2004). Covariates and ran-
dom effects in a gamma process model with application
to degradation and failure. Lifetime Data Analysis,
10(3), 213–227.

Le Son, K., Barros, A., and Fouladirad, M. (2012a).
Deterioration model filtering by gibbs algorithm and rul
estimation. In Fault Detection, Supervision and Safety
of Technical Processes, volume 8, 13–18.

Le Son, K., Fouladirad, M., Barros, A., Levrat, E., and
Iung, B. (2012b). Remaining useful life estimation
based on stochastic deterioration models: A comparative
study. Reliability Engineering and System Safety.

Tseng, S.T. and Peng, C.Y. (2007). Stochastic diffusion
modeling of degradation data. Journal of Data Science,
5(3), 315–333.

Wang, W., Carr, M., Xu, W., and Kobbacy, K. (2011). A
model for residual life prediction based on brownian mo-
tion with an adaptive drift. Microelectronics Reliability,
51(2), 285 – 293.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8072


