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Abstract: This paper presents an explicit solution to a two player distributed LQR problem
in which communication between controllers occurs across a communication link with varying
delay. We extend known dynamic programming methods to accommodate this varying delay, and
show that under suitable assumptions, the optimal control actions are linear in their information,
and that the resulting controller has piecewise linear dynamics dictated by the current effective
delay regime.

1. INTRODUCTION

In the past decade, optimal decentralized controller syn-
thesis has seen an explosion of advances at the theoretical,
algorithmic and practical levels. We provide a brief survey
of the more directly relevant results to our paper in the
following, and refer the reader to the tutorial paper by
Mahajan et al. [2012] for a timely presentation of the
current state of the art in optimal decentralized control
subject to information constraints.

A particular class of decentralized control problems that
has received a significant amount of attention is that of
optimal H2 (or LQG) control subject to delay constraints.
In this case, the information constraints can be interpreted
as arising from a communication graph, in which edge
weights between nodes correspond to the delay required
to transmit information between them. For the special
case of the one-step delay information sharing pattern,
the H2 problem was solved in the 1970s using dynamic
programming (Sandell and Athans [1974], Kurtaran and
Sivan [1974], Yoshikawa [1975]). For more complex delay
patterns, sufficient statistics are not easily identified, mak-
ing extensions beyond the state feedback case (Lamperski
and Doyle [2011, 2012]) difficult, although semi-definite
programming (SDP) (Rantzer [2006], Gattami [2006]),
vectorization (Rotkowitz and Lall [2006]), and spectral
factorization (Lamperski and Doyle [2013]) based solutions
do exist. It is worth noting that for specific systems, suffi-
cient statistics and a generalized separation principle have
been identified and successfully applied, as in the work by
Feyzmahdavian et al. [2012]. Furthermore, recent work by
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Nayyar et al. [2011, 2013] provides dynamic programming
decompositions for the general delayed sharing model.

An underlying assumption in all of the above is that
information, albeit delayed, can be transmitted perfectly
across a communication network with a fixed delay. A
realistic communication network, however, is subject to
data rate limits, quantization, noise and packet drops –
all of these issues result in possibly varying delays (due to
variable decoding times) and imperfect transmission (due
to data rate limits/quantization). The assumption that
these delays are fixed necessarily introduces a significant
level of conservatism in the control design procedure.
In particular, to ensure that the delays under which
controllers exchange information do not vary, worst case
delay times must be used for control design, sacrificing
performance and robustness in the process.

These issues have been addressed by the networked control
systems (NCS) community, leading to a plethora of results
for channel-in-the loop type problems: see the recent
survey by Hespanha et al. [2007], and the references
therein. Some of the more relevant results from this field
include the work by Gupta et al. [2005,] and Garone et al.
[2010], which address optimal LQG control of a single plant
over a packet dropping channel. Very few results exist,
however, that seek to combine NCS and decentralized
optimal control. A notable exception is the work by Chang
and Lall [2011], in which an explicit state space solution to
a sparsity constrained two-player decentralized LQG state-
feedback problem over a TCP erasure channel is solved.

We take a different view from these results, and suppress
the underlying details of the communication network, and
instead assume that packet drops, noise, and congestion
manifest themselves to the controllers as varying delays.
In particular, we seek to extend the distributed state-
feedback results of Lamperski and Doyle [2011, 2012] and
Lamperski and Lessard [2012] to accommodate varying
delays. In addition to allowing for communication channels
to be more explicitly accounted for in the control design
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procedure, the ability to accommodate varying delays
provides flexibility in the coding design aspect of this
problem.

In this paper, we focus on a two plant system in which
communication between controllers occurs across a com-
munication link with varying delay. In Matni and Doyle
[2013], we solved a special case of this problem by extend-
ing the methods used in Lamperski and Doyle [2011] and
Lamperski and Doyle [2012]. Here, we use a variant of the
dynamic programming methods in Lamperski and Lessard
[2012] to accommodate this varying delay, and show that
under suitable assumptions, the optimal control actions
are linear in their information, and that the resulting
controller has piecewise linear dynamics dictated by the
current effective delay regime.

This paper is structured as follows: in Section 2 we fix
notation, and present the problem to be solved in the
paper. Section 3 introduces the concepts of effective delay,
partial nestedness (c.f. Ho and Chu [1972]) and a system’s
information graph (c.f. Lamperski and Lessard [2012])
before presenting our main result. Section 4 derives the
optimal control actions and controller, and Section 5 ends
with conclusions and directions for future work. Proofs
of all intermediary results can be found in the extended
report by Matni et al. [2014].

2. PROBLEM FORMULATION

Notation: For a matrix partitioned into blocks

M =

 M11 · · · M1N

...
. . .

...
MN1 · · · MNN


and s, v ⊂ {1, . . . , N}, we let Ms,v = (Mij)i∈s,j∈v.
For example, M{3}{1,2} = [M31 M32 ] . We denote the
sequence xt0 , ..., xt0+t by xt0:t0+t, and given the history of a
random process r0:t, we denote the conditional probability
of an event A occurring given this history by Pr0:t(A).
If Y = {y1, . . . , yM} is a set of random vectors (possibly
of different sizes), we say that z ∈ lin (Y) if there exist
appropriately sized real matrices C1, . . . , CM such that
z =

∑M
i=1 C

iyi.

The two-player problem: This paper focuses on a two
plant system with physical propagation delay ofD between
plants, and stochastically varying communication delays
dit ∈ {0, . . . , D} – to ease notation, we let dt := (d1t , d

2
t ).

We impose some additional assumptions on the stochastic
process dt in Section 3 such that the infinite horizon
solution is well defined.

The dynamics of the sub-system i are then captured by
the following difference equation:

xit+1 = Aiix
i
t +Aijx

j
t−(D−1) +Biu

i
t + wit (1)

with mutually independent Gaussian initial conditions and
noise vectors

xi0 ∼ N (µi0,Σ
i
0), wit ∼ N (0,W i

t ) (2)

We may describe the information available to controller i
at time t, denoted by Iit , via the following recursion:
Ii0 = {xi0}
Iit+1 = Iit ∪ {xit+1} ∪ {xjk : 1 ≤ k ≤ t+ 1− djt+1}

(3)

x1 x2�1 �2 �3

Fig. 1. The distributed plant considered in (6), shown here
for D = 4.

The inputs are then constrained to be of the form
uit = γit(Iit) (4)

for Borel measurable γit .

In order to build on the results in Lamperski and Lessard
[2012], we model the two plant system as a D + 1 node
graph, with “dummy delay” nodes introduced to explicitly
enforce the propagation delay between plants. Specifically,
letting

δit =

[
x1t−i

x2t−(D−i)

]
, i = 1, . . . , D − 1 (5)

where δi is the state of the ith dummy node, we obtain the
following state space representation for the system

xt+1 = Axt +But + wt (6)
where, to condense notation, we let

x =


x1

δ1

...
δD−1

x2

 u =


u1

0
...
0
u2

 w =


w1

0
...
0
w2

 , (7)

and A and B are such that (6) is consistent with (1) and
(5). The physical topology of the plant is illustrated in
Figure 1.
Problem 2.1. Given the linear time invariant (LTI) system
described by (1), (5) and (6), with disturbance statistics
(2), minimize the infinite horizon expected cost

lim
N→∞

1

N
E

[
N∑
t=1

x(t)TQx(t) + u(t)TRu(t)

]
(8)

subject to the input constraints (4).

The weight matrices are assumed to be partitioned into
blocks of appropriate dimension, i.e. Q = (Qij) and
R = (Rij), conforming to the partitions of x and u.
We assume Q to be positive semi-definite, and R to be
positive definite, and in order to guarantee existence of the
stabilizing solution to the corresponding Riccati equation,
we assume (A,B) to be stabilizable and (Q

1
2 , A) to be

detectable.

3. MAIN RESULT

Effective delay: The information constraint sets (3) are
defined in such a way that controllers do not forget
information that they have already received. This leads
to the xj component of the information set Iit being a
function of the effective delay seen by the controller, as
opposed to the current delay value of the communication
channel djt .
Definition 3.1. Let

ejt := min{djt , djt−1 + 1, djt−2 + 2, . . . ,

djt−(D−2) + (D − 2), djt−(D−1) + (D − 1)} (9)
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Fig. 2. The information graph G = (V, E), and label sets {Lst}s∈V , for system (6), shown here for D = 4, and et = (3, 2).

be the effective delay in transmitting information from
controller j to controller i.
Lemma 3.1. The information set available to controller i
at time t may be written as

Iit = Iit−1 ∪ {xit} ∪ Ijt−ejt (10)

In order to ensure that the infinite horizon solution is well
defined, we assume that the stochastic delay process dt
induces an effective delay process such that

lim
T→∞

1

T

T−1∑
t=0

Pd0:t
(
eit+1 ≤ d

)
(11)

exists for any integer d.

Partial Nestedness: Here we show that the information
constraints (4) and system (6) are partially nested (c.f.
Ho and Chu [1972]), and hence that the optimal control
policies γit are linear in their information set.
Definition 3.2. A system (6) and information structure
(4) is partially nested if, for every admissible policy γ,
whenever uiτ affects Ijt , then Iiτ ⊂ Ijt .
Lemma 3.2. (see Ho and Chu [1972]) Given a partially
nested information structure, the optimal control law that
minimizes a quadratic cost of the form (8) exists, is unique,
and is linear.

Using partial nestedness, the following lemma shows that
the optimal state and input lie in the linear span of Iit and
Ht, where Ht is the noise history of the system given by

Ht = {x0, w0:t−1} (12)
Lemma 3.3. The system (6) and information structure (4)
is partially nested, and for any linear controller, we have
that

xit, u
i
t ∈ lin

(
Iit
)
, xt, ut ∈ lin (Ht) (13)

Information Graph and Controller Coordinates: Lemma
3.3 indicates that each Iit is a subspace of Ht: in this
section, we exploit this observation to define pairwise
independent controller coordinates. An explicit character-
ization of these subspaces is given in Section 4.

We begin by defining the information graph, as in Lam-
perski and Lessard [2012], associated with system (6) by
G = (V, E), with
V :=

{
{1} ,

{
1, δ1

}
, . . . ,

{
1, δ1, . . . , δD−1

}}
∪{

{2} ,
{
δD−1, 2

}
, . . . ,

{
δ1, . . . , δD−1, 2

}}
∪ V

E := {(r, s) ∈ V × V : |s| = |r|+ 1} ∪ {(V, V )}
(14)

where V :=
{

1, δ1, . . . , δD−1, 2
}
. For the case of D = 4,

the graph G is illustrated in Figure 2.

Before proceeding, we define the following sets, which will
help us state the main result. Let

vi,+t := {s ∈ V\V | i ∈ s, |s| ≥ eit}
vi,++
t := {s ∈ V\V | i ∈ s, |s| > eit}

(15)

and similarly define vi,−t and vi,−−t as in (15), but with the
(strict) inequality reversed.
Theorem 3.1. Consider Problem 2.1, and let G(V, E) be
the associated information graph. Let

XV = Q+A>XVA+A>XVBKV

KV := −
(
R+B>XVB

)−1
B>A,

(16)

be the stabilizing solution to the discrete algebraic Riccati
equation, and the centralized LQR gain, respectively. Now,
assume that Xs is given, and let r 6= s ∈ V be the unique
node such that (r, s) ∈ E . Define the matrices

Λr = Qrr + pr(AV r)>XVAV r + qr(Asr)>XsAsr

Ψr = Rrr + pr(BV r)>XVBV r + qr(Bsr)>XsBsr

Ωr = pr(AV r)>XVBV r + qr(Asr)>XsBsr

Xr = Λr + ΩrKr

Kr = − (Ψr)
−1

(Ωr)
>

(17)

where pr is given by

pr := lim
T→∞

1

T

T−1∑
t=0

Pd0:t
(
r ∈ vi,++

t+1

)
(18)

and qr = 1− pr.
The optimal control decisions then satisfy

ζVt+1 = AζVt +BϕVt +
2∑
i=1

∑
r∈vi,++

t+1

(AV rζrt +BV rϕrt )

ζst+1 =

{
Asrζrt +Bsrϕrt if s ∈ ∪ivi,−t+1, (r, s) ∈ E
0 otherwise

ζit+1 = wit, ζi0 = xi0
uit = ϕVt +

∑
s∈vi,−t

IV,sϕst , ϕrt = Krζrt

(19)
and the corresponding infinite horizon expected cost is

2∑
i=1

Trace
(
X{i}W i

)
(20)

Proof. See Section 4.
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Remark 3.1. Notice that the global action taken based on
ζV must be taken simultaneously by both players. In other
words, it is assumed that an acknowledgment mechanism
is in place such that et is known to both players; relaxing
this assumption will be the subject of future work.
Remark 3.2. The probabilities pr and qr can be computed
directly if we assume the {dt} to be independently and
identically distributed. In this case, ejt evolves according to
an irreducible and aperiodic Markov chain with transition
probability matrix computable directly from the definition
of effective delay and the pmf of dt. As such, pr and qr

can be computed from the chain’s stationary distribution,
which is guaranteed to exist. Future work will explore
what additional distributions on dt will lead to closed
form expressions for pr and qr. Failing the existence of
closed form expressions for these asymptotic distributions,
computing estimates via simulation should be a feasible
option for many interesting delay processes.

4. CONTROLLER DERIVATION

Controller States and Decoupled Dynamics: As men-
tioned previously, each Iit is a subspace of Ht: in this
section, we aim to explicitly characterize these subspaces
by assigning label sets {Ls0:t}s∈V to the graph G = (V, E) as
defined by (14). In particular, they are defined recursively
as:

Ls0 = ∅, for |s| > 1, Li0 = {xi0}, Lit+1 = {wit}
Lst+1 = Lrt , for (r, s) ∈ E , 1 < |s| < D + 1
LVt+1 = LVt ∪i ∪s∈vi,+

t+1
Lst

(21)
where we have let ∪i denote ∪2i=1 to lighten notational
burden. An example of these label sets for the case of
D = 4 is illustrated in Figure 2.

Before delving in to the technical justification for these
label sets, we provide some intuition. The information
graph G characterizes how the effect of noise terms spread
through the system, and labels are introduced as a means
of explicitly tracking this spreading. As can be seen in
Figure 2, for each (r, s) ∈ E , with |r| < D+1, we have that
|s| = |r| + 1, and additionally, that |s| measures exactly
how delayed the information in the label set is. We also
see that the graph is naturally divided into two disjoint
branches, with each branch corresponding to information
about a specific plant. Finally, the label corresponding to
the root node V can be interpreted as the information
available to both controllers – this is reflected by its
explicit dependence on the effective delay eit.
Remark 4.1. Note that in contrast to Lamperski and
Lessard [2012], the label sets as defined will in general not
be disjoint. However, as will be made explicit in Lemma
4.2, an effective delay dependent subset of the label sets
will indeed form a partition (i.e. a pairwise disjoint cover)
of the noise history.

We may now characterize the subspaces of Ht that are
associated with each Iit . This characterization will be
shown to depend on the effective delay ejt seen at node
i, and will lead to an intuitive partitioning of both the
state and the control input.

We begin by pointing out the following useful facts that
will be used repeatedly in the derivation to come

Lemma 4.1. Let vi,∗t , ∗ ∈ {−,−−}, be given as in (15).
Then, for a fixed i, we have that

∪s∈vi,−
t+1
Lst+1 = ∪r∈vi,−−

t+1
Lrt ∪ Lit+1, (22)

and for integers a, b ∈ {0, . . . , D − 1}
∪a<|s|≤b+1Lst+1 = ∪a≤|r|≤bLrt (23)

Proof. Follows immediately by applying the recursion
rules (21) and the fact that for each (r, s) ∈ E , with
|r| < D + 1, we have that |s| = |r|+ 1.
Lemma 4.2. Consider the information graph G as defined
in equation (14), and the label sets defined as in (21). We
then have that

(i) For all t ≥ 0, a subset of the labels form a partition
of the noise history. In particular, we have that

Ht = LVt ∪i ∪s∈vi,−t
Lst (24)

where the union is disjoint, i.e. LVt ∩ Lst = ∅ if s ∈
vi,−t , and Lst ∩ Ls

′

t = ∅ for any s 6= s′, s, s′ ∈ ∪ivi,−t .
(ii) For i = 1, 2

lin
(
Iit
)

= lin
(
LVt ∪s∈vi,−t

Lst
)
. (25)

Remark 4.2. Although the proof of this result is notation-
ally cumbersome, it is mainly an exercise in bookkeeping.
The idea is illustrated in Figure 2: labels for nodes v 6= V
track the propagation of a disturbance through the plant,
whereas the label for V selects those labels correspond-
ing to globally available information, as dictated by the
effective delay.

With the previous lemmas at our disposal, we may now
write

xt = ζVt +

2∑
i=1

∑
s∈vi,−t

IV,sζst

ut = ϕVt +

2∑
i=1

∑
s∈vi,−t

IV,sϕst

(26)

where each ζst , ϕst ∈ lin (Lst ). We may accordingly derive
update dynamics for these state and control components.
Lemma 4.3. If the control components are such that ϕts ∈
lin (Lst ), then the state components {ζst } satisfy the follow-
ing update dynamics

ζVt+1 = AζVt +BϕVt +
2∑
i=1

∑
r∈vi,++

t+1

(AV rζrt +BV rϕrt )

ζst+1 =

{
Asrζrt +Bsrϕrt if s ∈ ∪ivi,−t+1, (r, s) ∈ E
0 otherwise

ζit+1 = wit, ζi0 = xi0
(27)

In particular, notice that the dynamics (27) imply ζst = 0

for all s ∈ ∪ivi,++
t , allowing us to rewrite the decomposi-

tion for xt as
xt =

∑
s∈V

IV sζst , (28)

where have simply added the zero valued state components
to the expression in (26).
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We now have all of the elements required to solve for the
optimal control law via dynamic programming.

Finite Horizon Dynamic Programming Solution: Let
γt = {γst }s∈V be the set of policies at time t. By Lemma
3.3, we may assume the γst to be linear. Define the cost-
to-go

Vt(γ0:t−1) =

min
γt:T−1

Eγ×d
(
T−1∑
k=t

x>k Qxk + u>k Ruk + x>TQTxT

)
(29)

where the expectation is taken with respect to the joint
probability measure on (xt:T , ut:T−1) × (dt:T−1) induced
by the choice of γ = γ0:T−1 (note that the dt component
is assumed to be independent of the policy choice).
Remark 4.3. Following Nayyar et al. [2013], we adopt the
common information formalism and define our cost-to-go
function in terms of the control policy γ to be chosen
by a “centralized coordinator.” Noting that these policies
can in fact be computed off-line and in a centralized
manner (it is only their implementation that requires
measurement of the state components {ζs}), this in effect
reduces the dynamic programming argument to a standard
full-information setting.

Via the dynamic programming principle, we may iterate
the minimizations and write a recursive formulation for
the cost-to-go:

Vt(γ0:t−1) =

min
γt:T−1

Eγ×d
(
x>t Qxt + u>t Rut + Vt+1(γ0:t−1, γt)

)
. (30)

We begin with the terminal time-step, T , and use the
decomposition (28) to obtain

VT (γ0:T−1) = Eγ×d
(
x>TQTxT

)
= Eγ

∑
s∈V

(ζsT )>QssT (ζsT ),

(31)
where in the last step we have used the pairwise indepen-
dence of the coordinates ζsT . By induction, we shall show
that the value function, for some t ≥ 0, always takes the
form

Vt+1(γ0:t) = Eγ
∑
s∈V

((ζst+1)>Xs
t+1(ζst+1) + ct+1 (32)

where {Xs
t+1}s∈V is a set of matrices and ct+1 is a scalar.

We now solve for Vt(γ0:t−1) via the recursion (30). Given
et, apply (28) and the independence result to write

Vt(γ0:t−1) =

min
γt

Eγ×d
(∑
s∈V

(ζst )>Qss(ζst ) + (ϕst )
>Rss(ϕst )+

∑
s∈V

(ζst+1)>Xs
t+1(ζst+1) + ct+1

)
(33)

We now substitute the update equations (27), average over
dt+1 and use independence to obtain

Vt(γ0:t−1) = min
γt

Eγ
(∑
r∈V

[
ζrt
ϕrt

]>
Γrt

[
ζrt
ϕrt

]
+ ct

)
(34)

where Γr0:T−1 and c0:T−1 are given by:

Γrt =

[
Qrr 0

0 Rrr

]
+

Pd0:t(r ∈ vi,++
t+1 )

[
AV r BV r

]>
XV
t+1

[
AV r BV r

]
+

Pd0:t(r ∈ vi,−t+1) [Asr Bsr]
>
Xs
t+1 [Asr Bsr] (35)

ct = ct+1 +

2∑
i=1

Trace
(
X
{i}
t+1W

i
)
. (36)

The terminal conditions are cT = 0 and Γr = QrrT , and s
is the unique node such that (r, s) ∈ E .
Let prt := Pd0:t(r ∈ vi,++

t+1 ) and qrt := Pd0:t(r ∈ vi,−t+1), and
introduce the following matrices:

Λrt+1 = Qrr + prt (A
V r)>XV

t+1A
V r + qrt (A

sr)>Xs
t+1A

sr

Ψr
t+1 = Rrr + prt (B

V r)>XV
t+1B

V r + qrt (B
sr)>Xs

t+1B
sr

Ωrt+1 = prt (A
V r)>XV

t+1B
V r + qrt (A

sr)>Xs
t+1B

sr

(37)

Then each expression of the sum in (34) can be written as
(ζrt )>Λrt+1(ζrt ) + (ϕrt )

>Ψr
t+1(ϕrt ) + 2(ζrt )>Ωrt+1(ϕrt ). (38)

Due to the definitions of {ζr} and {ϕr}, it is clear that
the terms (38) are pairwise independent and hence can
be optimized independently. Removing the information
constraints, and optimizing over ϕrt , we see that the
optimal action is given by

ϕrt = −
(
Ψr
t+1

)−1 (
Ωrt+1

)>
ζrt (39)

which, by construction, satisfies the information con-
straints Iit . Substituting this solution back in to (38), we
see that the matrices Xr

t must satisfy
Xr
t = Λrt+1 + Ωrt+1K

r
t

Kr
t := −

(
Ψr
t+1

)−1 (
Ωrt+1

)> (40)

The finite horizon optimal cost is then given by

V0 = E
2∑
i=1

(xi0)>X{i}(xi0) + c0

= E
2∑
i=1

(µi0)>X{i}0 (µi0) + Trace
(
X
{i}
0 Σi0

)
+ c0

(41)

where c0 can be computed according to (36) beginning
with terminal conditions cT = 0.

Infinite Horizon Solution: In order to determine the
infinite horizon solution, we first notice that for r = V ,
pVt = 1, qVt = 0 and that the recursions (40) for r = V are
then simply given by

XV
t = Q+A>XV

t+1A+A>XV
t+1BK

V
t

KV
t :=

(
R+B>XV

t+1B
)−1

B>A,
(42)

that is to say the standard discrete algebraic Riccati re-
cursion/gain. By assumption, we have that (XV

t ,K
V
t ) →

(XV ,KV ), where XV and KV are, respectively, the stabi-
lizing solution the discrete algebraic riccati equation, and
the centralized LQR gain.

Now assume that Xs
t is defined, and let r 6= s ∈ V be the

unique node such that (r, s) ∈ E . Much as in the finite
horizon case, define the following matrices:

Λr = Qrr + pr(AV r)>XVAV r + qr(Asr)>XsAsr

Ψr = Rrr + pr(BV r)>XVBV r + qr(Bsr)>XsBsr

Ωr = pr(AV r)>XVBV r + qr(Asr)>XsBsr
(43)
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where we have let

(pr, qr) = lim
T→∞

1

T

T−1∑
t=0

(prt , q
r
t ). (44)

Note that these limits are well defined by the assumption
(11).

We then have that
Xr = Λr + ΩrKr, Kr := − (Ψr)

−1
(Ωr)

>
. (45)

What remains to be computed is the infinite horizon
average cost, which is given by (ignoring without loss the
cost incurred by the uncertainty in the initial conditions)

1

N

N∑
t=1

2∑
i=1

Trace
(
X
{i}
t W i

)
−→
N→∞

2∑
i=1

Trace
(
X{i}W i

)
(46)

5. CONCLUSION

This paper presented extensions of a Riccati-based solu-
tion to a distributed control problem with communication
delays – in particular, we now allow the communication
delays to vary, but impose that they preserve partial nest-
edness. It was seen that the varying delay pattern induces
piecewise linear dynamics in the state of the resulting
optimal controller, with changes in dynamics dictated by
the current effective delay regime.

Future work will be to extend the results to systems with
several players and more general delay patterns, and to
remove the assumption of strong connectedness, much as
was done in Lamperski and Lessard [2012] for the case of
constant delays. We will also seek to identify conditions
on the delay process dt such that assumption (11) holds.
Additionally, we will explore the setting in which the global
delay regime is not known.
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